微分中值定理历史与发展

微分中值定理历史与发展
微分中值定理历史与发展

微分中值定理历史与发展

卢玉峰

(大连理工大学应用数学系, 大连, 116024)

微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值

定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a

b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度.

人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积.

意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理.

人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理.

1. 微分中值定理产生的历史

费马作为微积分的创立者,他在研究极大和极小问题的解法时,得到统一的解法“虚拟等式法”,从而得出原始形式的费马定理.所谓的虚拟等式法,费马的“虚拟等式法”基于一种非常直观的想法,如果0()f x 为()f x 的极大值,那么从直

观上来看,()f x 在0x 附近值变化很小,当e 很小时()f x 和()f x e +差很小.用现代语言来说,对于函数()f x ,让自变量从x 变化到x e +,当()f x 为极值时,()f x 和()f x e +的差近似为0,用e 除虚拟等式,()()0f x e f x e

+?≈,然后让,就得到函数极值点的导数值为0,这就是费马定理: 函数0e →()f x 在0x x =处取极值,并且可

导,则。 应该指出: 费马给出以上结论,微积分还处于初创阶段,并没

有明确导数,极限连续的概念,用现代眼光来看,其论断也是不严格的.现在看到的费马定理是后人根据微积分理论和费马发现的实质重新给出的.

0()0f x ′= 罗尔在1691年发表的论著《方程的解法》给出了“在多项式的两个相邻根中,方程至少有一个实根.”这是定理:“101100n n n a x a x a x a ??++???++=1201(1)n n n na x n a x a ???+?+???+=10()f x 在[,上连续,在上可导,并且]a b (,)a b ()()f a f b =,则必存在一点(,)a b ξ∈,使()0f ξ′=”的特例.也就是以上定理被称为罗尔定理的原因.最初罗尔定理和现代罗尔定理不仅内容有所不同,而且证明也大相径庭,它是罗尔利用纯代数方法加以证明的,和微积分并没有什么联系.现在看到的罗尔定理,是后人根据微积分理论重新证明,并把它推广为一般函数,“罗尔定理”这一名称是由德罗比什在1834年给出,并由

意大利数学家贝拉维蒂斯在1846年发表的论文中正式使用的.

拉格朗日定理是微分中值定理中最主要的定理.它是指:“()f x 在[,上连续,在(,上可导,则存在一点]a b )a b (,)a b ξ∈,使()()()f b f a f b a

ξ?′=?.”这一定理是拉格朗日在《解析函数论》一书中首先给出的,它最初形式为:“函数()f x 在0x 和x 之间连续,()f x ′的最大值为A ,最小值为,则B 00

()()f x f x x x ??必取A ,中一个值.”

B 历史上拉格朗日定理证明有三个,最初的证明是拉格朗日在《解析函数论》中给出的.这个证明很大程度建立在直观基础上,并不是严格的. 它依赖于这样一个事实: 当()0,()f z f ′>z 在[,上单调增加.所用的条件也比现在强,现代中值定理只须]a b ()f x 在[,上可导,而拉格朗日最初的中值定理,却需]a b ()f x 在[,上可导,并存在连续导数.并且所用连续概念,也是直观的,“假设变量连续地变化,那么函数将会产生相应变化,但是如果不经过一切中间值,它就不会从一个值过渡到另一个值.” 十九世纪初,在以柯西等为代表的微积分严格化运动中,人们给出了极限,连续,导数的严格定义,也给拉格朗日中值定理以新的严格证明,柯西在《无穷小计算概论》中证明了:如果]a b ()f x ′在

[]b a ,为连续,则 必有一个[]b a ,∈ξ,使()()().a

b a f b f f ??=′ξ 现代形式的拉格朗日定理,是由法国数学家博(O.Bonnet) 在其著作《Cours de Calcul Differentiel et integral》中给出的,他不是利用()f x ′的连续性,而是罗尔定理对拉格朗日定理加以重新证明.

