概率论论文

概率论论文
概率论论文

概率论与随机过程(论文)

题目: 概率论在数据挖掘中的应用

姓名程潇婷

学院信息与通信工程学院

专业信息与通信工程

班级概率论与随机过程3班

学号2013110355

班内序号1号

指导教师周清

2015年12 月

目录

目录 (2)

概率论在数据挖掘中的应用 (3)

摘要 (3)

一、数据挖掘与概率论 (3)

二、粗糙集理论与概率论知识的融合 (4)

概率论基础知识 (4)

基于粗糙集理论的概率规则 (4)

粗糙集理论下的概率规则测度 (6)

三、理论知识的实际应用 (6)

粗糙集理论的概率规则的应用 (6)

粗糙集理论下的概率规则测度的应用 (7)

四、课程学习心得体会 (7)

参考文献 (7)

概率论在数据挖掘中的应用

摘要

本文主要通过结合笔者的研究方向与本学期学习的课程《概率论与随机过程》从而探讨概率论在数据挖掘中的一些具体应用。随着大数据时代的到来,数据挖掘作为新兴的数据处理手段在各个领域都有着广泛的应用,而数据挖掘技术的发展一方面服务于各类新兴大数据命题,另一方面又依托于传统支撑型理论学科,从而在二者之间建立起坚固的桥梁。概率论作为数据挖掘的理论支撑在模型构建,数据预测,数据仿真方面都有着极其重要的作用。文中笔者主要通过介绍基于概率测度的数据挖掘模型来具体阐述二者的关系。

关键词:概率论,数据挖掘,概率测度

一、数据挖掘与概率论

数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。数据挖掘利用了来自如下一些领域的思想:(1) 来自统计学的抽样、估计和假设检验,(2)人工智能、模式识别和机器学习的搜索算法、建模技术和学习理论。数据挖掘也迅速地接纳了来自其他领域的思想,这些领域包括最优化、进化计算、信息论、信号处理、可视化和信息检索。一些其他领域也起到重要的支撑作用。特别地,需要数据库系统提供有效的存储、索引和查询处理支持。源于高性能(并行)计算的技术在处理海量数据集方面常常是重要的。分布式技术也能帮助处理海量数据,并且当数据不能集中到一起处理时更是至关重要。

数据挖掘研究从大规模的数据库中挖掘出有用的知识来辅助决策, 而粗糙集理论是一种基于等价关系分类的新的信息处理方法, 其特点是不需要预先给定某些特征或属性的数量描述, 而是直接从给定问题的描述集合出发, 找出该问题中的内在规律。该理论主要研究信息和智能系统中知识不精确、不完善的问题, 但其基本方法是确定性的, 因而忽略了数据可利用的统计信息。为了将粗糙集理论应用于概率领域, 有必要研究粗糙集理论与概率统计结合的相融点, 提取具有一定概率可信度的数据挖掘规则。

粗糙集合理论通过将数据属性进行组合从而反映了数据的分类特征, 是目前知识获取中归纳学习的一种有效工具。然而在现实领域中进行归纳学习存在着如下问题:( 1) 当属性

数目很大时,计算费用非常高;(2)这种方法无法提供属性的先验概率;( 3) 在以往工作中, 对规则进行的推导只局限在不可分辨集合是正域的一个子集中, 然而这在现实信息世界中, 特别是在概率领域中约束太强。因此, 当将粗糙集合理论应用于概率空间领域的知识获取时, 需要进行如下扩展:( 1) 进行规则推导, 仅考虑覆盖正域规则是不充分的, 必须关注于可能域, 一个正域是可能域的一个特定子集;( 2) 需要引入一些测度来估计规则的统计特征。因此,为了完善这一理论,结合概率论测度理论可以产生挖掘分类规则的基本思路: 首先, 利用条件概率的形式表示研究集合的上下近似空间, 根据决策属性值的不同, 将对象划分成不同的组代表不同的决策类;其次, 从条件概率的角度利用条件属性的逼近精度的相关参数进行属性集的约减从而形成两种子规则, 一种子规则用于区分每一类, 另一种子规则用于区分每一组中的不同类;然后,将两部分子规则集成为一条规则对应每一决策属性;最后, 计算每条规则的分类精度、覆盖率来选择适当的概率规则。

