不同方法提取人参总皂苷工艺的优化研究

不同方法提取人参总皂苷工艺的优化研究
不同方法提取人参总皂苷工艺的优化研究

人参皂苷的提取教学文稿

人参皂苷的提取

第一章综述 1.1 人参皂苷的简介 人参为五加科植物人参(Panax ginseng C.A.Mey.)的干燥根,是传统名贵中药,始 载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢 冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、 心力衰竭、心源性休克等的治疗。 人参的化学成分很复杂,有皂苷、挥发油、糖类及维生素等。经现代医学和药理研究 证明,人参皂苷为人参的主要有效成分,它具有人参的主要生理活性。 人参皂苷(ginsenoside,GS)是人参的主要有效成分,现已明确结果的GS单体约 有40余种;在人参中的含量在4%左右。其中研究最多且与肿瘤细胞凋亡最为相关的为 Rg3与Rh2。众多研究表明,它具有较高的抗肿瘤活性,对正常细胞无毒副作用,与其 他化疗药物(如顺铂)联合应用有协同作用。人参皂苷通过调控肿瘤细胞增殖周期、诱 导细胞分化和凋亡来发挥抗肿瘤作用。将肿瘤细胞诱导分化成正常细胞有利于控制肿瘤 发展,诱导肿瘤细胞凋亡使细胞解体后形成凋亡小体,不引起周围组织炎症反应。Popovich等研究认为,人参皂苷可以促进人白血病细胞的凋亡,其途径与地塞米松相识,均为受体依赖性。目前我国对人参皂苷的提取分离方法、制剂工艺、抗肿瘤作用机 制以及临床应用等方面做了大量研究,而且已经有人参皂苷的新产品推向市场。 1.2 人参皂苷成分 人参的根、茎、叶、花及果实中均含有多种人参皂苷(ginsenosides)。到目前为止, 文献报道从人参根及其它部位已分离确定化学结构的人参皂苷有人参皂苷-Ro、-Ra1、- Ra2 、-Rb1、-Rb2、-Rb3、-Rc、-Rd、-Re、-Rf、-Rg1、-Rg2、-Rg3、-Rh1、-Rh2及-Rh3 等50 余种人参皂苷。 Rh2:具有抑制癌细胞向其它器官转移,增强机体免疫力,快速恢复体质的作用。 对癌细胞具有明显的抗转移作用,可配合手术服用增强手术后伤口的愈合及体力的恢复. Rg:具有兴奋中枢神经,抗疲劳、改善记忆与学习能力、促进DNA、RNA合成的作用。 Rg1:可快速缓解疲劳、改善学习记忆、延缓衰老,具有兴奋中枢神经作用、抑制 血小板凝集作用。 Rg2:具有抗休克作用,快速改善心肌缺血和缺氧,治疗和预防冠心病。 Rg3:可作用于细胞生殖周期的G2期,抑制癌细胞有丝分裂前期蛋白质和ATP的 合成,使癌细胞的增殖生长速度减慢,并且具有抑制癌细胞浸润、抗肿瘤细胞转移、促 进肿瘤细胞凋亡、抑制肿瘤细胞生长等作用。 Rb1:西洋参(花旗参)的含量最多,具影响动物睾丸的潜力,亦会影响小鼠的胚胎 发育,具有增强胆碱系统的功能,增加乙酰胆碱的合成和释放以及改善记忆力作用.

合成工艺的优化

合成工艺的优化 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技术。 转化率是消耗的原料的摩尔数除于原料的初始摩尔数。 选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。 收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。 转化率×选择性= 收率 反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,少量原料依然存在于反应体系中。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。 化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。 只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。 提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。

而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主副产物的相对含量来判断主副反应活化能的相对大小,由此判断是低温还是高温有利于主反应,从而缩小了温度选择的范围。实际经验中,一般采取极限温度的方式,低温和高温,再加上二者的中间温度,可判断出反应温度对反应选择性的影响趋势。 (2)某一组分浓度的选择:在同一温度下(第一步已经选择好的温度下),将某一组分滴加(此组分为低浓度,其他组分就是高浓

企业工艺优化

企业工艺优化 在今天经济高速发展的时代,各个企业也是在追求着效益最大化,怎样才能提高企业的整体效率以提升利润,合理利用有效资源,提升产品质量,拥有更大更强的竞争力呢?工艺优化是趋势可选,通过工艺优化,可以降低耗能、节约原料、提高产质量,使企业在不增加设备投资的条件下提高经济效益。 工艺优化的大致流程主要有一下几部分: ◆产品分析 同科研究所通过委托企业的产品及目标产品对比分析、配方分析等系列分析服务,可助力企业明晰产品缺陷、明确产品定位、找准发展方向。 通过配方分析可以快速让您获取目标样品的配方数据、组成成分、含量等,为您节约研发周期及成本,缩短你产品开发周期,占得市场先机,是目前很有效的化学分析方法之一。这种方法被广泛运用于精细化学品及高分子领域,如:胶黏剂、油墨、涂料、清洗剂、塑料、橡胶等,特别是精细化学品行业尤为突出,通过配方分析可以快速有效的确定目标产品或样品的组成成分、元素或原料等成分。 ◆配方优化 配方优化问题是材料领域中的一个重要研究内容。为了获得性能优异、能满足使用要求的配方,需根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。对于这样一个复杂的多目标配方体系,试验方法的设计就显得尤为重要。 通过配方优化服务,可根据委托方具体要求,有效通过配方调整实现性能提升、价格控制、加工性能提升等多项目标。对于“产品改进”等需求的客户来说,这是快而有效的方法之一,比起传统化工企业自身摸索实验,效率可提升80%以上,大大加快企业发展。

