植物组织中可溶性蛋白(MDA)的测定

植物组织中可溶性蛋白(MDA)的测定
植物组织中可溶性蛋白(MDA)的测定

课程名称:植物生理学及实验实验类型:理论学习

实验项目名称:植物组织中可溶性蛋白的测定

1. 实验目的和要求

掌握植物组织可溶性蛋白的测定的理论和技术。

2. 实验内容和原理

2.1. 衰老是指细胞、器官或整个植株生理功能衰退,最终自然死亡的过程。

2.2. 衰老时的生理生化变化——蛋白质显著下降,核酸含量的变化、光合速率下降、呼吸速率下降、生物膜结构变化、植物内源激素的变化等。

2.3. 植物叶片衰老过程中,叶绿素含量下降,叶色变黄,蛋白质含量减少(可溶性蛋白)。

2.4. 自由基代谢失调, 并在体内积累膜脂过氧化的产物之一:MDA

3. 主要仪器设备

分光光度计、离心管、移液枪等。

4. 操作方法与实验步骤

4.1. 制备蛋白提取液:称叶龄差异明显的叶片各0.50g ,加入5ml 磷酸缓冲液(50mmol,pH值为7.8),于冰浴中研磨提取,匀浆液以8000g 离心力作用下(4℃)离心10min,其上清液即为蛋白提取液。

4.2. 样品的测定:取40ul蛋白提取液+160ul磷酸缓冲液于玻璃试管中,加入4.8ml考马斯亮蓝溶液,混匀后放置2min,用10mm厚的比色杯在595nm下比色读取OD值。对照为空白的磷酸缓冲液加上4.8ml考马斯亮蓝溶液。

4.3. MDA的测定:

1)取上清液1.0ml于7ml离心管中,加TBA与TCA混合液4.0ml,然后在离心管盖上戳一小孔,92oC水浴保温30min

2)空白管:1mL Pi-buffer +TBA与TCA混合液4.0ml 92oC水浴30min)冷却后,平衡,离心5min; 10000rpm

3)测定A532, A450和A600

4.4. 计算:

1)可溶性蛋白含量(μg/g.FW)=标准曲线上查得的蛋白质量(μg )×提取液体积/(测定加样量×鲜重)

2)MDA含量

进一步求出单位鲜重植物组织中的MDA含量

5. 实验数据记录和处理

5.1 可溶性蛋白:

老叶:3972.06(μg/g.FW);新叶:18328.48(μg/g.FW)

分析:说明在叶片衰老的过程中,可溶性蛋白的含量减少。

5.2 MDA:

老叶:MDA(mM)=(0.383-0.023)÷155=0.002323(mM)=2.323(uM)

MDA(uM)=6.45×(0.383-0.023)-0.56×0.792=1.8785(uM)

新叶:MDA(mM)=(0.0825-0.0125)÷155=0.0004516(mM)=0.4516(uM)

MDA(uM)=6.45×(0.0825-0.0125)-0.56×0.2705=0.3000(uM)

分析:MDA(mM)值均高于MDA(uM)值,说明蔗糖等物质确实对MBA-TBA反应有干扰。故采用MDA(uM)值计算单位鲜重植物组织中的MDA含量。

可得:老叶MDA含量=0.0939u mol?g-1Fw; 新叶MDA含量=0.015u mol?g-1Fw 分析:说明在叶片衰老的过程中,MDA的含量增加。

可溶性蛋白MDA

6. 讨论、心得

6.1 植物组织中还有一些物质对丙二醛测定(TBA法)干扰较大:

丙二醛(MDA)是由于植物官衰老或在逆境条件下受伤害,其组织或器官膜脂质发生过氧化反应而产生的,故而它的含量与植物衰老及逆境伤害有密切关系。

测定植物体内丙二醛含量,通常利用TBA在酸性条件下加热与MDA反应,生成红棕色的三甲川,三甲川的最大吸收波长在532nm。

由于植物遭受干旱、高温、低温等逆境胁迫时可溶性糖增加,而且糖与TBA显色反应产物的最大吸收波长在450nm处,在532nm处也有吸收,因此测定植物组织中MDA与TBA反应产物含量时一定要排除可溶性糖的干扰。

此外在532nm波长处尚有非特异的背景吸收的影响也要加以排除。在532nm、600nm 和450nm波长处测定吸光度值,即可计算出丙二醛含量。

6.2 植物组织中丙二醛的测定实验中,第二次离心的目的何在?