二、粗糙集理论与概率论知识的融合

概率论基础知识

概率空间是概率论的基础。概率的严格定义基于这个概念。概率空间(Ω, F, P)是一个总测度为1的测度空间(即P(Ω)=1)。第一项Ω是一个非空集合,有时称作“样本空间”。Ω的集合元素称作“样本输出”,可写作ω。第二项F是样本空间Ω的幂集的一个非空子集。F的集合元素称为事件Σ。事件Σ是样本空间Ω的子集。集合F必须是一个σ-代数(Ω, F)合起来称为可测空间。事件就是样本输出的集合,在此集合上可定义其概率。第三项P称为概率,或者概率测度。这是一个从集合F到实数域R的函数,P :F →R。每个事件都被此函数赋予一个0和1之间的概率值。P必须是一个测度,且P(Ω)=1。概率测度经常以黑体表示,例如P 或Q ,也可用符号"Pr"来表示。

基于粗糙集理论的概率规则

定义一:令R 是论域U 上的等价关系, D 是决策分类概念的集合, X R是满足等价关系R 的x 的等价类。则定义条件概率为:

P(D|Xi R)=P(D∩Xi R)

P(Xi R)

=

card(D∩Xi R)

card(Xi R)

其中P(D|Xi R)表示事件Xi R发生的条件下事件D 发生的概率,card 为基数函数。即:

P(D|Xi R)=1, 当且仅当Xi R?D

P(D|Xi R)>0, 当且仅当Xi R∩D≠?

P(D|Xi R)=0, 当且仅当Xi R∩D=?

定义二:令R 是论域U 上的等价关系, D

系R 的x 的等价类。决策系统的概率规则可定义为一个元组,其中满足以下条件:

1.X R∩D≠?

=P(D|R)

2.αR D=|X R∩D|

|X R|

=P(R|D)

3.K R D=|X R∩D|

|D|

4.p:χ2统计值p

其中αR D表示R对于分类D的分类精度, K R D表示R针对于D 的覆盖的统计测度, 即正域率, 值得注意的是这两种测量描述分别等于两种条件概率, p为概率规则的统计可靠度。同时, αR D表示规则R→D 的充分性, K R D表示规则R→D 的必要性。即如果αR D=1, 则R→D 为真, 如果K R D=1, 则D→R 为真, 若αR D=1=K R D, 则R?D。

为了计算p 值, 在论域U、决策集合D 和等价关系X R之间建立一个临时表,如下:。

d ┐d 总计

R s t s+t

┐R u v u+v

总计s+u t+v s+t+u+v

在表中, ┐R 与┐d 分别表示R与d的逻辑否定。s, t, u,v 分别计算如下:

|X R∩D|=s

|X R∩( U- D) |=t

|D-X R∩D|=u

| (U- D) - X R∩( U, D) |=v

同时有以下式子成立:

s+t=|X R|

s+u=|D|

s+u+t+v=|U|

由上表可计算统计值:

n(sv?tu)2

χ2=

χ2统计值是用来检验R 与d 之间是否统计独立, 换句话说, 是用来检验R 对于分类d 而言是否是必要的。根据以上各数值的计算, 可以把概率规则分成四类:

1.确定性规则: α=1, k=1;

2.显著性规则: 0.5<α<1, 0.9≤p<1;

3.强规则: 0.5<α<1, 0.5

4.弱规则: 0<α<0.5, 0

粗糙集理论下的概率规则测度

将一致性规则的定义扩展到概率领域中, 为此, 定义分类规则的两个测度表示如下:

SI R i,D=card{x R

i

∩D U x R

i

c∩D c}

card{x R

i

∪x R

i

c}

CI(R i,D)=card{x R

i

∩D U x R

i

c∩D c}

c

其中D c表示一个分类X 未被观测到的缺损对象, x R

i

c表示未被观测到的满足等价关系R i的缺损对象。对于缺损对象的分类确定, 可以用补全样本集的概率统计方法给出。对于一个不完整的决策表, 缺损样本中的条件属性对应某种决策分类的概率, 在不考虑已知条件的情况下, 只能认为是等概率的, 显然用这个概率作为推测的依据是不合