◆材料开发 材料开发能够给企业带来优越性,增强竞争能力。多年来,同科研究所坚持以材料开发、新材料孵化为导向,功能高分子材料推广为目标,在特种功能高分子、特种橡塑材料、助剂方面不断前进,配合独创配方分析技术,可高效实现材料孵化上市。 ◆原材控制 优化产品质量可以从根源入手,原材控制是保证生产或加工的成品的质量或寿命的源头。根据委托企业具体要求,帮助企业进行原材料筛选、供应商控制、采购定点检验等多项服务。 ◆工业诊断 针对产品企业在生产过程中遇到的各类问题予以工业诊断,并做出科学、经济的解决方案和后期生产指导,提供生产设备调试、生产过程控制、产品应用指导的一条龙服务,为企业持续健康运转提供坚强的保障。 ◆工艺改进 以企业现有工艺、技术为基础,以个例客户和行业潜在需求为导向,提供各项工艺、配方改进,是企业研发的有机补充,为企业在行业内保持领先提供的坚强的技术支持。

提取人参皂苷并且检验以及在过程的一些注意事项

1.人参皂苷提取 人参为五加科植物人参(Panax ginseng)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。 人参皂甙和稀HCl在醇液中进行温和酸水解,可得到三种皂甙元,齐墩果酸、人参二醇和人参三醇。而不能得到原人参二醇和原人参三醇,这是因为在酸水解过程中侧链的20-位碳原子上的羟基(-OH)与该链上的双键(C=C)易闭环,而形成带有三甲基四氢吡喃环的人参二醇和人参三醇。水解后,除去醇、氯仿萃取物经硅胶柱层析分离即可得到三种单体皂甙元,经重结晶获得纯品,分别与已知皂甙的红外光谱相一致。 2.人参皂甙提取和甙元分离工艺流程 ①人参皂甙提取工艺: 人参茎叶粗粉20g 热水提取1小时,粗滤,(棉花) 提取液药渣 加0.6g是会乳沉淀,并调至PH9-10,放置10分钟,抽滤 沉淀物滤液 浓硫酸调PH7,放置10分钟。 中性提取液 回收后,上大孔树脂柱,先用水洗至无色,再用 70%氨性醇洗至绿色。 乙醇洗脱液 回收乙醇 人参总皂甙(黄白色) a)人参皂甙元的水解和甙元的分离流程 人参总皂甙 加含5%HCl的50%乙醇液, 加热回流2小时 沉淀水解液 (酸性皂甙元部分)加水稀释,水浴蒸去醇,氯仿萃取 3次(10,5,5ml)

水层氯仿层 干燥, 无水NaSO 4 回收氯仿 总皂甙元 少量苯溶解,硅胶柱 层析,用苯-乙酸乙脂 (8:2)洗脱 组分Ⅰ组分Ⅱ组分Ⅲ95%乙醇重95%乙醇重丙酮结晶 结晶3次结晶3次2次 齐墩果酸人参二醇人参三醇 mp299-301℃mp245-250℃mp244-246℃ 1.操作方法 人参总皂甙的提取:取人参茎叶粗粉20g,放入烧杯用热水(80℃-90℃)提取1小时,然后用棉花粗滤,在所得滤液中加入0.6g水石灰乳除杂并调PH9-10放置10分钟左右,过滤,再将滤液用浓硫酸(少量)调PH7,放置10分钟左右,回收提取液至少量(5-10ml),再上大孔树脂柱(注:此柱应提前洗好,清洗办法略)先用蒸馏水洗至无色,再用70%的乙醇洗至无色,分别用小瓶接收。便得到了乙醇洗脱液,回收乙醇,便得到了人参总皂甙(黄白色)。 人参皂甙的水解 称取人参皂甙()4-5g(不足时由老师提供),加20倍量含5%HCl的50%乙醇溶液,加热回流2小时,放冷,加倍水,水浴去醇,转入分液漏斗中,用氯仿萃取3此(10,5,5ml),合并氯仿层,加少量无水硫酸钠干燥,回收氯仿即得总皂甙元。 甙元柱层析分离 称取100-200目硅胶(105℃活化30分钟)50g,用苯做洗脱剂湿法装柱,柱顶放一层脱脂棉,压上数个玻璃球,放出多余的苯(至高于吸附剂1cm),计算保留体积。总皂甙元用少量苯溶解上柱,用苯-乙酸乙脂(8:2)洗脱,薄层检识(与甙元标准品对照)相同组分合并,回收溶剂。齐墩果酸、人参二醇用95%乙醇重结晶,人参三醇用丙酮重结晶,纯品80℃干燥,收集于小瓶中。 2.人参皂甙的检验 (一)显色反应