柯西定理被认为是拉格朗日定理的推广.它是指: 设()f x 和在[,上连续,在(,上可导,并且()F x ]a b )a b ()0F x ′≠,则必有一个值(,)a b ξ∈,使 ()()()()()()

f b f a f F b F a F ξξ′?=′?. 柯西在《微分计算教程》中给出最初的柯西定理:()f x 和在[]上有连续的导数,并且在[上不为零,这时对于某一点()F x b a ,()F x ′]b a ,[]b a ,∈ξ,有

()()()()()()

ξξF f a F b F a f b f ′′=??. 柯西的证明与拉格朗日对拉格朗日中值定理很相似.

微分中值定理在柯西的微积分理论系统中占有重要的地位.例如他利用微分中值定理给洛必达法则以严格的证明,并研究泰勒公式的余项.从柯西起,微分中值定理就成为研究函数的重要工具和微分学的重要组成部分.

2. 拉格朗日中值定理中ξ点对函数的描述

Lagrange定理只断言ξ的存在性,至少有一个,但可能不止一个,除了对一些比较简单的函数,无法指明这种点的确切位置。但我们有下面的结论:

如果在()x f ()+∞∞?,上二次可导,则()x f 是形如的二次多项式当且仅当对任意c bx ax ++2y x ,,满足方程()()()()y x f y f x f ?′=?ξ的点.2

y x +=ξ 证明: 直接计算知道,如果()=x f c bx ax ++2, 则任意y x ,,成立,

()()().2y x y x f y f x f ???????+′=?

反之,如果对任意y x ,,成立,()()().2y x y x f y f x f ???

????+′=?则对任意 h x , ()().2?????

?+′+=+h x f h x f h x f (1) 在上式中对h 微分, 得

().222??

????+′′+??????+′=+′h x f h h x f h x f (2) 在等式(2)中令,2h x ?= 得()().002

2f f h h f ′+′′=??????′ 在等式(1)中令 得 ,0=x ()()??

????′+=20h f h f h f . 因此 对任意 ()∞∞?∈,h ,

()()()().0002

f f h f h h f +′+′′=

记()()(),0,0,2

0f c f b f a =′=′′= 即得: ()=x f c bx ax ++2. 3. 拉格朗日中值定理和柯西中值定理的统一形式

拉格朗日中值定理和柯西中值定理可以看成下列中值定理的特例:

设 在区间上连续,在g f ,],[b a ()b a ,内可导,并且,0)(,1)(==b g a g 则存在一点),,(b a ∈ξ 使得()()().)()(b f a f g f ?′=′ξξ

引入函数))())(1()()(()()(b f x g a f x g x f x F ?+?=, 则对利用罗尔定理,即得结论.

,0)()(==b F a F F 若取()[b a x a

b x b x g ,,∈?]?=, 则可得拉格朗日中值定理; 设()f x 和在[,上连续,在(,上可导,并且()F x ]a b )a b ()0F x ′≠, 取

()],,[,)

()()()(b a x a F b F x F b F x g ∈??= 对 应用上述结果,可得柯西中值定理. g f ,4. 微分中值定理与积分中值定理

我们熟知积分学中的积分中值定理:设 在区间上连续,则存

f ],[b a ξ(b a ,∈)],使得 这个定理的几何意义是由曲线在区间[ 上覆盖的曲边梯形的面积等于以()()().ξf a b dx x f b

a ?=∫()x f y =

b a ,a b ?及()ξf 为边长的长方形面积。如果我们令积分中值定理变为:()(),dt t f x F x

a ∫=).()()()(ξF a

b a F b F ′?=? 由此看出,积分中值定理与微分中值定理实际上说的同一件事,只是一个用微分形式,一个用积分形式来表达而已.

5. 复值函数微分中定理的探讨

微分中值定理不能推广到复变函数上. 例如: 设

(),13+=z z f i a 231+?=,i b 2

31??=,则对于连接线段内任意一点b a ,ξ都不能满足方程 ()()()).(a b f a f b f ?′=?ξ

因为通过计算容易知道,=

22b ab a ++49, 但()23z z f =′,所以对于连接线段内任意一点b a ,ξ,不成立 .4

932=ξ

6. 微分中值定理在无穷区间上的推广

微分中值定理可以推广到无穷维的区间上. 罗尔定理推广到无穷维空间上有 下列结果:

设函数在有穷或无穷区间()x f ()b a ,内可微, 而且存在极限(有穷或无穷)()()x f x f b

x a x ?+→→=lim lim ,则存在一点()b a ,∈ξ 使得().0=′ξf 证明: 假定()()x f x f b

x a x ?+→→=lim lim =c . 若区间()b a ,为有限区间,定义 函数()()()?