理的。用P

1表示根据已知数据求出的概率, P

2

表示等概率, 则用于推测缺损样本的概率

可表示为:

P=a*P

1+( 1- a) *P

2

a=该条件属性在给出的决策表中出现的次数

该条件属性在完整的决策表中应该出现的次数

则可以推断缺损对象的决策分类值, 步骤如下:( 1) 列出缺损的样本;( 2) 计算每种条件属性对应每种决策分类的概率;( 3) 计算每个补充的样本取得每种决策的概率。

三、理论知识的实际应用

粗糙集理论的概率规则的应用

根据本文第二部分的理论推导,粗糙集理论的概率规则的推导结果可以实际模拟现实生活中的场景。数据挖掘主要是从大数据中得出具有指导性的数据属性,而这些属性的确定就是基于粗糙集理论中属性的概率规则。通过上文的推导,可以看出概率规则可以分为四类,而大数据的每个数据属性都可以划分在不同的概率规则中,而位于不同的概率规则域的属性都可以被定量的赋予一个与数据挖掘结果相关的值,通过赋值的调整可以在数据挖掘的仿真过程中将各个属性实体化从而得出具有指导性的结论。

下面笔者将分别讨论四种规则。在概率规则中,确定性规则对应已知圈定的数据属性,也就是与特定结论进行过配对具有特定因果关系的数据属性,比如钱币真伪这个数据属性将直接与结果“真,伪”关联;显著性规则对应依据普遍认知将会与特定结果配对的数据属性,比如服装类型这个数据属性一般与“男装,女装,童装”有关联,但也不排除其他的分析结果;强规则对应具有一定指向意义的数据属性,这些数据属性在数据对象的未来的发展方向具有一定的指导意义,也是数据挖掘研究的主要数据属性;弱规则对应数据挖掘中与分析结果没有明显关联的数据属性,这些数据属性大部分间接性的与数据对象有关联,而这种关联往往是隐性的,这种隐性关系将有可能成为数据挖掘的“黑马”。

粗糙集理论下的概率规则测度的应用

由于缺损对象在属性及属性值较多的情况下计算其出现及分类的概率的工作量是相当大的,因此粗糙集理论下的概率规则测度理论指导数据挖掘工作者寻找某种特定的概率规则的测度。例如将γ- 概率近似分类的概念作为概率规则的测度:

令U/C={X

1, X

2

, ?, X

n

}={[x

1

]

R

, [x

2

]

R

, ?, [x

n

]

R

}为关系R(C)关于论域的等价类集合, 则

在标准粗糙集模型中集合Y 的上下近似用条件概率的形式可表示为:

R C Y={X i

P Y X i=1

∈U/C}

Y={X i

P Y X i>0

∈U/C}

在近似空间中, 令SA

P

=为一概率元组,其中P是一个条件概率测度,γ是(0.5,1)范围内的一个实数。γ近似空间可以分成以下区域:

集合Y 的γ-正域: POS

C (Y)={X i

P Y X i≥γ

∈U/C}

集合Y 的γ-负域: NEG

C (Y)={X i

P Y X i<γ

∈U/C}

显然, 集合Y的γ-正域对应于论域U 中能以条件概率P Y X i≥γ情况下准确划入集合Y 的元素个数, 集合Y 的γ-负域对应于论域U 划入集合^Y的元素个数。

四、课程学习心得体会

本科期间就曾学习过概率论的相关课程,只不过都是停留在比较简单的理论方面,并没有真正思考过这门课程究竟怎样应用在实践中。通过这个学期对概率论与随机过程的学习,笔者对概率论相关知识进行了更加深入的研究,同时结合研究相关方向,理解了概率论在实际研究中的应用,感觉受益颇多。概率论与随机过程作为一门重要的学科,在现代诸多新兴课题的研究中也有着弥足重要的地位,研究生期间的课程为笔者以后灵活应用这些方面的知识打下了坚实的基础,在此要特别感谢周清老师在这个学期里的悉心指导,谢谢。