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

关于工艺流程优化的分析

关于化工工艺流程优化的分析 摘要:工艺流程的优化属于化工系统工程学研究的范围,它主要是研究在一定的条件下,如何用最合适的生产路线和生产设备,以及最节省的投资和操作费用,合成最佳的工艺流程。工艺流程也是实现产品生产的技术路线,通过对工艺流程的研究及优化,能够尽可能的挖掘出设备的潜能,找到生产瓶颈,寻求解决的途径,以达到产量高、功耗低和效益高的生产目标。 关键字:工艺流程,优化 一、化学工艺、化工工艺流程基本概念 化学工艺,即化工技术或化学生产技术,指将原料物主要经过化学反应转变为产品的方法和过程,包括实现这一转变的全部措施。化学工艺在高等学校的课程设置中,有工业化学和化学工艺学,两种课程仅在名称上不同,其内容均与上述化学生产技术的一般内容大体相似。化学生产过程一般地可概括为三个主要步骤:①原料处理。为了使原料符合进行化学反应所要求的状态和规格,根据具体情况,不同的原料需要经过进化、提浓、混合、乳化或粉碎(对固体原料)等多种不同的预处理。②化学反应。这是生产的关键步骤。经过预处理的原料,在一定的温度、压力等条件下进行反应,以达到所要求的反应转化率和收率。反应类型是多样的,可以是氧化、还原、复分解、磺化、异构化、聚合、焙烧等。通过化学反应,获得目的产物或其混合物。③产品精制。将由化学反应得到的混合物进行分离,除去副产物或杂质,以获得符合组成规格的产品。以上每一步都需在特定的设备中,在一定的操作条件下完成所要求的化学的和物理的转变。 化工工艺流程是由若干个具有独立的化工过程的工序所组成的,其结构一般都比较复杂,如果对整个工艺流程寻优,则涉及的影响因素及变量的数目太多,而不容易做出优化结论,如果把流程分解成一若干化工过程表示的工序,先对每个单一的化工过程寻优,则可运用有关的化学工程理论进行优化分析。在生产过程控制中,工艺优化是以原有生产工艺为基础,通过对生产流程、工艺条件、原辅料的深入研究,针对生产关键、工艺薄弱环节,组织技术人员改进工艺,使生产成本降低,生产过程、工艺条件达到最优化。对生产工艺流程的优化,除了技术上的参数优化调整、设备优化改造外,要想获得更大的突破、尤其是解决瓶颈

人参皂苷的提取与分离材料

人参皂苷的提取与分离 学生姓名 专业 班级

学院 摘要 首先认识人参和人参皂苷,了解人参皂苷的详细作用和功效,接着研究了人参茎叶总皂苷含量提取方法,用详细的工艺提取人参皂苷,并且用对显色反应和薄层层析对提取物进行鉴定,为以后的人参茎叶的开发利用奠定基础。 关键词:皂苷;人参茎叶;鉴定。 Abstract The first ginseng and ginseng saponin, understanding the role and efficacy of ginseng saponin in detail, then study the effect of ginseng stem leaf total saponin extraction method, with the detailed process of extraction of ginseng saponin, and used for color reaction and thin-layer chromatography to extract were identified, for the future of ginseng stem and leaf development lays a foundation. key words: saponin; ginseng stems and leaves; appraisal;

目录 摘要 (1) Abstract ..................................... 错误!未定义书签。 1 绪论 (3) 1.1 ............................................. 人参概述 错误!未定义书签。 1.2 ........................................ 人参的化学成分 1 1.2.1人参皂苷 (1) 1.2.2人参蛋白 (1) 1.2.3人参多糖 (1) 1.2.4无机元素 (2) 1.2.5其他成分 (2) 1.3 ................................ 人参的生理功能及药理活性 2 1.3.1增强免疫功能 (2) 1.3.2抗衰老 (2) 1.3.3抗肿瘤 (3) 1.3.4增强学习和记忆能力 (3) 1.3.5保护心血管系统 (3) 2 实验部分 (5) 2.1 ............................................ 实验材料 5 2.2 人参皂苷的提取分离 (5) 2.2.1 人参皂苷的提取分离原理 (5) 2.2.2 人参皂苷提取和苷元分离工艺流程 (5) 2.3 ........................................ 人参皂苷的检识 7 2.3.1 显色反应 (7)