??=∈=b a x c b a x x f x F ,,,, , 对应用罗尔定理即可. F 若若区间(为无限区间, 对)b a ,,0>?ε 直线ε+=c y 或ε?=c y 与曲线

至少应有两个交点, 设其交点的横轴坐标为, 在[上应用罗尔定理即可.

()x f y =21,c c ]21,c c 假定()()x f x f b

x a x ?+→→=lim lim =∞,无论区间()b a ,为有限或无限,方程 存在 使得方程 或,0>A ()A x f =()A x f ?=总有两个不同的根在[上应用罗尔定理即可.

,,21c c ]21,c c 利用这个推广的罗尔定理可以将柯西微分中值定理推广到无穷维空间,有下列结果:

设函数在有穷或无穷区间()()x g x f ,()b a ,内可微,且

()()()()0,0,0,0?+?+b f a g b f a f

皆存在,而且,则存在一点()()b a x x g ,,0∈≠′()b a ,∈ξ 使得

()()()()()()

.0000ξξg f a g b g a f b f ′′=+??+?? 证明: 由上述推广的罗尔定理, ()()00+≠?a g b g .定义

()()()()()

()().)0(0000)(+?+??+???=a g x g a g b g a f b f x f x F 于是()x F 在()b a ,内可微,并且()),0()0(0+=?=+a f b F a F 上述推广的罗尔定理, 存在一点(b a ,∈)ξ,使

得(),0=′ξF 即()()()()()()

.0000ξξg f a g b g a f b f ′′=+??+?? 7. 多元函数的微分中值定理

一元函数的微分中值定理容易推广到多元函数上去,得到下列多元函数的微分中值定理:

如果n 元函数在()n x x x f ,,,21L ()n a a a ,,,21L 的邻域G 内有一阶连续偏导数,则对G 内任意一点(),存在 n b b b ,,,21L ,10,<<θθ 使得

()()()i i n i i

n n a b a b a x f a a a f b b b f ??+??=?∑=))((,,,,,12121θL L . 证明: 记()()()()()(),,,111a b t a f a b t a a b t a f t F n n n ?+=?+?+=L , 则在

上有连续的导数,并且 F [1,0]()()()().1i i n i i

a b a b t a x f t F ??+??=′∑=F ]对在区间[上

应用lagrange 中值定理即得上述结论.

1,08. 赋范线性空间上函数的微分中值定理

设Y X ,是实的赋范线性空间, Ω为X 中的开集.,:Y f →Ω.0Ω∈x 如果存 在X 到Y 的有界线性算子使得 ()0x A ()()(),0lim 0000=??+u u

x A x f u x f u 称在处可导, 称为在的导数,记为 f

0x ()0x A ()x f 0x ()().00x A x f =′ 如果在Ω的每一点都可导, 称在Ω上可导.

f f 在 赋范线性空间上有下列的微分中值定理:

设X 是赋范线性空间,R 是实数集合, X b a ∈,, 是R X f →:X 上实值函数.如果在连接的线段上可导,则存在 f b a ,,10<<θ

()()()()()a b a b a f a f b f ??+′=?θ.

证明: 记 由于

()()(),a b t a f t F ?+=

()()()()(=??+′??+a b a b t a f h

t F h t F ())()()()()()()),0(0)()

())((→→????+′??+??+?+h a b a b h a b h a b t a f a b t a f a b h a b t a f 我们得到在区间[上是可微的实函数, 并且F ]1,0()()()().a b a b t a f t F ??+′=′ 对在区间[上应用lagrange 中值定理即得上述结论.