参考文献

[1] 张文宇,基于概率测度的数据挖掘扩展模型研究[J].《计算机工程与应用》, 2008, 44(25):132-135

[2]王玉孝,概率论与随机过程[M].北京邮电大学出版社,2005-6-1

[3] Anand Rajaraman、Jeffrey David Ullman, Mining of Massive Datasets[M].人民邮电出版

社,2012-09-01

[4] 张文宇、贾嵘,数据挖掘与粗糙集方法[M]. 西安电子科技大学出版社, 2007-10-01

[5] 杨巨龙,大数据技术全解-基础、设计、开发与实践[M].电子工业出版社,2014-03-01

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

概率统计期末论文

概率统计期末论文 姓名:周芹 班级:会计1201 学号:1080112133 日期:2013.12.18

概率统计在企业盈亏问题中的应用 摘要:本文从企业出发,选择经济问题中的盈亏角度,讨论概率统计在其中的具体应用。首先通过引用中心极限定理和数学期望的具体例子,详细的介绍了概率统计在盈利问题中的应用;然后运用对参数的点估计的分析,阐释了概率统计在企业亏损问题中的应用。从而得出如何计算盈亏概率、如何使利润最大化、如何进行亏损估计,进一步总结出概率统计在处理企业盈亏问题方面的必要性。 关键词:概率统计,企业盈亏,中心极限定理,数学期望,参数点估计 1、引言 自中国古代开始,数学就是一门重要的学科,不管是小小的结绳记事,还是复杂的程序计算,数学都在其中扮演着重要的角色,自然,数学中一个非常重要的分支-概率统计也就不可避免的在很多领域中取得越来越广泛的应用。正如英国逻辑学家和经济学家杰文斯所说:“概率统计是生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为。” 概率统计是一门相当有趣的数学分支学科,近几十年来,经济学界和经济学者越来越多的运用其作为研究和分析的工具。而实践证实,这一选择是极其正确的,概率统计为经济猜测和决策提供了新的手段,有助于经济效益和治理水平的提高,同时也被引入各个企业进行经济分析。本文则就是从企业出发,选择经济问题中的盈亏角度,讨论概率统计在其中的具体应用。 2、概率统计在企业盈利问题中的应用 对于一个企业来说,其存在的首要目的就是盈利,不过我们都知道,投资并不代表就一定有利润的实现。因而,企业在投资过程中总是尽量降低其存在的风险从而提高盈利的概率,像一些风险性的企业,如:保险行业,一般可提前通过收集材料计算得出其盈利的概率;同时企业的最终目标是利润最大化,所以在确定能够盈利的前提下,计算何种方法使得利润最大。 在概率统计中,关于盈利问题的应用,最独树一帜的当属中心极限定理与数学期望的应用,接下来将就这两方面分别讨论。 2.1、计算盈利概率 - 中心极限定理的应用 要了解中心极限定理是如何应用于盈利计算中的,首先当了解中心极限定理本身,在概率统计中有好几种中心极限定理,不过,它们所要表达的意思其实都是相近的,统一指出: 如果一个随机变量由众多的随机因素所引起,每个随机因素的变化起着不大作用,就可以推断描述这个随机现象的随机变量近似服从正态分布,所以要求随机变量之和落在某个区间上的概率,只要把它标准化,用正态分布作近似计算即可。

概率论重要知识点总结

概率论重要知识点总结 概率论重要知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点: (1)可重复性 (2)多结果性 (3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间.样本空间用Ω表示.一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为A-B。用交并补可以表示为互斥事件:如果A,B两事件不

能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时可记为A+B。对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质:事件运算律:设A,B,C为事件,则有: (1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC (3)分配律:A(BC)=(AB)(AC)ABAC (4)对偶律(摩根律): 第二节事件的概率 概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式: P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的相互独立:若两事件A、B 满足P(AB)=相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)=相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)=两两独立独立的性质:若A 均相互独立总结: 1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。 2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,应