保健食品中人参总皂苷的含量测定方法研究

保健食品中人参总皂苷的含量测定方法研究 发表时间:2014-08-26T15:20:35.077Z 来源:《医药前沿》2014年第20期供稿作者:张高飞于玥邬晓鸥李军 [导读] 本文建立的方法简单、便捷,准确性、重复性好,可用于保健食品中人参总皂苷的含量测定。 张高飞于玥邬晓鸥李军 (深圳市药品检验所 518057) 【摘要】目的建立保健食品中人参总皂苷含量的测定方法。方法用水提取人参总皂苷类成分,经水饱和正丁醇萃取、氨试液洗涤除杂后,试样中的人参皂苷类成分在高氯酸的作用下与香草醛反应,产生特征的紫红色,在560nm下测定吸光度。结果人参总皂苷在0.0722~0.2165mg质量范围内与吸光度线呈良好的线性关系,平均回收率为95.9%。结论本文建立的方法简单、便捷,准确性、重复性好,可用于保健食品中人参总皂苷的含量测定。 【关键词】保健食品人参总皂苷分光光度法 【中图分类号】R93 【文献标识码】A 【文章编号】2095-1752(2014)20-0217-02 皂苷类成分是参类中的主要活性物质, 具有滋补强壮,增强免疫,抗疲劳的功效[1],常用的检测方法为紫外分光光度法[2-5]。目前市售含参类的保健食品有片剂、胶囊剂、颗粒剂、口服液等,均是以总皂苷含量来评价其产品的质量和功效。其测定方法大多都是按照《保健食品检验与评价技术规范》(2003年版)中的方法检测[6],在实际应用中,主要存在以下问题:1、固定的树脂柱载样量与不确定的样品总皂苷含量之间的矛盾,部分样品存在柱容量超载的情况,测定结果偏差严重。2、部分样品经过大孔树脂柱除杂后,仍存在干扰比色测定的杂质。3、操作步骤欠规范,导致测定结果重现性差。本文针对总皂苷的提取方式、以及测定过程中的参数进行研究,建立了保健食品中人参总皂苷的测定方法。 1 仪器、材料与试药 岛津UV2450紫外分光光度计;瑞士梅特勒XS105DU电子天平;上海一恒电热恒温水浴锅;人参皂苷Re(中检所,批号110754-200822,含量88.8%);儿童装高丽红参液,舒灵胶囊,舒慰快牌胃肠液均购自市场;水为蒸馏水,其余试剂均为分析纯。 2 方法与结果 2.1供试品溶液的制备 固体试样:称取1 g样品,置100 mL容量瓶中,加水80 mL,超声提取30 min,放冷至室温,用水定容至刻度,摇匀,滤过,精密吸取续滤液25 mL,进行萃取。 液体试样:吸取试样10 mL至分液漏斗中(含乙醇的保健食品,水浴挥尽乙醇),加水至约25 mL,进行萃取。 在已处理好的试样中加入20 mL水饱和正丁醇,振摇萃取3次,取正丁醇层(必要时可离心),合并提取液,用20 mL氨试液洗涤3次,置蒸发皿中100℃水浴蒸干,残渣用甲醇溶解并转移至25 mL量瓶中,甲醇定容,即得。 2.2 标准曲线的绘制 分别精密吸取人参皂苷Re标准溶液0.4、0.6、0.8、1.0、1.2 mL于10 mL具塞比色管中,水浴挥干溶剂,加入0.2 mL 5%香草醛冰乙酸溶液,再加入0.8 mL高氯酸,使残渣溶解,于60℃水浴加热10 min,冰浴冷却后,精密加入冰乙酸5 mL,摇匀,于560 nm波长处测定吸光度。取供试品溶液1 mL于10 mL具塞比色管中,自“水浴挥干溶剂”起操作。 3 方法学考察 3.1线性关系 取人参皂苷Re对照品0.01804 g,置100 mL量瓶中,加甲醇溶解稀释至刻度,作为标准溶液,精密量取标准溶液0.4、0.6、0.8、 1.0、1.2 mL分别置10 mL比色管中,水浴蒸干,显色,以对照品的质量(mg)为横坐标,吸光度为纵坐标,得回归方程:y=4.4807x- 0.0886,r=0.9997。结果表明,人参皂苷Re对照品质量在0.0722~0.2165 mg之间与吸光度呈良好的线性关系。 3.2 萃取次数 取舒灵胶囊、儿童装高丽红参液,按2.1制备样品水提取液,用水饱和正丁醇分别萃取3、4、5次,结果表明,萃取3次可将人参总皂苷提取完全(表1)。 表1 萃取次数比较结果 3.3热稳定性考察 由于正丁醇沸点较高,为此对人参皂苷的热稳定性进行考察,以便选取合适的水浴温度。取人参皂苷Re标准溶液0.6 mL,分别按60℃、100℃水浴蒸干、100℃水浴蒸干后继续放置30 min处理,测定结果分别为0.663、0.658、0.653,表明人参皂苷的热稳定性良好,因此水浴温度选为100℃。 3.4显色稳定性 取人参皂苷Re标准溶液0.3 mL,显色后每隔10 min测定其吸光度,结果表明,显色后的紫红色溶液不稳定,吸光度呈下降趋势,因此显色完成后需在10 min内完成测定。 3.5重复性试验 取舒灵胶囊按2.1下方法制备6份供试品溶液,分别测定,结果表明本方法重复性良好(表2)。

