微分中值定理论文

微分中值定理论文
微分中值定理论文

引言

通过对数学分析的学习我们知道,微分学在数学分析中具有举足轻重的地位,它是组成数学分析的不可缺失的部分。对于整块微分学的学习,我们可以知道中值定理在它的所有定理里面是最基本的定理,也是构成它理论基础知识的一块非常重要的内容。由此可知,对于深入的了解微分中值定理,可以让我们更好的学好数学分析。通过对微分中值定理的研究,我们可以得到它不仅揭示了函数整体与局部的关系,而且也是微分学理论应用的基础。微分中值定理是一系列中值定理总称,但本文主要是以拉格朗日定理、罗尔定理和柯西定理三个定理之间的关系[1-3]以及它们的推广为研究对象,利用它们来讨论一些方程根(零点)的存在性, 和对极限的求解问题,以及一些不等式的证明。 中值定理的内容及联系 基本内容[4][5]

对于,微分中值定理的了解,我们了解到它包含了很多中值定理,可以说它是一系列定理的总称。而本文主要是以其中的三个定理为对象,进行探讨和发现它们之间的关系。它们分别是“罗尔(Rolle )定理、拉格朗日(Lagrange )定理和柯西(Cauchy )定理”。这三个定理的具体内容如下: Rolle 定理

若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则至少存在一点(),a b ξ∈,使()0f ξ'=。 Lagrange 定理

若()f x 在[],a b 上连续,在(),a b 内可导,则至少存在一点(),a b ξ∈,使()()()()

=f b

f a f b a ξ-'- Cauchy 定理

设()f x ,()g x 在[],a b 上连续,在(),a b 内可导,且()0g x '≠,则至少存在一点

(),a b ξ∈,使得

()()()()()()

f b f a f

g b g a g ξξ'-='-。

三个中值定理之间的关系 现在我们来看这三个定理,从这三个定理的内容我们不难看出它们之间具有一定的关系。那它们之间具体有什么样的关系呢?我们又如何来探讨呢?这是我们要关心的问题,我们将利用推广和收缩的观点来看这三个定理。首先我们先对这三个定理进行观察和类比,从中可以发现,如果把罗尔定理中的()()f a f b =这一条件给去掉的话,那么定理就会变成为拉格朗日定理。相反,如果在拉格朗日定理中添加()()f a f b =这一条件的话,显然就该定理就会成为了罗尔定理。通过这一发现,可以得到这样的一个结论:拉格朗日定理是罗尔定理的推广,而罗尔定理是拉格朗日定理的收缩,或是它的特例。继续用这一思路来看拉格朗日

定理和柯西定理,看看这两者之间又是如何的联系?我们先对柯西定理进行观察,从观察中会是我们作出这样的假设,如果令定理中的()g x x '=的话,发现定理成为了拉格朗日定理。这使得我们发现他们二者之间的联系, 拉格朗日定理是柯西定理收缩,而柯西定理则是拉格朗日定理的推广。我们利用这一方法可以得到它们之间的关系。

总的来说,这三个定理既单独存在,相互之间又存在着联系。我们从上面的讨论中可以总结得到,罗尔定理是这一块内容的基石,而拉格朗日定理则是这一块内容的核心,那么柯西定理是这一块内容的推广应用。

如果我们从几何的意义上来看这三个中值定理的话,那它们之间又是如何的呢?在这里我们不具体的给予研究,而是直接给予结果。若用几何解释:“若一条连续的曲线,曲线上端点除外的每一点都有切线存在,且存在的切线于x 轴相交的夹角不为直角;那么像这一类曲线具有共同的属性——曲线上有一点,它的切线与曲线端点的连线平行”。 定理的推广[6][7]

前面我们已经讨论了定理之间的关系,接下来我们来看它们的推广。从前面的内容我们知道,这三个定理都要求函数()f x 在[],a b 上是连续,在(),a b 内是可导。那么我们如果把定理中的闭区间[],a b ,把它推广到无限区间[),a +∞或(),-∞+∞,再把开区间(),a b 推广到无限区间(),a +∞或(),-∞+∞的话,则这些定理是否还能满足条件,或者我们能得出哪些相应的定理呢?