F ]1,0 人们对微分中值定理的研究,大约经历了二百多年的时间. 从费马定理开始,经历了从特殊到一般,从直观到抽象,从强条件到弱条件的发展阶段.人们正是在这一发展过程中,逐渐认识到微分中值定理的普遍性. 微分中值定理的形成历史和发展过程深刻的揭示了数学发展是一个推陈出新,吐故纳新的过程, 是一些新的有力工具和更简单方法的发现与一些陈旧的、复杂的东西被抛弃的过程, 是一个由低级向高级发展过程,是分析、代数和几何统一的过程. 正像龚昇先生指出的:“ 数学中每一步真正的发展都与更有力的工具和更简单的方法的发现密切联系着,这些工具和方法同时会有助于理解已有的理论并把陈旧、复杂的东西抛到一边. 数学科学发展的这种特点是根深蒂固的.”

参考文献

[1] 龚昇, 微积分五讲,科学出版社, 北京,2004.

[2] 小堀宪.数学史[M].东京: 朝仓书店,1956.

[3] 梁宗巨.数学家传略辞典[M].济南: 山东教育出版社,1989.

[4] Edwards C H.The historical development of the of

calculus[M].Heidelberg-New York: Springer-Verlag,1979.

[5] [美]波耶.微积分概念史[M].上海: 上海人民出版社,1977.

[6] Douglas S. Bridges, Foundations of Real and Abstract Analysis, Springer-Verlag,New-York,1998.

[7] 陈宁. 微分中值定理的历史演变. 大学数学,2003,(4):96-99

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理研究报告和推广

渤海大学 毕业论文<设计) 题目微分中值定理的研究和推广完成人姓名张士龙 主修专业数学与应用数学 所在院系数学系 入学年度 2002年9月 完成日期 2006年5月25日 指导教师张玉斌

目录 引言 (1) 一、中值定理浅析 (1) 1、中值定理中的 (1) 2、中值定理中条件的分析 (2) 二、微分中值定理的推广 (4) 1、微分中值定理在无限区间上的推广 (4) 2、中值定理矢量形式的推广 (7) 3、微分中值定理在n维欧式空间中的推广 (9) 4、中值定理在n阶行列式形式的推广 (12) 5、高阶微分中值定理 (15) 结束语 (19) 参考文献 (19)

微分中值定理的研究和推广 张士龙 <渤海大学数学系锦州 121000 中国) 摘要:微分中值定理是高等数学中的一项重要内容,是解决微分问题的关键。本文对微分中值定理中的一些条件给予了相关说明。后又在此基础上,对微分中值定理进行了一系列的推广,先后在无限区间内,在定理的矢量形式,在多维欧氏空间中,在高阶行列式形式,以及在微分定理的高阶形式五个方面来研究,通过定理与实例的结合,来说明各个推广的过程。从而,使定理向着更加广阔的方面发展,有利于对定理的掌握和应用。 关键词:微分中值定理,无限区间,矢量形式,行列式,高阶微分中值定理,欧式空间。 The Research and Popularization of The Differential Mean Value Theorem Shilong Zhang (Department of Mathematics Bohai University Jinzhou 121000 China> Abstract: The differential mean value theorem is an important element of higher mathematics. It is the key to solve the differential problems. This text gives detailed explanations to the conditions of the differential mean value theorem. On this foundation, this text carries on series of promotional activities of the theorem, and makes research in the indefinite sector, the vector form of the theorem, the multi-dimensional Euclidean space, the high rank determinant and high rank of the differential theorem altogether five aspects. This text illustrates the promotional process through the integration of the theorem and its examples, so as to enable the theorem to develop towards broader aspects. It is advantageous to the mastery and application of the theorem. Key words: the differential mean value theorem, indefinite sector, the rector form, Euclidean space, determinant, defferential value theorm of higher order 引言 罗尔定理、拉格朗日定理、柯西定理统称为微分学的中值定理。中值定理既应用导数来研究函数的性质,是沟通函数及其导数之间的桥梁,是应用导数的局部性研究,函数在区间上的重要工具。在实践中,有着广泛的应用,因此,有必要将其进一步推广,使其达到一个比较完善的地步,对进一步的研究和创造有很大的帮助。 一、中值定理浅析 1、中值定理中的