概率论论文

概率论与数理统计总结(1-5章节) 第一章&第二章概率论引论& 条件概率 本章知识点: 1.随机事件及其运算(随机试验,随机事件与样本空间,事件之间的关系及其运算) 2.概率的定义、性质及其运算(频率,概率的统计定义,古典概率,概率的公理化定义,概率的性质) 3.条件概率及三个重要公式(乘法公式,全概率公式,贝叶斯公式) 4.事件的独立性及贝努里(Bernoulli)概型 理解重点: 1.理解随机事件的概念,了解样本空间的概念,掌握事件的关系与基本运算; 2.理解事件频率的概念,了解随机现象的统计规律性,理解概率的公理化定义和概率的其它性质; 3.理解古典概率的定义,掌握古典概率的计算,了解几何概率的定义及计算; 4.掌握概率的基本性质和应用这些性质进行概率计算; 5.理解条件概率的概念,熟练掌握条件概率的计算,熟练掌握乘法公式、全概率公式和贝叶斯公式以及应用这些公式进行概率计算; 6.理解事件的独立性概念,掌握应用事件独立性进行概率计算,理

解贝努利试验的概念,熟练掌握二项概率公式(贝努利概型)及其应用。 第一节随机事件 一、概率论序言 二、随机试验与随机事件 (一)随机试验 1.试验可在相同条件下重复进行; 2.每次试验的可能结果不止一个,而究竟会出现哪一个结果,在试验前不能准确地预言; 3.试验所有可能结果在试验前是明确(已知)的,而每次试验必有其中的一个结果出现,并且也仅有一个结果出现。 满足上述三个特性的试验,叫做随机试验,简称试验,并用字母E 等表示。 (二)随机事件 随机试验的结果称为随机事件,简称事件。 1.必然事件:在试验中一定出现的结果,记作Ω; 2.不可能事件:在试验中一定不会出现的结果,记作Φ; 3.随机事件:在试验中可能出现也可能不出现的结果,常用大写拉丁字母A、B、C…表示; 4.基本事件(样本点):试验最基本的结果,记作ω; 5.样本空间(基本事件空间):所有基本事件的集合,常用Ω表示;样本空间Ω中的元素是随机试验的可能结果。样本空间的任一子集称

概率论毕业论文外文翻译

Statistical hypothesis testing Adriana Albu,Loredana Ungureanu Politehnica University Timisoara,adrianaa@aut.utt.ro Politehnica University Timisoara,loredanau@aut.utt.ro Abstract In this article,we present a Bayesian statistical hypothesis testing inspection, testing theory and the process Mentioned hypothesis testing in the real world and the importance of, and successful test of the Notes. Key words Bayesian hypothesis testing; Bayesian inference;Test of significance Introduction A statistical hypothesis test is a method of making decisions using data, whether from a controlled experiment or an observational study (not controlled). In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level. The phrase "test of significance" was coined by Ronald Fisher: "Critical tests of this kind may be called tests of significance, and when such tests are available we may discover whether a second sample is or is not significantly different from the first."[1] Hypothesis testing is sometimes called confirmatory data analysis, in contrast to exploratory data analysis. In frequency probability,these decisions are almost always made using null-hypothesis tests. These are tests that answer the question Assuming that the null hypothesis is true, what is the probability of observing a value for the test statistic that is at [] least as extreme as the value that was actually observed?) 2 More formally, they represent answers to the question, posed before undertaking an experiment,of what outcomes of the experiment would lead to rejection of the null hypothesis for a pre-specified probability of an incorrect rejection. One use of hypothesis testing is deciding whether experimental results contain enough information to cast doubt on conventional wisdom. Statistical hypothesis testing is a key technique of frequentist statistical inference. The Bayesian approach to hypothesis testing is to base rejection of the hypothesis on the posterior probability.[3][4]Other approaches to reaching a decision based on data are available via decision theory and optimal decisions. The critical region of a hypothesis test is the set of all outcomes which cause the null hypothesis to be rejected in favor of the alternative hypothesis. The critical region is usually denoted by the letter C. One-sample tests are appropriate when a sample is being compared to the population from a hypothesis. The population characteristics are known from theory or are calculated from the population.