通过讨论研究我们知道,按照以上的想法把中值定理的区间,推广到无限区间上可以得到几个相应的定理,本文在此只提到其中的三个,下面给出定理以及证明。

定理1 若()f x 在[),a +∞上连续,在(),a +∞内可导,且()()lim x f x f a →+∞=,则至少存在

一点(),a ξ∈+∞,使()0f ξ'=成立。 证明: 令

11t x a =-+,则11x a t =+-,即可得到关于t 参数函数()1

1t a t

?=+-

当[),x a ∈+∞时,则(]0,1t ∈

即()1a ?=,()0

lim t t ?→=+∞,再令()()()f x f t g t ?==???? ∴()()()()()()

lim lim lim 11t t x g t f t f x f a f g ??→→→+∞

=====???????? ()()0

0lim t g g t →=

()()01g g ∴=

() g t ∴在[]0,1上连续,在()0,1内可导,且()()01g g =,由Rolle 定理可得到

至少存在一点()0,1ε∈,使()0g ε'=成立

令()ξ?ε=,有()()0f ξ?ε''?=,而()210?εε

'=-≠.

至少存在一点(),a ξ∈+∞,使()0f ξ'=成立

证毕

定理2 若()f x 在(),-∞+∞上连续,在(),-∞+∞内可导,并且()()lim lim x x f x f x →-∞→+∞=,至少

存在一点(),ξ∈-∞+∞,使()0f ξ'=成立。 定理2的证明可以参照定理1。

定理3 若()f x 在[),a +∞上连续,在[),a +∞内可导,并且()lim x f x M →+∞

=,则至少存在

一点(),a ξ∈+∞,使

()()()

2

1M f a f a ξξ-????'=+-成立。 证明:设1

1t x a =

-+,则11x a t =+-,即可得到关于t 参数函数()11t a t

?=+-

当[),x a ∈+∞时,则(]0,1t ∈

即()1a ?=,()0

lim t t ?→=+∞,再令()()()f x f t g t ?==???? ∴()()()0

lim lim lim t t x g t t f x M ?→→→+∞

===

()()0

0lim t g g t M →==

() g t ∴在[]0,1上连续,在()0,1内可导,由Lagrange 定理得

至少存在一点()0,1ε∈,使()()()1010

g g g ε-'=-成立

即()()g f a M ε'=-

令()ξ?ε=,有()()()g f εξ?ε'''=?,而()()2

2

1

1a ?εξε'=-

=-+-,

至少存在一点(),a ξ∈+∞,使

()()()

2

1M f a f a ξξ-????'=+- 成立. 证毕 定理的应用

通过上面对定理的研究和探讨,加深了我们的理解。我们知道中值定理在解题中具有十分广泛的应用,现在我们来看看这三个定理的具体运用。我们学知识,不仅仅是为了让我们知道,

更主要的是学了要会用,这才是最关键的。 利用定理证明方程根(零点)的存在性

例 1 若()f x 在[],a b 上连续,在(),a b 内可导()0a >,证明在(),a b 内方程

()()()()22

2x f b f a b a f x '-=-????至少存在一根。

分析:由于题目是要求方程()()()

()222x f b f a b a f x '-=-????是否有根存在,所以可以先

对方程进行变形,把方程变为()()()

()2220x f b f a b a f x '---=????。那么方程

()()()()222x f b f a b a f x '-=-????有根的话,则原方程也有根。变形之后的方程有()f x '存

在,所以可以利用不定积分把方程()()()()2220x f b f a b a f x '---=????,转变为()()()()2220f b f a x b a f x ---=????。现在我们返回来看题目,由题目中我们可以知道

()f x 在区间[],a b 上连续,在区间(),a b 内可导()0a >,由函数的连续性和求导的概念,

可以得到函数()()()

()222f b f a x b a f x ---????在[],a b 上连续,在(),a b 内可导()0a >,

那么我们不难想到利用罗尔中值定理就可以证明该题了。

证明:令()()()()

()222F x f b f a x b a f x =---????

, 显然()F x 在[],a b 上连续,在(),a b 内可导, 而()()()()22F a f b a b f a F b =-=. 根据Rolle 定理, 至少存在一点ξ,

使()()()()222f b f a b a f x ξ'-=-????.