因为此时已经加入了TBA溶液,并摇匀,且已经过沸水浴加热,上清液中已混有不少杂质,需再次离心才不会干扰显色反应结果。

6.3 植物组织中丙二醛测定实验,研磨、离心时为何可以不用冰浴和低温?

因为TBA与MDA的反应需要酸性和高温的条件,这样才能在532nm处有最大光吸收。

植物组织水势的测定实验报告.doc

植物组织水势的测定实验报告 一、实验目的和要求 了解植物组织中水分状况的另一种表示方法及用于测定的方 法和它们的优缺点。 二、实验原理 小液流法测定新鲜白萝卜的组织水势。植物细胞是一个渗透系统。当组织水势低于溶液渗透势,组织吸水,溶液变浓,比重增加,小液流下沉。当组织水势高于溶液渗透势,组织失水,溶液变稀,比重下降,小液流上浮。当组织水势等于溶液渗透势,组织与溶液达到水分进出动态平衡,溶液浓度和比重不变,小液流不动。 压力室法测定海桐叶片组织水势,植物叶片通过蒸腾作用产生蒸腾拉力。导管中的水分由于内聚力的作用而形成连续的水柱。因此,对于蒸腾着的植物,其导管中的水柱由于蒸腾拉力的作用,使水分连贯地向上运输。当叶片或枝条被切断时,木质部中的液流由于张力解除迅速缩回木质部。将叶片装入压力室钢筒,切口朝外,逐渐加压,直到导管中的液流恰好在切口处显露时,所施加的压力正好抵偿了完整植株导管中的原始负压。 三、主要仪器设备 小液流法:白萝卜、打孔器、10ml离心管、小刀、镊子、注射器、1mol/L蔗糖溶液、甲基橙压力室法:压力室 四、操作方法和实验步骤

小液流法: 1、用1mol/l的蔗糖溶液配制0.05、0.10、0.20、0.30、0.40、0.50M一系列不同浓度的蔗糖溶液(10mL),用力混匀。 2、分别取4ml不同浓度的溶液到另一组相应的试管中。每管加入厚度约为1mm的萝卜圆片,加塞放置30min。期间晃动(3-4次)。 3、用针蘸取少量甲基橙放入每支试管,混匀。 4、用注射器取少许黄色溶液,伸入对应浓度的蔗糖溶液中部,缓慢挤出一滴小液滴,观察小液滴移动方向并记录。 Ψw(Mpa) = -iCRT = -0.0083×(273+toC) ×浓度 压力室法: 根据植物材料选取枝条(或叶片)型的压力室盖→将试样装入压力室盖的孔(或槽)中夹紧,压入压力室并顺时针旋转紧固。打开钢瓶阀门,使控制阀朝向加压,缓慢打开测定阀,使加压速率达0.1bar,仔细观察伸出压力室盖的植物样品,一发现木质部转湿润液体溢出,立即关闭测定阀,记录压力表读数。 组织Ψw(Mpa) = -0.1×压力室压力表读数 五、实验数据记录和处理 小液流法测定结果: 其他两个小组的实验结果: 根据公式计算得到萝卜组织液浓度 Ψw(Mpa) = -iCRT = -0.0083×(273+t℃) ×浓度= -0.0083×(273+16 ) ×0.1=-0.240Mpa

植生实验 植物组织渗透势的测定

实验一、植物组织渗透势的测定 (质壁分离法) 一、实验原理: 将植物组织分别投入一系列浓度梯度的溶液中,使细胞将要产生初始质壁分离的浓度,就等于细胞液的浓度,根据浓度可计算出渗透势。 【注::典型植物细胞水势(Ψw)组成为:ψw=ψs+ψp+ψm (ψs 为渗透势,ψp为压力势,ψm为衬质势)。 渗透势(osmotic potential,ψs):由于溶质的存在而使水势降低的值称为渗透势或溶质势(solute potential,ψs),以负值表示。 渗透势值按公式ψs=-iCRT来计算(C为溶液的摩尔浓度;T为绝对温度,即实验温度+273;R为气体常数,R=0.0083;i为渗透系数,表示电解质溶液的渗透压非电解质溶液渗透压的倍数,如蔗糖i=1,NaCl i=1.8)。 压力势(pressure potential,ψp):由于细胞吸水膨胀时原生质向外对细胞壁产生膨压(turgor),而细胞壁向内产生的反作用力——壁压使细胞内的水分向外移动,即等于提高了细胞的水势。由于细胞壁压力的存在而引起的细胞水势增加的值叫压力势,一般为正值。当细胞失水时,细胞膨压降低,原生质体收缩,压力势则为负值。当刚发生质壁分离时压力势为零。 衬质势(matrix potential, ψm):衬质势是细胞胶体物质亲水性和毛细管对自由水的束缚而引起的水势降低值,如处于分生区的细