工艺优化方案确定

工艺优化方案确定 为保证处理出水SS稳定达标,以防二沉池出水水质波动,二沉池后增加过滤系统。目前常见的过滤有:V型滤池、变孔隙滤池、纤维过滤器、滤布滤池等。 V型滤池、变孔隙滤池和纤维过滤器等需要间段的反冲洗,反冲洗过程不能进水,反洗后存在一段滤池的恢复期,一般适用于大型水厂或自动控制较高的地方,对设备的数量和要求也亦较高,同时省却加药反应和沉淀池。滤布滤池适用于处理水量较大的污水处理厂,对于小水量污水不适用。 考虑本工程处理水量小,水质波动大的特点,采用近年来国内外逐渐受到采用的活性砂滤池,其出水效果稳定,控制简单,使用寿命长,加药量少,除磷、除SS效果明显,单套处理水量小,尤其适用于小水量的污水的净化处理。 在清水池中增加提升泵4台(二用二备)将污水提升至活性砂滤池并提供足够的动力。PAC加药管线通过管式混合器直接加入压力管线,充分混合反应后进入活性砂滤池过滤,过滤后的洗砂污泥回至污泥脱水系统。 洗砂配压缩空气,空压机房位于原有污水设备间,空气管线埋地敷设至活性砂滤池旁的储气罐调节气量气压后输送至活性砂滤器。 1活性砂砂过滤器工作原理和特点 整个砂滤系统的运行包括:水的连续净 化和砂的连续清洗。 ■水的连续净化 需要净化的原水由进水口①流入过 滤器,通过进水②和布水器③均匀地 进入过滤器内砂滤层的底部,原水从砂滤层 的底部向上流动,穿过砂滤层④。在上 流过程中,污染物被滤料截留, 原水得到连 续净化后进入净水区⑤净水通过砂滤系 统顶部的溢流堰⑥流出系统。 ■砂的连续清洗 在原水自下而上的过滤净化过程中,底

部的砂粒截流最多的污染物。 底部脏的砂粒⑦在气提泵⑧的作用下(压缩空气的气提作用),通过中心提砂管⑨被提升到系统顶部的洗砂器⑩脏砂先是在气提泵内被压缩空气激烈擦洗,再进入洗砂器⑩内清洗,砂粒在重力的作用下沿着洗砂器的曲径落下,并在洗砂器中被一小股反向流动的干净滤液冲洗,冲洗干净的砂落到砂滤层的顶部,在重力的作用下不停地向下流动,形成缓慢向下运动的流砂过滤层。 冲洗后的脏水在溢流堰⑥和排污管○11的液位差的作用下被排出砂滤系统。过滤器清洗水自用水量不超过总进水量的5%。 2设备型号及数量 型号:SF-50 数量:2套 3活性砂过滤器主要技术参数及材质 3.1技术参数 设备名称:活性砂过滤器数量(台)2 设备型号:SF-50 项目工艺技术参数 性能参数 处理水量30m3/h 数量(套) 2 单套过滤面积(m2) 5 滤床高度(mm)2000 设备高度6120mm 罐体直径2600mm 空气量180L/min 材料 罐体碳钢防腐 布水器不锈钢304 洗砂器不锈钢304 导砂斗不锈钢304 中心提砂管PPR 中心提砂管套管不锈钢304 空气控制箱数量(套) 1 规格1控2

工艺优化方法

1.合成工艺的优化主要就是反应选择性研究 有机合成工艺优化是物理化学与有机化学相结合的产物,是用化学动力学的方法解决有机合成的实际问题,是将化学动力学的基本概念转化为有机合成的实用技 术。 首先分清三个基本概念转化率、选择性、收率。转化率是消耗的原料的摩尔数除于原料的初始摩尔数。选择性为生成目标产物所消耗的原料摩尔数除于消耗的原料的摩尔数。收率为反应生成目标产物所消耗的原料的摩尔数除于原料的初始摩尔数。可见,收率为转化率与选择性的乘积。可以这样理解这三个概念,反应中消耗的原料一部分生成了目标产物,一部分生成了杂质,为有效好的原料依然存在于反应体系中。生成目标产物的那部分原料与消耗的原料之比为选择性,与初始原料之比为收率,消耗的原料与初始原料之比为转化率。 反应的目标是提高收率,但是影响收率的因素较多,使问题复杂化。化学动力学的研究目标是提高选择性,即尽量使消耗的原料转化为主产物。只有温度和浓度是影响选择性的主要因素。在一定转化率下,主副产物之和是一个常数,副产物减少必然带来主产物增加。提高转化率可以采取延长反应时间,升高温度,增加反应物的浓度,从反应体系中移出产物等措施。而选择性虽只是温度和浓度的函数,看似简单,却远比转化率关系复杂。因此将研究复杂的收率问题转化为研究选择性和转化率的问题,可简化研究过程。 2.选择性研究的主要影响因素 提高主反应的选择性就是抑制副反应,副反应不外平行副反应和连串副反应两种类型。平行副反应是指副反应与主反应同时进行,一般消耗一种或几种相同的原料,而连串副反应是指主产物继续与某一组分进行反应。主副反应的竞争是主副反应速度的竞争,反应速度取决于反应的活化能和各反应组分的反应级数,两个因素与温度和各组分的浓度有关。因此选择性取决于温度效应和浓度效应。可是,活化能与反应级数的绝对值很难确定。但是我们没有必要知道它们的绝对值,只需知道主副反应之间活化能的相对大小与主副反应对某一组分的反应级数的相对大小就行了。我们知道,升高温度有利于活化能高的反应,降低温度有利于活化能低的反应,因此选择反应温度条件的理论依据是主副反应活化能的相对大 小,而不是绝对大小。 (1)温度范围的选择:在两个反应温度下做同一合成实验时,可以根据监测主