证毕

本文主要在于辅助函数()()()()

()222F x f b f a x b a f x =---????的构造,我们从结论出发,

构造辅助函数,使得该题可以利用中值定理来证明,接下来是考虑利用微分中值定理中的哪一个即可。对于构造辅助函数我们可以得到()()F a F b =,所以选在利用罗尔定理证明。这是对解该类问题的总结,也是自己对该类问题解题提出的一个解题思路模式,大家可以借鉴。下来我们继续看两道例题:

设()f x 在[],a b 上连续,在(),a b 可导()0a b <<,证明:在[],a b 内存在一点ξ, 使()()()()()bf b af b b a f f ξξξ'-=-+????成立。

分析:对于等式()()()()()bf b af b b a f f ξξξ'-=-+????,则可以两边同除以b a -,即等

式左端为()()bf b af b b a

--,这个商式可看为函数()xf x 在[],a b 上的改变量与自变量的改变量

之商,则会考虑利用Lagrange 定理,那么可构造辅助函数()()F x xf x =。 证明: ()()F x xf x =,则()F x 在[],a b 上连续,在(),a b 可导, 由Lagrange 定理,存在一点(),a b ξ∈,使()()()

F b F a F b a

ξ-'=-,

即()()()()bf b af a f f x b a

ξξ-'+=

-,

即()()()()()bf b af b b a f f ξξξ'-=-+????

证毕

设()f x 在[],a b 上连续,在(),a b 可导()0a b <<,证明:在[],a b 内存在一点ξ, 使()()()ln b f b f a f a ξξ??'-= ???

成立。

分析:等式()()()ln b f b f a f a ξξ??'-= ???

两边同除以ln ln ln b b a a =-,即该等式的左端为()()ln ln f b f a b a

--,这个商式可看为函数

()f x 与ln x 在闭区间[],a b 上的改变量之商,则我们会想

到利用柯西定理来证明,那么构造辅助函数()ln g x x =。

证明:令()ln g x x =,对()f x ,()g x 在[],a b 上运用Cauchy 定理, 得()()()1ln ln f f b f a b a ξξ'-=-,

即()()()()()()

f f b f a

g g b g a ξξ'

-='-, 即()()()ln b f b f a f a ξξ??'-= ???

. 证毕 用定理求极限

在求极限的题目里,有些题目如果运用通常的一些方法来求解的话,则会使我们在解题过程中出现很大的计算量,或者比较繁琐的解题过程。但是应用中值定理的话,会为这一类题目提供一种简单有效的方法。而用中值定理来解题,最关键在于辅助函数的构造,然后在运用中值定理解题,即可求出极限。 例1 求1

1

21lim n n n n a a +→∞

??- ???

,其中0a >。

分析:由于题目中有1

n a 和11

n a

+,则可以试着构造辅助函数()x f x a =,那么就可以得到()f x 在

11,1n n ????+??连续,在11,1n n ?? ?+??

可导,即可以利用Lagrange 定理解题了。

解:根据题意,由Lagrangge 定理,有

112

1lim n n n n a a +→∞

??- ???

()

21

1lim 1n x n n a n n ξ

=→∞

??'

=?- ?+??

()

2ln lim

1n n a a n n ξ→∞=+ ln a

=

其中,11,1n n

ξ??∈

?+?

?

已知

n

a lim n x n

a →。

解: 令()f x =()f x 在()(),1n n k n n k +++????上满足Lagrangge 定理可得:

=,()()()(),1n n k n n k ξ∈+++

< 当0,1,,1k n =- 时,把得到的上述n 个不等式相加得:

2n +-

即1

2

n n a a n

<<+故1

021

n a n ?<-< ?

lim 2n n a →∞

∴=

证明不等式

对于数学体系来说不等式是一块很重要的内容。故不等式的证明对数学是很重要的。当我们学习了中值定理,知道了它在不等式的证明中起着巨大的作用。“我们可以根据不等式两边的代数式选取一个来构造辅助函数,再应用中值定理得出一个等式后,对这个等式根据自变量的取值范围的不同进行讨论,得到不等式”。下面我们来通过例子来说明定理在证明中的运用。

例1 设0x >,对01α<<的情况,求证1x x ααα-≤-。

分析:证明不等式最常用的方法有做差,做商,对于该题目如果直接应用做差或者做商的话显然是不行的。那我们是否能通过变形是,他们可以应用做差或是做商呢?我们来看下不等式,不难发现当1x =时,等式两边就相等了,所以接下来排除1x =,分两步讨论。在观察不等式两边的代数式,不难看出左边的代数式比较复杂,则是否可以把左边的代数式构造辅助函数,是题目可以运用中值定理解题呢?不妨设()f x x α=,()F x x α=。利用Cauchy 定理即可证明。

证明:当1x =时结论显然成立,当1x ≠时,取[],1x 或[]1,x ,在该区间设 ()f

x x

α

=,()F x x α=,由Cauchy 定理得: ()()()()()()