微分中值定理论文

引言 通过对数学分析的学习我们知道,微分学在数学分析中具有举足轻重的地位,它是组成数学分析的不可缺失的部分。对于整块微分学的学习,我们可以知道中值定理在它的所有定理里面是最基本的定理,也是构成它理论基础知识的一块非常重要的内容。由此可知,对于深入的了解微分中值定理,可以让我们更好的学好数学分析。通过对微分中值定理的研究,我们可以得到它不仅揭示了函数整体与局部的关系,而且也是微分学理论应用的基础。微分中值定理是一系列中值定理总称,但本文主要是以拉格朗日定理、罗尔定理和柯西定理三个定理之间的关系[1-3]以及它们的推广为研究对象,利用它们来讨论一些方程根(零点)的存在性, 和对极限的求解问题,以及一些不等式的证明。 中值定理的内容及联系 基本内容[4][5] 对于,微分中值定理的了解,我们了解到它包含了很多中值定理,可以说它是一系列定理的总称。而本文主要是以其中的三个定理为对象,进行探讨和发现它们之间的关系。它们分别是“罗尔(Rolle )定理、拉格朗日(Lagrange )定理和柯西(Cauchy )定理”。这三个定理的具体内容如下: Rolle 定理 若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则至少存在一点(),a b ξ∈,使()0f ξ'=。 Lagrange 定理 若()f x 在[],a b 上连续,在(),a b 内可导,则至少存在一点(),a b ξ∈,使()()()() =f b f a f b a ξ-'- Cauchy 定理 设()f x ,()g x 在[],a b 上连续,在(),a b 内可导,且()0g x '≠,则至少存在一点 (),a b ξ∈,使得 ()()()()()() f b f a f g b g a g ξξ'-='-。 三个中值定理之间的关系 现在我们来看这三个定理,从这三个定理的内容我们不难看出它们之间具有一定的关系。那它们之间具体有什么样的关系呢?我们又如何来探讨呢?这是我们要关心的问题,我们将利用推广和收缩的观点来看这三个定理。首先我们先对这三个定理进行观察和类比,从中可以发现,如果把罗尔定理中的()()f a f b =这一条件给去掉的话,那么定理就会变成为拉格朗日定理。相反,如果在拉格朗日定理中添加()()f a f b =这一条件的话,显然就该定理就会成为了罗尔定理。通过这一发现,可以得到这样的一个结论:拉格朗日定理是罗尔定理的推广,而罗尔定理是拉格朗日定理的收缩,或是它的特例。继续用这一思路来看拉格朗日

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

数学分析之微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。 一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.360docs.net/doc/6f14552983.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证) 推论2 函数和在区间I上可导且

微分中值定理和应用(大学毕业论文)

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书I 开题报告II 指导老师审查意见III 评阅老师评语IV 答辩会议记录V 中文摘要VI 外文摘要VII 1 引言1 2 题目来源1 3 研究目的和意义1 4 国外现状和发展趋势与研究的主攻方向1 5 微分中值定理的发展过程2 6 微分中值定理的基本容3 6.1 罗尔(Rolle)中值定理3 6.2 拉格朗日(Lagrange)中值定理4 6.3 柯西(Cauchy)中值定理4 6.4 泰勒(Taylor)定理4 7 微分中值定理之间的联系5 8 微分中值定理的应用5 8.1 根的存在性证明6 8.2 利用微分中值定理求极限8 8.3 利用微分中值定理证明函数的连续性10 8.4 利用微分中值定理解决含高阶导数的中值问题10 8.5 利用微分中值定理求近似值10 8.6 利用微分中值定理解决导数估值问题10 8.7 利用微分中值定理证明不等式11 9 微分中值定理的推广14 9.1 微分中值定理的推广定理15 9.2 微分中值定理的推广定理的应用17 参考文献18 致19

微分中值定理的推广及应用 学生:邓奇峰,信息与数学学院 指导老师:熊骏,信息与数学学院 【摘要】微分中值定理,是微积分的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,在微积分中起着极其重要的作用。本文首先介绍了微分中值定理的发展过程、微分中值定理的容和微分中值定理之间的在联系,接着再看微分中值定理在解题中的应用,如:“讨论方程根(零点)的存在性” ,“求极限”和“证明不等式”等方面的应用。 由于微分中值定理及有关命题的证明方法中往往出现的形式并非这三个定理中的某个直接结论,这就需要借助于一个适当的辅助函数,来实现数学问题的等价转换,但是,怎样构造适当的辅助函数往往是比较困难的。在此重点给出如何通过构造辅助函数来解决中值定理问题,从理论和实际的结合上阐明微分中值定理的重要性。 拉格朗日中值定理及柯西中值定理都是罗尔中值定理的推广。本文从其它角度归纳、推导了几个新的形式,拓宽了罗尔中值定理的使用围。同时,用若干实例说明了微分中值定理在导数极限、导数估值、方程根的存在性、不等式的证明、以及计算函数极限等方面的一些应用。 【关键词】微分中值定理罗尔中值定理拉格朗日中值定理柯西中值定理联系推广应用