人参皂苷的提取

第一章综述 人参皂苷的简介 人参为五加科植物人参(Panax ginseng)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。 人参的化学成分很复杂,有皂苷、挥发油、糖类及维生素等。经现代医学和药理研究证明,人参皂苷为人参的主要有效成分,它具有人参的主要生理活性。 人参皂苷(ginsenoside,GS)是人参的主要有效成分,现已明确结果的GS单体约有40余种;在人参中的含量在4%左右。其中研究最多且与肿瘤细胞凋亡最为相关的为Rg3与Rh2。众多研究表明,它具有较高的抗肿瘤活性,对正常细胞无毒副作用,与其他化疗药物(如顺铂)联合应用有协同作用。人参皂苷通过调控肿瘤细胞增殖周期、诱导细胞分化和凋亡来发挥抗肿瘤作用。将肿瘤细胞诱导分化成正常细胞有利于控制肿瘤发展,诱导肿瘤细胞凋亡使细胞解体后形成凋亡小体,不引起周围组织炎症反应。Popovich等研究认为,人参皂苷可以促进人白血病细胞的凋亡,其途径与地塞米松相识,均为受体依赖性。目前我国对人参皂苷的提取分离方法、制剂工艺、抗肿瘤作用机制以及临床应用等方面做了大量研究,而且已经有人参皂苷的新产品推向市场。 人参皂苷成分 人参的根、茎、叶、花及果实中均含有多种人参皂苷(ginsenosides)。到目前为止,文献报道从人参根及其它部位已分离确定化学结构的人参皂苷有人参皂苷-Ro、-Ra1、-Ra2 、-Rb1、-Rb2、-Rb3、-Rc、-Rd、-Re、-Rf、-Rg1、-Rg2、-Rg3、-Rh1、-Rh2及-Rh3 等50余种人参皂苷。 Rh2:具有抑制癌细胞向其它器官转移,增强机体免疫力,快速恢复体质的作用。对癌细胞具有明显的抗转移作用,可配合手术服用增强手术后伤口的愈合及体力的恢复. Rg:具有兴奋中枢神经,抗疲劳、改善记忆与学习能力、促进DNA、RNA合成的作用。 Rg1:可快速缓解疲劳、改善学习记忆、延缓衰老,具有兴奋中枢神经作用、抑制血小板凝集作用。 Rg2:具有抗休克作用,快速改善心肌缺血和缺氧,治疗和预防冠心病。 Rg3:可作用于细胞生殖周期的G2期,抑制癌细胞有丝分裂前期蛋白质和ATP的合成,使癌细胞的增殖生长速度减慢,并且具有抑制癌细胞浸润、抗肿瘤细胞转移、促进肿瘤细胞凋亡、抑制肿瘤细胞生长等作用。

总皂苷的测定方法

总皂苷的测定方法(分光光度法) 本方法适用于功能性食品中总皂苷的测定。 本方法人参皂苷Re的最低检出量为2μg/mL。 一、方法提要 样品中总皂苷经提取、PT—大孔吸附树脂柱预分离后,在酸性条件下,香草醛与人参皂苷生成有色化合物,以人参皂苷Re为对照品,于560nm处比色测定。 二、仪器 1.722分光光度计。 2.PT—大孔吸附树脂柱(河北省津杨滤材厂)。 3.超声波振荡器。 三、试剂 1.甲醇(分析纯)。 2.乙醇(分析纯)。 3.人参皂苷Re标准品(中国药品生物制品检定所)。 4.5%香草醛溶液:称取5g香草醛,加冰乙酸溶解并定容至l00mL。 5.高氯酸(分析纯)。 6.冰乙酸(分析纯)。 7.人参皂苷Re标准溶液:精确称取人参皂苷Re标准品20.0mg,用甲醇溶解并定容至10mL,即每1mL含人参皂苷Re2.0mg。 8.重蒸水。 四、测定步骤 1.样品处理: (1)固体样品 称取1.0g左右样品于100mL烧杯中,加入20~40mL 85%乙醇,超声波振荡30min,再定容至50mL,摇匀,放置,吸取上清液1.0mL挥干后以水溶解残渣,进行柱分离。 (2)液体样品 含乙醇的酒类样品:准确吸取1.0mL样品放于蒸发皿中,蒸干,用水溶解残渣,用此液进行柱层析;非乙醇类液体样品:准确吸取1.0mL样品(如浓度高或颜色深,需稀释一定体积后再取1.0mL)直接进行柱分离。 2.柱层析