11f x f f F x F F ξξ'-=

'- (),1x ξ∈或()1,x ξ∈ 即1

11x x ααααξξααα

---==- 当1x >时,(),1x ξ∈,11αξ->

即11x x α

αα

->-

又()10x x ααα-=-<

故1x x ααα->-,即11x αα-<- 当1x >时,()1,x ξ∈,11αξ-< 则()10x x ααα-=->

故1x x ααα->-,即11x αα-<- 由此,不等式得证

例 2 已知()f x 在[]0,a 满足()f x M ''≤,且在()0,a 内取最大值,试证:

()()0f f a aM ''+≤。

分析:若能找到点()00,x a ∈,使()00f x '=,则要证的结论便转化为变量的形式: ()()()()000f x f f a f x aM ''''-+-≤,

则根据 Lagrangge 定理证之即可。然而对于0x 的寻找,应该从题目中条件的()f x 在开区间()0,a 内取到最大值入手。

定理推广的应用

对于中值定理推广到无限区间上,在于求解一些题目,如果应用了中值定理的该推广会比较方便的得到解题,下面我们来看一个例子:

例1 如果函数()2

x f x xe -=,求证:()0,ξ?∈+∞,使得()0f ξ'=。 分析:对于该题目我们通常会采用这样一种证法,令()0f x '=,有()(

)

2

2

x

x f x xe e --'==

(

)()2

1200,x x -=?=

+∞,即可得证。这种证明的方法,可以说是利用极限方法来证明的,我们现在考虑是否还可以运用其它的方法来证明。若要运用中值定理来证明是否可以呢?下面给出该方法。

证明: 由题得()f x 在[)0,+∞连续,在()0,+∞可导,且可得:()

2

2120x e x --=

()2

lim 00x x xe f -→+∞

==

那么,由推广定理的定理1,得到: ()0,ξ?∈+∞,使得()0f ξ'=

证毕 例 2 设()f x 在(),-∞+∞上可得,且()2

01x f x x ≤≤

+,证明:

0ξ?>,使得

()()

22

211f ξξξ-=+。

证明 问题相当于要找0ξ>,使()2101x f x x ξ

'-??-= ?+?

?,因函数()()211x F x f x x -=-+在(),-∞+∞内可导,故()2

0lim 0lim lim 01x x x x f x x

→-∞

→-∞

→-∞

=≤≤=+,即()lim 0x f x →-∞

=

又()2

0lim 0lim lim

01x x x x

f x x →+∞

→+∞

→+∞=≤≤=+ ,即()lim 0x f x →+∞=

所以()()lim lim 0x x f x f x →-∞

→+∞

==

由定理2知0ξ?>,使得()0F ξ=,即题目得证。

证毕

中值定理的应用广泛,本文从几个方面介绍了该定理的运用。通过以上的例题让大家知道,应用这几定理的关键和解题的难点,是在于对辅助函数的构造。在论文中通过一些题目的解题过程让大家了解到对于一道题目来说,他的解题的方法具有多样性,对于方法的选择是解题过程繁简的关键,选择一种简便的方法可以使我们快速有效的作答。也希望通过这几道例子能让大家对定理加深理解和应用。 结论

本课题的研究成果是通过大学阶段的有关数学分析知识的学习,和一些相关学科内容的知识的学习,并结合一些相关的参考图书资料,以及通过网络收集期刊、报刊和杂志上的相关内容,其中还包括自己对这些内容的理解,还通过多方面的了解和研究,且在和老师和同学们的一起探讨下,我们了解到微分中值定理的内在联系,也对微分中值定理的推广做了探讨,接着对微分中值定理的应用做了归纳总结。对微分中值定理本课题主要是以罗尔定理、拉格

朗日定理和柯西定理,三个定理之间的联系为主要的研究对象,希望通过本课题能让大家加深了对的这三个定理的理解和应用,也希望通过例题的解析,能使得大家在应用微分中值定理上更加的娴熟。

参考文献:

[1]盛晓兰.例谈微分中值定理的证题技巧[J].技术监督教育学刊,2009,1:16-19.

[2]党艳霞.浅谈微分中值定理及其应用[J].廊坊师范学院学报(自然科学版),2010,1:28-31.

[3]刘章辉.微分中值定理及其应用[J].山西大同大学学报(自然科学版),2007,23(2): 79-81.