胞、风干种子细胞中央液泡未形成。对已形成中心大液泡的细胞含水量很高,ψm只占整个水势的微小部分,通常一般忽略不计。因此一个具有液泡的成熟细胞的水势主要由渗透势和压力势组成,即ψw=ψs+ψp 】。 将细胞置于纯水或稀溶液中,外液水势高于细胞水势,外侧水分向细胞内渗透,细胞吸水,体积变大;外液水势等于细胞水势,水分进出平衡,细胞体积不变;将植物置于浓溶液中,外液水势低于细胞水势,水从细胞内向外渗透,细胞失水,体积变小。 将植物材料(带色洋葱表皮组织)置于浓溶液中,由于细胞壁的伸缩性有限,而原生质层的伸缩性较大,当细胞继续失水时,原生质层便和细胞壁慢慢分离开来,这种现象被称为质壁分离。把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中,外液中的水分又会进入细胞,液泡变大,原生质层很快会恢复原来的状态,重新与细胞壁相贴,这种现象称为质壁分离复原。 质壁分离质壁分离复原当外界溶液的渗透势略低于细胞液的渗透势时,原生质刚刚从细胞角隅上脱离细胞壁,即为初始质壁分离。刚发生质壁分离时,

试验5植物组织水势的测定小液流法

实验5 植物组织水势的测定(小液流法) 一、原理 当植物组织与外液接触时,如果植物组织的水势低于外液的渗透势(溶质势),组织吸水、重量增大而使外液浓度变大;反之,则组织失水、重量减小而外液浓度变小;若两者相等,则水分交换保持动态平衡,组织重量及外液浓度保持不变。根据组织重量或外液浓度的变化情况即可确定与植物组织相同水势的溶液浓度,然后根据公式计算出溶液的渗透势,即为植物组织的水势。溶液渗透势的计算: Ψs = - iCRT ( 6 – 1 ) 式中:Ψs ——溶液的渗透势,以 MPa 为单位。 R ——气体常数,为0.008314 MPa · L/ (mol · K )。 T ——绝对温度,即273 + t ℃。 C ——溶液的质量摩尔浓度,以 mol/kg 为单位。 i ——为解离系数, CaCl 2 为 2.6 。 二、实验材料、试剂与仪器设备 (一)实验材料 植物叶片或洋葱鳞茎。 (二)试剂 1 .甲烯蓝粉末。 2 . CaCl 2 溶液:包括 0.10 、 0.15 、 0.20 、 0.25 、 0.30 、 0.35 、 0.40 、 0.45 mol/kg 8 种不同质量摩尔浓度的溶液。 (三)仪器设备 大试管 8 支 , 小试管 8 支,青霉素小瓶 8 支,移液管( 5mL ),毛细吸管 8 支,培养皿,打孔器,剪刀 l 把,镊子 1 把,解剖针 1 支。 三、实验步骤

1. 编号贴标签取干燥洁净的大试管 8 支,小试管 8 支,青霉素小瓶 8 支,毛细吸管 8 支,编号贴标签,按序号排好。 2. 打取、浸泡叶片取待测样品的功能叶数片,用打孔器打取小圆片约 60 片,放在培养皿中,混合均匀。用镊子分别把 5 ~ 8 个小圆片放到盛有 4 mL 不同质量摩尔浓度 CaCl 2 溶液的青霉素小瓶中,浸没叶片,盖紧瓶塞,放置 30 min ,并不断轻摇小瓶,以加速水分平衡(如温度低时可延长放置时间)。 3. 染色到预定时间后,用解剖针尖蘸取微量甲烯蓝粉末,加入各青霉素小瓶中,并摇动,使溶液染色均匀。 4. 测定把试管中的不同浓度的系列标准液分别倒入相同编号的小试管中,用毛细吸管吸取相同编号青霉素小瓶内的有色溶液少许,插入相同编号的小试管溶液中部,轻轻挤出有色溶液一小滴,小心取出毛细管(勿搅动有色液滴),观察有色液滴的升降情况,并记录于表 6 –1 中。若有色溶滴上升,表示浸过叶片的溶液浓度变小(即植物叶片组织中有水排出),说明叶片组织的水势大于该浓度溶液的溶质势;若有色液滴下降,则说明叶片组织的水势小于该浓度的溶质势;若有色小液滴静止不动,说明叶片组织的水势等于该浓度溶液的溶质势。若在前一浓度溶液中下降,而在后一浓度中上升,则植物组织的水势可取二种浓度溶液的溶质势的平均值。 分别测定不同浓度中有色液滴的升降,找出与组织水势相当的浓度。记录实验时的温度,根据原理中公式( 6 – 1 )计算出组织的水势。 表 6-1 小液流法现象观察记载表 [ 注意事项 ] 1. 所取材料在植株上的部位要一致,打取叶圆片要避开主脉和伤口。 2. 取材以及打取叶圆片的过程操作要迅速,以免失水。 3. 带结晶水的甲烯蓝不易溶于 CaCl 2 溶液,可在100 ℃下烘干成无水甲烯蓝粉末使用。 4. 毛吸管尖端弯成直角,以保证从中出来的液滴不受向下力的影响。 [ 思考题 ] 用小液流法测定植物组织水势时,为什么应强调所用试管、毛吸管应保持干燥,打取小圆片并投入试管中时动作应迅速,加入甲烯蓝不能太多?