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论课程小论文

《概率论与数理统计》小论文概率与理性的发展 哈尔滨工业大学 2014年12月

《概率论与数理统计》课程小论文 概率与理性的发展 摘要概率论是一门研究事件发生的数学规律的学科。他起源于生活中的实际问题的思考,较传统的几何学等起步较晚,在伯努利、泊松等数学家的努力下,形成了现如今较为完备的理论体系。他与数理统计一起,在工程设计、自然科学、社会科学、军事等领域起着重要作用。而概率论提出后有很多人感感兴趣对其进行研究的原因之一是很多事件的主观上对概率的判 断与实际的理论概率有着很大的差异,于是有关概率的悖论有很多,也有很多与直觉相悖的概率问题,这也是概率的魅力之一。本文将从概率的发展、概率与感性的差异等方面出发对概率与感性和理性进行探讨。 关键词概率悖论直觉理性 一、概率的发展 概率论的初步发展起源于十七世纪中叶的法国。在那里出现了对赌博问题的研究,也正是对赌博问题的研究,推动了概率论的发展。最初的问题是从分赌金开始的。[1] 最初的问题大致是这样的:甲乙双方是竞技力量相当的对手,每人各拿出32枚金币,以争胜负。在竞争中,取胜一次,得一分。最先获得3分的人取得全部赎金64枚金币。可是,因某种缘故,竞争3次,赌博被迫终止。而此时,甲得2分,乙得1分,问赌金如何分配?很多问题的开端都是利益的纠纷,这也是一个例子,双方都会为自己的利益考虑而提出对这笔赌金的分法,而从直觉上看,很多理由似乎也是很有道理的。但是真相只有一个,到底理论上最公平的分法是怎样的?这个问题的当事人爱好赌博的德梅雷 向其好友著名的数学家帕斯卡请教,这个问题也受到了帕斯卡的关注。帕斯卡与其好友费尔马进行了三个月的书信往来讨论这个问题,最终得到了满意的答案:假设两赌徒中甲赢了两局,乙一局未赢,那么接下来可能出现的情况是:若甲再赢一局,得3分,将获全部赌金;若乙赢一局,出现2:1的局

概率论在生活中的应用 毕业论文

学号:1001114119概率论在生活中的应用 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 10级二班 姓名: 指导教师: 2014年3月

概率论在生活中的应用 摘要 概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。这是当前数学课程改革的大势所趋。加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。(宋体,小四,1.5倍行距) 关键词随机现象;条件概率;极限定理;古典概率 The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment. Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability

概率论小论文

浅谈概率论 专业:环境设计 姓名:zhou 学号:66626edfe 【摘要】:概率论与数理统计课程是我们哈工大学生学习的一门应用性很强的必修基础课程。通过近一个学期的学习,我对概率论也有了一些粗浅的认识,这篇文章将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。 【关键词】:二项分布泊松分布正态分布类比级数广义积分

正文 1 概率论的起源和发展 概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。因此,整个的人类知识系统是与这一理论相联系的。”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,根据掷出各种不同的紫云英而移动筹码。大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。[1] 二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。于是, 对于概率论历史的研究也日益引起科学史学家们的重视。在概率论发展历史上, 十八、十九世纪之交法国最伟大的科学家之一拉普拉斯具有特殊的地位, 1812年拉普拉斯首次出版的《分析概率论》标志着概率论历史上的一个重要阶段--古典概率论的成熟。概率论发展到1901年, 中心极限定理终于被严格的证明了, 以后数学家正利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从以正态分布。到了20世纪的30年代, 人们开始研究随机过程, 著名的马尔可夫过程的理论在1931年才被奠定其地位。到了近代, 出现了理论概率及应用概率的分支, 及将概率论应用到不同范筹, 从而产生了不同学科。因此, 现代概率论已经成为一个非常庞大的数学分支。 2二项分布、泊松分布和正态分布之间的关系 2.1 二项分布、泊松分布之间的关系 定理1 泊松定理:在n重伯努利试验中,事件A在每次试验中发生的概率为 p n ,它与试验次数有关,如果 n lim0 n npλ →∞ =>,则对任意给定的k, 有