[4]欧阳光中朱学炎.复旦大学数学系.数学分析第三版上册[M].北京:高等教育出版社,2007.184-225.

[5]阿黑波夫萨多夫尼奇丘巴里阔夫.数学分析讲义第3版[M].北京:高等教育出版社,2006.94-95.

[6]纪华霞.微分中值定理的几个推广结论[J].高等函授学报(自然科学版),2006,19(6):33-38.

[7]杨万必龙鸣.微分中值定理的推广[J].2005,23(1):31-33.

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

第3章-微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的关 系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便于 直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim ()x x f x → 那么就在0 x 附近展开。如果极限是 lim ()x f x →∞ ,

微分中值定理研究报告和推广

渤海大学 毕业论文<设计) 题目微分中值定理的研究和推广完成人姓名张士龙 主修专业数学与应用数学 所在院系数学系 入学年度 2002年9月 完成日期 2006年5月25日 指导教师张玉斌

目录 引言 (1) 一、中值定理浅析 (1) 1、中值定理中的 (1) 2、中值定理中条件的分析 (2) 二、微分中值定理的推广 (4) 1、微分中值定理在无限区间上的推广 (4) 2、中值定理矢量形式的推广 (7) 3、微分中值定理在n维欧式空间中的推广 (9) 4、中值定理在n阶行列式形式的推广 (12) 5、高阶微分中值定理 (15) 结束语 (19) 参考文献 (19)

微分中值定理的研究和推广 张士龙 <渤海大学数学系锦州 121000 中国) 摘要:微分中值定理是高等数学中的一项重要内容,是解决微分问题的关键。本文对微分中值定理中的一些条件给予了相关说明。后又在此基础上,对微分中值定理进行了一系列的推广,先后在无限区间内,在定理的矢量形式,在多维欧氏空间中,在高阶行列式形式,以及在微分定理的高阶形式五个方面来研究,通过定理与实例的结合,来说明各个推广的过程。从而,使定理向着更加广阔的方面发展,有利于对定理的掌握和应用。 关键词:微分中值定理,无限区间,矢量形式,行列式,高阶微分中值定理,欧式空间。 The Research and Popularization of The Differential Mean Value Theorem Shilong Zhang (Department of Mathematics Bohai University Jinzhou 121000 China> Abstract: The differential mean value theorem is an important element of higher mathematics. It is the key to solve the differential problems. This text gives detailed explanations to the conditions of the differential mean value theorem. On this foundation, this text carries on series of promotional activities of the theorem, and makes research in the indefinite sector, the vector form of the theorem, the multi-dimensional Euclidean space, the high rank determinant and high rank of the differential theorem altogether five aspects. This text illustrates the promotional process through the integration of the theorem and its examples, so as to enable the theorem to develop towards broader aspects. It is advantageous to the mastery and application of the theorem. Key words: the differential mean value theorem, indefinite sector, the rector form, Euclidean space, determinant, defferential value theorm of higher order 引言 罗尔定理、拉格朗日定理、柯西定理统称为微分学的中值定理。中值定理既应用导数来研究函数的性质,是沟通函数及其导数之间的桥梁,是应用导数的局部性研究,函数在区间上的重要工具。在实践中,有着广泛的应用,因此,有必要将其进一步推广,使其达到一个比较完善的地步,对进一步的研究和创造有很大的帮助。 一、中值定理浅析 1、中值定理中的

2.2微分中值定理

§2.2 微分中值定理 一、罗尔定理 设函数()f x 满足 (1)在闭区间[a ,b ]上连续; (2)在开区间(a ,b )内可导; (3)()()f a f b =. 则至少存在一点()a b x ?,,使得()0f x ¢=. 几何意义:条件(1)说明曲线()y f x =在(,())A a f a 和(,())B b f b 之间是连续曲线[包括点A 和点B ]. 条件(2)说明曲线()y f x =在A ,B 之间是光滑曲线,也即每一点都有不垂直于x 轴的切线[不包括点A 和B ] 条件(3)说明曲线()y f x =在端点A 和B 处纵坐标相等。 结论说明曲线()y f x =在A 点和B 点之间[不包括点A 和B ]至少有一点,它的切线平行于x 轴。 注意:构造辅助函数时,可考虑以下形式 (1)()()k F x x f x =(加法) (2)() ()k f x F x x = (加法) (3)()()kx F x f x e =(函数加导数) 【例1】设()f x 在[]0,3上连续,在()0,3内可导,且()()()0123f f f ++=, ()31f =,试证:必存在()ξ∈0,3,使()0f ξ'=。 证 ()f x Q 在[]0,3上连续,()f x ∴在[]0,2上连续,且有最大值M 和最小值m , 于是(0)m f M ≤≤;(1)m f M ≤≤;(2)m f M ≤≤,