以PT—大孔吸附树脂柱进行层析分离,准确吸取上述已处理好的样品溶液1.0mL上柱,用15mL水洗柱,以洗去糖分等水溶性杂质,弃去洗脱液,再用20mL85%乙醇洗脱总皂苷,收集洗脱液于蒸发皿中,于水浴上蒸干,以此作显色用。 3显色 在上述已挥干的蒸发皿中准确加入0.2mL 5%香草醛冰乙酸溶液,转动蒸发皿,使残渣溶解,再加0.8mL高氯酸,混匀后移入l0mL比色管中,塞紧盖子于60℃以下水浴上加温15min取出,冷却后准确加入冰乙酸5.0mL,摇匀后以1.0cm 比色皿、于560nm处与人参皂苷Re标准管同时比色。 4标准曲线的绘制: 吸取人参皂苷Re标准溶液(2.0mg/mL)0、20、40、60、80、100μL(相当于人参皂苷Re0、40、80、120、160、200μg),于10mL比色管中,用氮气吹干,同4.(3)显色步骤测定吸光度。并绘制标准曲线。 人参总皂苷浓度为20~200μg/mL之间与吸光度值呈线性关系,相关系数(r)0.999。 五、结果计算 式中X——样品中总皂苷(以人参皂苷Re计)(g/kg或g/L); m——试样质量或试液体积(g或mL); V1——样品提取液总体积(mL); V2——样品提取液测定用体积(mL); m1——从标准曲线查得待测液中人参皂苷Re量(μg)。

实验六 人参中人参皂苷的提取分离及鉴定

实验六人参中人参皂苷的提取分离及鉴定 人参为五加科植物人参(Panax ginseng C.A.Mey.)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。其栽培者称为“园参”,野生者称为“山参”。人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。 人参的化学成分很复杂,有皂苷、挥发油、糖类及维生素等。经现代医学和药理研究证明,人参皂苷为人参的主要有效成分,它具有人参的主要生理活性。人参的根、茎、叶、花及果实中均含有多种人参皂苷(ginsenosides)。到目前为止,文献报道从人参根及其它部位已分离确定化学结构的人参皂苷有人参皂苷-Ro、-Ra1、-Ra2 、-Rb1、-Rb2、-Rb3、-Rc、-Rd、-Re、-Rf、-Rg1、-Rg2、-Rg3、-Rh1、-Rh2及-Rh3 等50余种人参皂苷。 根据皂苷元的结构可分为A、B、C三种类型:①人参二醇型-A 型,②人参三醇型-B型,③齐墩果酸型-C型。A型和B型皂苷均属四环三萜皂苷,其皂苷元为达马烷型四环三萜,A型皂甙元称为20(S)-原人参二醇[20(S)-protopanaxadiol]。B型皂甙元称为20(S)-原人参三醇[20(S)-protopanaxatriol]。C型皂苷则是齐墩果烷型五环三萜的衍生物,其皂苷元是齐墩果酸(oleanolic acid)。

[目的要求] 1.通过实验进一步掌握三萜类化合物的理化性质及提取、分离和检识方法。 2.学习和掌握简单回流提取法、两相溶剂萃取法、旋转蒸发器、大孔树脂柱色谱等基本实验操作技能。 [实验原理] 人参的主要成分为人参皂苷,总皂苷含量约4%,人参皂苷大多数是白色无定形粉末或无色结晶,味微甘苦,具有吸湿性。人参皂苷易溶于水,甲醇、乙醇,可溶于正丁醇、乙酸、乙酸乙酯,不溶于乙醚、苯等亲脂性有机溶剂。水溶液经振摇后可产生大量的泡沫。人参总皂苷无溶血作用,分离后,B型和c型人参皂苷有显著的溶血作用,而A型人参皂苷有抗溶血作用。 人参中除含有皂苷外,还含有脂溶性成分如挥发油,脂肪、甾体

发酵工艺优化

发酵工艺优化 发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

工艺优化管理方案

工艺管理方案 为了确保生产工艺稳定运行,各产品质量及过程控制符合规定要求,结合合成二车间生产实际情况,现将各岗位生产工艺做出以下几点要求: 一、合成岗位 1、加强对原材料质量抽查力度,并确保各种原材料投料比准确,严禁出现多投或少投甚至错投的现象; 2、各合成工每班必须对三乙胺计量槽进行排底,在操作记录上写清各种原材料实际投入量及各种原材料含量及水分; 3、对解聚、加成、缩合各阶段反应时间及保温时间做出明确要求,解聚在48--50℃间保温不得少于50分钟,加成在42--43℃间保温不得少于60分钟,缩合在52--53℃间保温不得少于70分钟,各阶段过程控制中严禁出现温度波动大及超温现象; 4、必须将合成液降至35℃以下才可以出料,打料前合成工要与脱醇小班长进行合成液打料交接并确认签字。 二、脱醇岗位 1、盐酸加入量必须准确,696/含量,严禁私自多加或少加; 2、加完盐酸至放合成液的时间不能超过1.5小时; 3、脱醇釜温度低于35℃时加合成液。 4、从加合成液起15分钟内必须关闭放料阀门。 5、合成液加完后温度需控制在50℃以下,约15分钟后排水升温。 6、升温时应遵循“先慢后快”的原则。55-65℃,控制在45分钟左右,65-75℃、75-85℃各为1小时左右。从升温-85℃,时间不得低于2.5小时,从升温 --停气出料,为6.5-7.5小时。 7、物料变黄后,保温30分钟。 8、出料时,温度最佳控制在119±2℃,最高不超过125℃。并加入清洗水300L(含洗釜和洗管道的水)。 三、乙胺回收岗位 1、控制指标 母液中和PH值 10.50-10.80 三乙胺塔底温度 100℃~110℃ 三乙胺塔顶温度 92.5℃~95.5℃ 三乙胺水分≤0.20% 2、操作要求:中和温度控制在45--55℃,PH值在10.50—10.80之间,中和后的料液进入三乙胺分离器,分离时间不得少于15分钟;三乙胺精馏过程中严格控制进料量,保证塔底、塔底温度,确保排除的废母液中兑碱无三乙胺气味。 四、甲醇回收岗位 1、控制指标 老塔:甲缩醛塔底温度:77℃-80℃ 甲缩醛塔顶温度:39℃-41℃ 甲醇塔底温度:102℃-105℃ 甲醇塔顶温度:63--65℃ 新塔:甲缩醛塔底温度:80℃-88℃ 甲缩醛塔顶温度:41℃-45℃