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

2020年上学期大学教师个人工作总结

上学期大学教师个人工作总结 一个学期来,卑人能时刻牢记“爱岗敬业”和“为人师表”的职业道德之宗旨,在实际工作中不辞劳苦、焚膏继晷地主动开展班级管理和德育建设,在上级诸多领导的关心、支持、指导和帮助下,取得了一定的收效并且有了良性的发展。 一、主动贯彻落实学校以及各职能部门各个阶段和突发性的工作要求,做到坚决服从、动作迅速、部署到位、落实有策,经常性抓好班级管理中的组织、协调、督促、检查和小结环节工作。与其他班主任一样,经常性加强对学生的集会、早读、课间操、卫生清洁、午休、晚自习等督促检查并考核登记,阶段性地或持续某段时间坚持每天对早读、午休、清洁卫生情况或晚自习情况进行突击检查,经常性、随意性地观察其他课任教师上课时学生的学习和纪律状况,力求更多的感性掌握第一手材料,以便有的放矢地加强动态管理,在深入学生的学习、生活和活动中及时了解、关心、教育并且督促其良好习惯的养成,同时发挥教师的言传身教之示范效果。 二、主动、大胆搞好对学生干部的发掘、使用、扶持、教育和培养工作,尽可能的发挥学生的自我管理、自我监督和自我教育能力,培养和提高学生的“五自”能力。该班“难得”的班干部从总体上说:“领头雁”几乎没有、表率网射作用差、胆小怕事常拖拉。针对本班学生干部胆小怕事、明哲保身而不能形成班集体的核心这一状况,深

入学生生活,善于洞察和了解情况,。我更多的采取定期召开班干部会议或个别谈话,分析研究之根源、指出教育其不足、授之建议以方法;同时进行职责分工,做到人人有权、人人有责、互相监督、相互协调,实行民主管理,逐步培养出像曲超、刘玺、王琳、那荣威、张一烁等这样一批较为得力的班干部,使班级管理有了良性的互动,此一状况在有了明显的改观。 三、始终贯彻分层次教育,做好教学工作计划,坚持“抓两头、促中间”,不厌其烦地耐心做好后进生的帮教转化工作。针对本班如:杨恒、李忠阳、杨行、杨磊、曾超、李文君、蔡思阳、王照、金善、邵楠等纪律或学习双差的后进生多、且突出之头疼状况,我班实行了《学生每天情况登记表》、《学生思想动态情况每天公布》制度,坚持每天登记、每周公布、每月小结的做法,发现问题及时纠正教育,做到“小犯指出批评、多错检讨通报、大错约见家长、累犯严肃处理”,更主要的是班主任经常性加强督促和引导,充分利用班会、集会小结、召开座谈会、电话通知其家长、开展“告别不良行为,重塑文明形象”等进行苦口婆心的教育,从情入口、感之以心。 同时,有的放矢地“约法三章”,狠治各种歪风邪气,培育正确的舆论导向,耐心做好后进生的教育转化和家长的配合督导;充分利用班会、课余时间以及校内外各种方式的活动,结合《德育量化考核实施细则》和文明学生的评比,培育正确的舆论导向和核心集体,

概率论知识点总结及心得体会

概率论总结及心得体会 2008211208班 08211106号 史永涛 班内序号:01 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。

概率论论文10篇全面版

《概率论论文》 概率论论文(一): 《概率论与数理统计》论文 摘要 概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。纵观其发展史,在实际生活中具有很强的应用好处。正是有了前人的努力,才有了现代的概率论体系。本文将从概率论的研究好处、定义,以及发展历程进行叙述。 概率论的发展与起源 1.1概率论的定义 概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象 而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。大数定律和中心极限定律就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究 与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。 在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和 统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1.2课题背景及研究的目的和好处 现代社会步调快,信息更新快,信息量大,如何从中选取分析最有效的信息 成为发展的先决条件,故概率统计学有着不可比拟的重要地位与作用。无论是在日常生活中,还是商业经济、科学研究,小到日常下雨,大到卫星发射,各种事物发展中都有概率统计的影子。在这个科技革新的时代,概率统计学必将发挥前所未有的重大影响,所以研究概率学具有十分重要的好处。

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

大学概率论-正态分布及标准化 论文

题目:浅谈正态分布及其标准化 院系:卓越学院 班级:经管班 姓名:郭佳妮 学号:15031206

目录 一.浅谈正态分布 (3) 1.正态分布的概率密度函数 (3) 数学期望 (4) 方差 (4) 2.正态分布的分布函数 (5) 3.正态分布的性质 (6) 二.正态分布的标准化 (7)