故[]1 (0)(1)(2)3 m f f f M ≤ ++≤。 由连续函数介值定理可知,至少存在一点[]c ∈0,2,使得 ()[]1 (0)(1)(2)13 f c f f f = ++= 因此()()3f c f =,且()f x 在[]c ,3上连续,()c ,3内可导,由罗尔定理得出必存在()()03ξ∈?c ,3,,使得()0f ξ'=。 【例2】 设()f x 在[]0,1上连续,在()01,内可导,且()()2 3 1 3 0f x dx f =?. 求证:存在()0,1x ?使()0f x ¢ = 证 由积分中值定理可知,存在轾 ?犏臌 2,13c ,使得()()2 3 1 213f x dx f c ?? =- ??? ? 得到 ()()23 1 3 (0)f c f x dx f ==? 对()f x 在[]0c ,上用罗尔定理(三个条件都满足), 故存在() 0(01)c ,,x 翁,使()0f x ¢= 【例3】(07)设函数()f x ,()g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得()()f g ξξ''''=。 分析:令()()()()F x f x g x F x =-?在[,]a b 连续,在(,)a b 可导,在题设条件下,要证存在(,)a b ξ∈,()0F ξ''=。已知()()0F a F b ==,只需由题设再证(,)c a b ?∈, ()0F c =。 证明:由题设11[,] (,),max ()()a b x a b M f x f x ?∈==, 22[,] (,),max ()()a b x a b M g x g x ?∈==。

微分中值定理论文

引言 通过对数学分析的学习我们知道,微分学在数学分析中具有举足轻重的地位,它是组成数学分析的不可缺失的部分。对于整块微分学的学习,我们可以知道中值定理在它的所有定理里面是最基本的定理,也是构成它理论基础知识的一块非常重要的内容。由此可知,对于深入的了解微分中值定理,可以让我们更好的学好数学分析。通过对微分中值定理的研究,我们可以得到它不仅揭示了函数整体与局部的关系,而且也是微分学理论应用的基础。微分中值定理是一系列中值定理总称,但本文主要是以拉格朗日定理、罗尔定理和柯西定理三个定理之间的关系[1-3]以及它们的推广为研究对象,利用它们来讨论一些方程根(零点)的存在性, 和对极限的求解问题,以及一些不等式的证明。 中值定理的内容及联系 基本内容[4][5] 对于,微分中值定理的了解,我们了解到它包含了很多中值定理,可以说它是一系列定理的总称。而本文主要是以其中的三个定理为对象,进行探讨和发现它们之间的关系。它们分别是“罗尔(Rolle )定理、拉格朗日(Lagrange )定理和柯西(Cauchy )定理”。这三个定理的具体内容如下: Rolle 定理 若()f x 在[],a b 上连续,在(),a b 内可导,且()()f a f b =,则至少存在一点(),a b ξ∈,使()0f ξ'=。 Lagrange 定理 若()f x 在[],a b 上连续,在(),a b 内可导,则至少存在一点(),a b ξ∈,使()()()() =f b f a f b a ξ-'- Cauchy 定理 设()f x ,()g x 在[],a b 上连续,在(),a b 内可导,且()0g x '≠,则至少存在一点 (),a b ξ∈,使得 ()()()()()() f b f a f g b g a g ξξ'-='-。 三个中值定理之间的关系 现在我们来看这三个定理,从这三个定理的内容我们不难看出它们之间具有一定的关系。那它们之间具体有什么样的关系呢?我们又如何来探讨呢?这是我们要关心的问题,我们将利用推广和收缩的观点来看这三个定理。首先我们先对这三个定理进行观察和类比,从中可以发现,如果把罗尔定理中的()()f a f b =这一条件给去掉的话,那么定理就会变成为拉格朗日定理。相反,如果在拉格朗日定理中添加()()f a f b =这一条件的话,显然就该定理就会成为了罗尔定理。通过这一发现,可以得到这样的一个结论:拉格朗日定理是罗尔定理的推广,而罗尔定理是拉格朗日定理的收缩,或是它的特例。继续用这一思路来看拉格朗日