绞股蓝人参皂苷的提取工艺研究

收稿日期:2009-02-12;修回日期:2009-05-22 作者简介:李全良(1978-),男,河南商水人,讲师,硕士,从事有机合成方面的研究. 第26卷第5期周口师范学院学报 2009年9月Vol.26No.5Jo ur nal o f Zhoukou Normal University Sep.2009 绞股蓝人参皂苷的提取工艺研究 李全良,谢东坡 (周口师范学院化学系,河南周口466000) 摘 要:以沸水提取100g 绞股蓝茎叶,将提取液浓缩蒸干,得粗产品2107g.用95%的乙醇进行重结晶,可得纯绞股蓝人参皂苷1175g ,收率为1175%.用红外光谱、薄层色谱、熔点测定和定性分析对结果进行验证,结果表明,所得到的物质为绞股蓝人参皂苷.关键词:重结晶;绞股蓝;提取工艺 中图分类号:O 652 文献标识码:A 文章编号:1671-9476(2009)05-0076-02 绞股蓝(Gy nistemma P entap hy llum M ak in )又名七叶胆,属葫芦科植物,为多年蔓生草本植物,含有丰富的绞股蓝皂苷、黄酮、多糖、人体必需的8种氨基酸和多种微量元素[1,2].绞股蓝中所含的绞股蓝皂苷具有较高的药理性质.临床证明,它降血糖、降血脂显著,总有效率超过94%,效果超过德国进口药必降脂;治疗冠心病、心肌梗塞、心肌炎、心肌坏死显著;防治粥样动脉硬化,平衡血压效果显著;防治糖尿病显著[3].所以绞股蓝素有/小人参0的美称,因此绞股蓝有效成分的提取具有重要的意义. 目前,人们提取绞股蓝中有效成分(绞股蓝皂苷)的方法主要有:色谱柱法、回流法和超声波提取法[4-6] .这些方法虽能得到较好的收率,但是也存在明显的缺陷:色谱柱法程序多,操作复杂,浪费化学试剂等;回流法和超声波提取法对仪器的要求较高;等等.本文采用了热水溶液浸提,乙醇除杂、重结晶制得绞股蓝皂苷.该方法所用仪器简单,溶剂无毒性,提取出的人参皂苷纯度高、收率高,为以后的工业提取提供了一定的理论基础. 1 实验部分 111 实验仪器 旋转蒸发仪RE -52AA;傅立叶变换红外光谱 仪WQF -510;精密显微熔点测定仪X -6A .112 实验过程 称取绞股蓝干茎叶100g,用600m L 的沸水 浸泡3次,每次时间约为30min.将浸泡液在旋转蒸发仪上减压蒸发,得到黑色粘稠状浓缩液.向黑色粘稠状浓缩液中加入50m L,95%乙醇进行重结 晶,然后静置5h,有沉淀析出,过滤,干燥,得浅黄色粉末状物质2107g,再用95%乙醇进行重结晶,得土黄色提取物1175g ,收率为1175%. 2 结果与讨论 211 薄层检识 取适量土黄色干燥粉末,加入蒸馏水溶解,配成溶液.以氯仿-醋酸乙酯-乙醇-水(115B 4B 212B 1)作为展开剂[7] ,在薄层板上展开,对制得的土黄色物质进行纯度分析,把薄层硅胶板放入碘瓶中,所得结果显示土黄色物质为纯物质(一个点).通过薄层检识,分析所得土黄色物质为一个纯净物.212 熔点测定 取土黄色粉末状物质少许,利用X -6A 精密显微熔点测定仪测定其熔点大于380e .绞股蓝中含有十几种皂苷,其熔程比较宽,为139~303e ,而土黄色物质熔点则高于380e .由于混合物的熔点通常要低于其中任一种组分纯净物的熔点,可以分析出土黄色粉末是绞股蓝皂苷中一种熔点较高的纯净物. 213 绞股蓝人参皂苷定性分析 氯仿-浓硫酸反应法:取土黄色物质011g,放在50mL 烧杯中,加入氯仿1m L,使样品溶解,再滴加浓硫酸数滴,在氯仿和浓硫酸接触的两相界面

相关文档
最新文档