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

微分中值定理及其应用

本科生毕业论文(设计)系(院)数学与信息科学学院专业数学与应用数学 论文题目微分中值定理及其应用 学生姓名贾孙鹏 指导教师黄宽娜(副教授) 班级11级数应1班 学号 11290056 完成日期:2015年4月

微分中值定理及其应用 贾孙鹏 数学与信息科学学院数学与应用数学 11290056 【摘要】微分中值定理是研究复杂函数的一个重要工具,是数学分析中的重要内容。我们可以运用构造函数的方法来巧妙的运用微分中值定理解决问题。本文主要研究微分中值定理的内容和不同形式之间的关系,以及它的推广形式。并归纳了它在求极限,根的存在性,级数等方面的应用。最后对中间点的问题进行了讨论。 【关键词】微分中值定理应用辅助函数 1引言 微分中值定理主要包括罗尔(Roll)定理,拉格朗日(Lagannge)中值定理,柯西(Cauchy)中值定理,以及泰勒(Taylor)公式。他们之间层层递进。研究了单个函数整体与局部,以及多个函数之间的关系。对掌握函数的性质,以及根的存在性等方面具有重要的作用。学微分中值定理这节同我们要掌握为什么要学这节,和不同定理之间的关系和应用。从教材来看,我们已经明白了导数微分重要性,但没讲明如何运用,因此有必要加强导数的应用,而微分中值定理是导数运用的理论基础。所以这部分内容很重要。它是以后研究函数极限,单调,凹凸性的基础。从微分中值定理的产生来看,其中一个基础问题就是函数最值问题。而解决此类问题就是能熟练的运用微分中值定理。此文为加深对中值定理的理解,在它推广的基础上详细解释了定理间的关系,对它的应用作了5个大方面的归纳。并对最新研究成果作了解释。 2柯西与微分中值定理 2.1柯西的证明 首先在柯西之前就有很多科学家给出了导数的定义,当然他们对导数的认识存在着差异。比如说欧拉在定义导数的时候就用了差商的形式,如将() g x的导数定义 为 ()() g x h g h h +- 当趋于0时的极限。对于拉格朗日他对导数的认识开始是建立在 错误观点的,他认为任意的函数都可以展开成幂级数的形式,但是事实并不是这样。而柯西采用的是极限来定义并将其转化成了不等式的语言。我们来看下柯西的证明,它开始于:

论文拉格朗日中值定理

拉格朗日中值定理的 应用论文 论文题目拉格朗日中值定理 姓名 学号 所在学院 年级专业 完成时间年月日

拉格朗日中值定理的应用 摘要:以罗尔中值定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的重要理论基础,而拉格朗日中值定理因其中值性是几个中值定理中最重要的一个,在微分中值定理和高等数学中有着承上启下的重要作用。中值定理的主要用于理论分析和证明,例如利用导数判断函数单调性、凹凸性、取极值、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的重要工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,研究其定理的证明方法,力求正确地理解和掌握它,并在此基础上深入了解它的一些重要应用,是十分必要的,鉴于课本中对拉格朗日中值定理的应用只是简单的举了例子,而很多研究者也只是研究了它在某个方面的应用,并没有进行系统的总结,有鉴于此,本文将对其应用进行了深入的总结。 关键词:拉格朗日中值定理;应用;极限;收敛