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理和应用(大学毕业论文)

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书I 开题报告II 指导老师审查意见III 评阅老师评语IV 答辩会议记录V 中文摘要VI 外文摘要VII 1 引言1 2 题目来源1 3 研究目的和意义1 4 国外现状和发展趋势与研究的主攻方向1 5 微分中值定理的发展过程2 6 微分中值定理的基本容3 6.1 罗尔(Rolle)中值定理3 6.2 拉格朗日(Lagrange)中值定理4 6.3 柯西(Cauchy)中值定理4 6.4 泰勒(Taylor)定理4 7 微分中值定理之间的联系5 8 微分中值定理的应用5 8.1 根的存在性证明6 8.2 利用微分中值定理求极限8 8.3 利用微分中值定理证明函数的连续性10 8.4 利用微分中值定理解决含高阶导数的中值问题10 8.5 利用微分中值定理求近似值10 8.6 利用微分中值定理解决导数估值问题10 8.7 利用微分中值定理证明不等式11 9 微分中值定理的推广14 9.1 微分中值定理的推广定理15 9.2 微分中值定理的推广定理的应用17 参考文献18 致19

微分中值定理的推广及应用 学生:邓奇峰,信息与数学学院 指导老师:熊骏,信息与数学学院 【摘要】微分中值定理,是微积分的基本定理,是沟通函数与其导数之间的桥梁,是应用导数的局部性研究函数整体性的重要数学工具,在微积分中起着极其重要的作用。本文首先介绍了微分中值定理的发展过程、微分中值定理的容和微分中值定理之间的在联系,接着再看微分中值定理在解题中的应用,如:“讨论方程根(零点)的存在性” ,“求极限”和“证明不等式”等方面的应用。 由于微分中值定理及有关命题的证明方法中往往出现的形式并非这三个定理中的某个直接结论,这就需要借助于一个适当的辅助函数,来实现数学问题的等价转换,但是,怎样构造适当的辅助函数往往是比较困难的。在此重点给出如何通过构造辅助函数来解决中值定理问题,从理论和实际的结合上阐明微分中值定理的重要性。 拉格朗日中值定理及柯西中值定理都是罗尔中值定理的推广。本文从其它角度归纳、推导了几个新的形式,拓宽了罗尔中值定理的使用围。同时,用若干实例说明了微分中值定理在导数极限、导数估值、方程根的存在性、不等式的证明、以及计算函数极限等方面的一些应用。 【关键词】微分中值定理罗尔中值定理拉格朗日中值定理柯西中值定理联系推广应用

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理及其应用

本科生毕业论文(设计)系(院)数学与信息科学学院专业数学与应用数学 论文题目微分中值定理及其应用 学生姓名贾孙鹏 指导教师黄宽娜(副教授) 班级11级数应1班 学号 11290056 完成日期:2015年4月

微分中值定理及其应用 贾孙鹏 数学与信息科学学院数学与应用数学 11290056 【摘要】微分中值定理是研究复杂函数的一个重要工具,是数学分析中的重要内容。我们可以运用构造函数的方法来巧妙的运用微分中值定理解决问题。本文主要研究微分中值定理的内容和不同形式之间的关系,以及它的推广形式。并归纳了它在求极限,根的存在性,级数等方面的应用。最后对中间点的问题进行了讨论。 【关键词】微分中值定理应用辅助函数 1引言 微分中值定理主要包括罗尔(Roll)定理,拉格朗日(Lagannge)中值定理,柯西(Cauchy)中值定理,以及泰勒(Taylor)公式。他们之间层层递进。研究了单个函数整体与局部,以及多个函数之间的关系。对掌握函数的性质,以及根的存在性等方面具有重要的作用。学微分中值定理这节同我们要掌握为什么要学这节,和不同定理之间的关系和应用。从教材来看,我们已经明白了导数微分重要性,但没讲明如何运用,因此有必要加强导数的应用,而微分中值定理是导数运用的理论基础。所以这部分内容很重要。它是以后研究函数极限,单调,凹凸性的基础。从微分中值定理的产生来看,其中一个基础问题就是函数最值问题。而解决此类问题就是能熟练的运用微分中值定理。此文为加深对中值定理的理解,在它推广的基础上详细解释了定理间的关系,对它的应用作了5个大方面的归纳。并对最新研究成果作了解释。 2柯西与微分中值定理 2.1柯西的证明 首先在柯西之前就有很多科学家给出了导数的定义,当然他们对导数的认识存在着差异。比如说欧拉在定义导数的时候就用了差商的形式,如将() g x的导数定义 为 ()() g x h g h h +- 当趋于0时的极限。对于拉格朗日他对导数的认识开始是建立在 错误观点的,他认为任意的函数都可以展开成幂级数的形式,但是事实并不是这样。而柯西采用的是极限来定义并将其转化成了不等式的语言。我们来看下柯西的证明,它开始于:

论文拉格朗日中值定理

拉格朗日中值定理的 应用论文 论文题目拉格朗日中值定理 姓名 学号 所在学院 年级专业 完成时间年月日

拉格朗日中值定理的应用 摘要:以罗尔中值定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是整个微分学的重要理论基础,而拉格朗日中值定理因其中值性是几个中值定理中最重要的一个,在微分中值定理和高等数学中有着承上启下的重要作用。中值定理的主要用于理论分析和证明,例如利用导数判断函数单调性、凹凸性、取极值、拐点等项重要函数性态提供重要理论依据,从而把握函数图像的各种几何特征。总之,微分学中值定理是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的重要工具。而拉格朗日中值定理作为微分中值定理中一个承上启下的一个定理,研究其定理的证明方法,力求正确地理解和掌握它,并在此基础上深入了解它的一些重要应用,是十分必要的,鉴于课本中对拉格朗日中值定理的应用只是简单的举了例子,而很多研究者也只是研究了它在某个方面的应用,并没有进行系统的总结,有鉴于此,本文将对其应用进行了深入的总结。 关键词:拉格朗日中值定理;应用;极限;收敛

Applications of Lagrange's mean value theorem Abstract:A group of mean value theorem which includes Rolle's mean value theorem , Lagrange's mean value theorem and Cauchy's mean value theorem is the theoretical basis of the differential calculus. And Lagrange's mean value theorem is the most important one of these mean value theorems because of its property median and continuity. Mean value theorems' main function include theory analysis and proof, such as providing theoretical basis for judging function monotonicity, convexity, inflection point,and calculating extreme value by derivative, so that we can grasp the various geometric characteristic function image. All in all, differential mean value theorem is the communication bridge between the derivative value and the function value. And it is even the tool of inferring the whole nature of function by the local nature of derivative. As a structure connecting ecosystem and individuals in differential mean value theorem, it is very important to research Lagrange's mean value theorem's way to prove, understand and master it correctly, even keep gaining insight into its important applications. There is no special explanation about the applications of Lagrange's mean value theorem and many researchers also just studied it in some applications and no systematic summary. This article will give the in-depth summary. Keywords:Lagrange's mean value theorem; Application; Limit; Convergence

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

微分中值定理及其应用大学毕业论文

微分中值定理及其应用 大学毕业论文 Last revised by LE LE in 2021

毕业论文(设计) 题目名称:微分中值定理的推广及应用 题目类型:理论研究型 学生姓名:邓奇峰 院 (系):信息与数学学院 专业班级:数学10903班 指导教师:熊骏 辅导教师:熊骏 时间:2012年12月至2013年6月

目录 毕业设计任务书................................................ I 开题报告..................................................... II 指导老师审查意见 ............................................ III 评阅老师评语................................................. IV 答辩会议记录.................................................. V 中文摘要..................................................... VI 外文摘要.................................................... VII 1 引言 (1) 2 题目来源 (1) 3 研究目的和意义 (1) 4 国内外现状和发展趋势与研究的主攻方向 (1) 5 微分中值定理的发展过程 (2) 6 微分中值定理的基本内容 (3) 罗尔(Rolle)中值定理 (3) 拉格朗日(Lagrange)中值定理 (4) 柯西(Cauchy)中值定理 (4) 泰勒(Taylor)定理 (4) 7 微分中值定理之间的联系 (5) 8 微分中值定理的应用 (5) 根的存在性证明 (6) 利用微分中值定理求极限 (8) 利用微分中值定理证明函数的连续性 (9) 利用微分中值定理解决含高阶导数的中值问题 (10) 利用微分中值定理求近似值 (10) 利用微分中值定理解决导数估值问题 (10) 利用微分中值定理证明不等式 (11) 9 微分中值定理的推广 (14) 微分中值定理的推广定理 (14) 微分中值定理的推广定理的应用 (16) 参考文献 (18) 致谢 (19)

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.360docs.net/doc/722776346.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

相关文档
最新文档