植物组织含水量的测定

% 100Wf d -f ?鲜重干重鲜重W W % 100d d -f ?W W W 干重干重鲜重植物组织含水量的测定 【实验目的】 1.了解含水量的表示方法; 2.了解绝对含水量和相对含水量的区别 3.掌握植物组织鲜重干重的测量方法 【实验原理】 植物组织的含水量是反映植物组织水分生理状况的重要指标,其直接影响植物的生长、气孔状况,光合功能及作物产量。在环境胁迫情况下,植物组织的含水量也是反映植物受胁迫程度的重要指标之一。水分含量测定也是农作物产品的品质检定和判断其是否适于贮藏的重要标准。所以,植物组织含水量的测定在植物生理学研究及农业生产中具有重要的理论和实践意义。 植物组织含水量的表示方法常以鲜重、干重、相对含水量(或称饱和含水量)来表示。 其中相对含水量可作为比较植物保水能力及推算需水程度的指标。 分别测量植物组织的鲜重Wf ,干重Wd ,饱和鲜重Wt ,依据以下公式可以分别算出植物组织的鲜重含水量,干重含水量,以及相对含水量。 鲜重含水量= 干重含水量= 相对含水量=% 100Wf -Wt d -f ?鲜重饱和鲜重干重鲜重W W 【实验材料】 蜀葵花瓣 【实验步骤】 1.将新采的蜀葵花瓣,称取6 份 0.5 g (Wf ) ,迅速剪成小块。 2.3份分别于120℃烘箱中烘考1~1.5 h ,然后称此时的干重(Wd )。 3.3份分别放入蒸馏水中浸泡70 min ,当达到恒重时称此时的重量(Wt ) 利用所得到的数据:Wf ,Wd ,Wt 分别计算出鲜重含水量,干重含水量,相对含水量 注意事项: 1.测量干重时,先测出称量瓶的重量W ,在测出称量瓶与花瓣重量的总和Wf 与Wd 。放入瓶中以后,花瓣不再取出。烘烤一个小时后取出冷却至室温,称量,再放入烘箱中烘烤10分钟,取出冷却至室温,再次称量。重复以上步骤,直至总重量恒重。 2.放入蒸馏水浸泡的花瓣,可以用吸水纸将其覆盖在水中。另取两片花瓣同样的方式浸泡在水中。70min 后称量两片对照物花瓣,其恒重可作为实验材料也恒重的标志。 【实验结果】 蜀葵花瓣的含水量测定数据记录如下:

植物组织水势的测定实验报告

植物组织水势的测定(小液流法) 实验目的: 1. 了解测定植物组织水势的方法及其优缺点 2. 学习用小液流法测定植物组织水势的方法 实验原理: 实验原理 1、当植物组织与外液接触时发生水分交换: 植物组织的水势低于外液的渗透势(溶质势),组织吸水,外液浓度变大;ψ植物<ψS 植物组织的水势高于外液的渗透势(溶质势),组织失水,外液浓度变小;ψ植物> ψS 若两者相等,则水分交换保持动态平衡,外液浓度保持不变;ψ植物=ψS 2、同一种物质浓度不同时其比重不一样,浓度大的比重大,把高浓度的溶液一小液滴放到低浓度溶液中时,液滴下沉;反之则上升。 3、根据外液浓度的变化情况即可确定与植物组织相同水势的溶液浓度 实验仪器与试剂 试管架试管打孔器毛细管镊子青霉素瓶蔗糖溶液甲烯蓝粉末 操作步骤 1. 配制不同浓度的蔗糖溶液