一.浅谈正态分布 如果影响该事件的因素有无穷多个,而每个因素的影响又是无穷小,那么这个事件就服从正态分布 例如:测量某零件的尺寸时,由于温度、湿度等众多因素的微小影响,使得测量结果出现误差,这种误差就服从正态分布 大误差出现的概率很小,经常出现的误差概率就高,就象一条钟型曲线,即正态分布曲线 从这条曲线可以看出正态分布曲线关于x=μ对称,并在x=μ取到最大值 1.正态分布的概率密度函数 记作X~N(μ,σ^2)

数学期望 μ为正态分布的E(x),即为数学期望,又称为均值 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一。它反映随机变量平均取值的大小。 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn) 性质 设C为一个常数,X和Y是两个随机变量。以下是数学期望的重要性质: 1.E(C)=C 2.E(CX)=CE(X) 证明 方差

σ^2为正态分布的方差,(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。 性质 1.设C是常数,则D(C)=0 2.设X是随机变量,C是常数,则有 3.D(X+C)=D(X) 3.D(X+C)=E((X+C-E(X+C))^2)=E((X-E(X))^2)=D(X) 2.正态分布的分布函数

哈工大概率论小论文

哈工大概率论小论文 篇一:哈工大概率论小论文概率论课程小论文计算机科学与技术学院信息安全专业一班(1303201) 姓名:宫庆红学号:1130320103 概率论中用到的几种数学思想作为数学中的一个重要分支,概率论同时用到了其他几种数学思想。本文着重从数学归纳法、集合论和微积分等几个方面进行简单的讨论。一.概率论中的数学归纳法思想在概率问题中常会遇到一些与试验次数无关的重要结论, 这些结论在使用数学归纳法来证明时, 常常需要配合使用全概率公式, 从而使概率论中的数学归纳法具有自己的特色。例l 设有冷个罐子, 在每一个罐子中各有m 个白球与k 个黑球, 从第一个罐子中任取一球放入第二个罐子中, 并依次类推。求从最后一个罐子中取出一个白球的概率。分析: 先探索规律, 设n =2 令H1=“ 从第一个罐子中取出一个球, 是白球” H2=“ 从第二个罐子中取出一个球, 是白球” 显然P(H1)=m m?k,所求之概率 P(HL)=P(H1)P(H2|H1)+P(H1’)P(H2|H1) =mm?1kmm???? m?km?k?1m?km?k?1m?k 这恰与n=1时的结论是一样的,于是可以预见,不管n为什么自然数,所求的概率都应是m。 m?k上述预测的正确性是很容易用大家所熟知的数学归纳法来证明的。事实上,另Hi=“从i个罐子中去除一个球,是白球”(i=1,2,……n)设当n=t时,结论成立,即P(Ht)=m m?k 则当n=t+1时,有P(Ht+1)=P(Ht)P(Ht+1|Ht)+P(Ht’)P(Ht+1|Ht’) mm?1kmm???? m?km?k?1m?km?k?1m?k k于是,结论P(Hn)=对任意自然数n都是成立的。 m?k = 不难看出,在这里数学归纳法之所以能顺利进行,那是由于在知道从第t个罐中取出的球的颜色(比如是白球)之后,第t+1罐的新总体成分就完全清楚了。(相当于从第t罐取出的是白球,这时新的第t+1罐中就有m+1个白球,k个黑球)所以相应的条件概率P(Ht+1|Ht)=m?1m(或P(Ht|Ht’)=)也就随之而得了。m?k?1m?k?1 二.概率论中的微积分思想在我们现阶段所学习的概率论课程中,微积分是重要的基础。如何正确、巧妙地运用微积分方法和技巧是值得重视的问题。现在,简单归纳一些问题来说明微积分方法在概率论中有着广泛的应用。幂级数方法例1 设随机变量ξ服从参数为(r,p)的负二项分布,(r≧1,0 p 1),即P{ξ=m}=Cm?1pr?1rqm?r,m=r,r+1,……q=1-p, 求E(ξ).解这道题的解题过程中要用到公式 1 (1?x)??Cmxr?1 m?r?rm?r。 ?1n这个公式是有??x(0?x?1)

相关文档
最新文档