Applications of Lagrange's mean value theorem Abstract:A group of mean value theorem which includes Rolle's mean value theorem , Lagrange's mean value theorem and Cauchy's mean value theorem is the theoretical basis of the differential calculus. And Lagrange's mean value theorem is the most important one of these mean value theorems because of its property median and continuity. Mean value theorems' main function include theory analysis and proof, such as providing theoretical basis for judging function monotonicity, convexity, inflection point,and calculating extreme value by derivative, so that we can grasp the various geometric characteristic function image. All in all, differential mean value theorem is the communication bridge between the derivative value and the function value. And it is even the tool of inferring the whole nature of function by the local nature of derivative. As a structure connecting ecosystem and individuals in differential mean value theorem, it is very important to research Lagrange's mean value theorem's way to prove, understand and master it correctly, even keep gaining insight into its important applications. There is no special explanation about the applications of Lagrange's mean value theorem and many researchers also just studied it in some applications and no systematic summary. This article will give the in-depth summary. Keywords:Lagrange's mean value theorem; Application; Limit; Convergence

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

微分中值定理及其应用大学毕业论文

微分中值定理及其应用 大学毕业论文 Last revised by LE LE in 2021

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生姓名:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书................................................ I 开题报告..................................................... II 指导老师审查意见 ............................................ III 评阅老师评语................................................. IV 答辩会议记录.................................................. V 中文摘要..................................................... VI 外文摘要.................................................... VII 1 引言 (1) 2 题目来源 (1) 3 研究目的和意义 (1) 4 国内外现状和发展趋势与研究的主攻方向 (1) 5 微分中值定理的发展过程 (2) 6 微分中值定理的基本内容 (3) 罗尔(Rolle)中值定理 (3) 拉格朗日(Lagrange)中值定理 (4) 柯西(Cauchy)中值定理 (4) 泰勒(Taylor)定理 (4) 7 微分中值定理之间的联系 (5) 8 微分中值定理的应用 (5) 根的存在性证明 (6) 利用微分中值定理求极限 (8) 利用微分中值定理证明函数的连续性 (9) 利用微分中值定理解决含高阶导数的中值问题 (10) 利用微分中值定理求近似值 (10) 利用微分中值定理解决导数估值问题 (10) 利用微分中值定理证明不等式 (11) 9 微分中值定理的推广 (14) 微分中值定理的推广定理 (14) 微分中值定理的推广定理的应用 (16) 参考文献 (18) 致谢 (19)

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

数学分析简明教程答案数分5_微分中值定理及其应用

第五章 微分中值定理及其应用 第一节 微分中值定理 331231.(1)30()[0,1]; (2)0(,,),;(1)[0,1]30[0,1]()3n x x c c x px q n p q n n x x c x x f x x x c -+=++=-+=<∈=-+证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。 证明:设在区间内方程有两个实根,即有使得函数 值为零012023(,)[0,1],'()0. '()33(0,1)(3,0)30()[0,1] (2)2220n x x x f x f x x x x c c n n k x px q x ∈?==---+=≤=>++=。那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。因此有:方程为常数在区间内不可能有两个不同的实根。当时,方程至多只可能有两个实根,满足所证。 当时,设方程有三个实根,即存在实数1230112022301021 01011 0202()0 (,),(,),'()'()0,'()0 (*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p --<<=++=∈∈==?=+=??=+=?? 使得函数 成立。那么由罗尔定理可知存在使得即 001022 0000102), (,),''(0)0,''()(1)0, 0,0,0. 2(*).212n n x x x f f x n n x x x x n k p n n k x px q -∈==-==<>==+>++ 再次利用罗尔定理可以知道,存在使得即 显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。 当时,设方程12341112122313341112131 11110()0(,),(,),(,)'()0,'()0,'()0,'()0'(n n x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x -=<<<=++=∈∈∈====+=有三个实根,即存在实数使得函数成立。那么利用罗尔定理可知存在 使得即有 1 12121 131321111222121321222 21212 2222212)0, '()0 (,),(,)''()''()0,''()(1)0 .''()(1)0 212,n n n n nx p f x nx p x x x x x x f x f x f x n n x f x n n x n k x x ----??=+=??=+=?∈∈==?=-=??=-=??=+>= 于是就存在使得即 由于于是此时必有221111222121321220;(,),(,),,0(,,)n x x x x x x x x n x px q n p q =∈∈<++=但是由于可知必有 出现了矛盾。 因此当为奇数时,方程为正整数为实数至多有三个实根。

相关文档
最新文档