2.用打孔器在绣球花的不同部位打100-200片,混匀,每个青霉素瓶各放入15-20片,(打孔要迅速,避开叶脉,选边缘整齐无破损的叶片) 3.从配制好的试管中各取2ml(量准确?)到相应的青霉素瓶或称量瓶中(用一只移液管由低高,不要润洗)。放置20—30min,期间摇动数次,以加速水分平衡。 4. 染色:用接种针沾入微量甲烯蓝粉末加入青霉素瓶中,摇匀,溶液变蓝。(干燥针头先用蒸馏水湿润,加入的甲烯蓝量一定少,使各瓶中颜色基本一致) 5.观察液滴升降: 用毛细吸管取青霉素瓶有色液插入相应试管中部缓慢从毛细吸管尖端横向放出一滴蓝色溶液,轻轻取出滴管,观察蓝色液滴的移动方向并记录。(用白纸划一直线置于试管背面,方便观察)6.分别测定不同浓度中有色液滴的升降,找出与组织水分势相当的浓度,根据原理公式计算出组织的水势。 实验结果

实验一 植物组织水势的测定

实验一植物组织水势的测定(小液流法) 1、实验目的 了解植物组织中水分状况的一种表示方法及用于测定的方法及其优缺点。 2、实验原理 植物组织的水分状况可用水势来表示。植物体细胞之间、组织之间以及植物体与环境之间的水分移动方向都由水势差决定。将植物组织放在已知水势的一系列溶液中,如果植物组织的水势(Ψcell)小于某一溶液的水势(Ψout),则组织吸水,反之组织失水。若两者相等,水分交换保持动态平衡。组织的吸水或失水会使溶液的浓度、密度、电导率以及组织本身的体积与质量发生变化。根据这些参数的变化情况可确定与植物组织等水势的溶液。 液体交换法测定水势的方法有很多种,本实验练习用小液流法测定植物组织的水势,并初步观察其变化情况。 小液流法测定水势的原理 判据 △Ψ=Ψout-Ψcell 组织的 水分得失 外液的密度变化 △Ψ>0吸水升高 △Ψ<0失水降低 △Ψ=0平衡不变 使用器材用滴管测定外液的密度变化 适用的材料叶片或碎的组织 3、仪器和试剂 试管,试管架,移液管,滴管,打孔机或单面刀片,镊子,解剖针,棉花,吸水纸; 0.05-0.4mol/L CaCl2溶液,甲烯蓝; 土豆 4、实验步骤 ①将16支试管清洗干净,分为两组(实验组和对照组)按编号顺序倒置于试管架上,控净水分。 ②配制一系列不同浓度的氯化钙溶液(0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4mol/L),分别注入八支实验组试管中,各10ml左右(体积约为试管的2/3处)。再将实验组各试管溶液的2/3倒入对应编号的对照组试管中。两组试管均加盖棉塞。 ③将土豆用单面刀片切成0.5cm见方的小块。将植物组织混匀,分成八份,放入实验组各试管中。放置20min以上,期间多次摇动实验组试管,以促进水分平衡。 ④用解剖针沾取甲烯蓝粉末给实验组各试管染色,摇匀,用滴管由低浓度向高难度顺序

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 实验的主要内容: 记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 记录实验测量的数据值,分析得出结论。 实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01% 测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 实验的步骤: 首先进行样本的采样,在学校的马路边分别进行不同生长情况高山榕叶子的取样,然后再树下进行土壤的取样。在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤的进行取样。将取来的样品装入袋中,并做好标签。 预热烘干法测定仪后,将取来的样品放入烘干仪中保持5-8分钟,待屏幕中的数值稳定后进行数据的记录。 对数据进行整理分析和讨论,得出结论。 实验的结果:

植物组织渗透势的测定

实验1 植物组织渗透势的测定(质壁分离法) 一、实验目的 观察植物组织在不同浓度溶液中细胞质壁分离的产生过程及其用于测定植物组织渗透势的方法。 二、实验原理 当植物组织细胞内的汁液与其周围的某种溶液处于渗透平衡状态,植物细胞内的压力势为零时,细胞汁液的渗透势就等于该溶液的渗透势。该溶液的浓度称为等渗浓度。 当用一系列梯度浓度溶液观察细胞质壁分离现象时,细胞的等渗浓度将介于刚刚引起初始质壁分离的浓度和尚不能引起质壁分离的浓度之间的深液浓度。代入公式即可计算出春渗透势。 三、实验仪器、试剂、材料等 显微镜;载玻片及盖玻片;镊子;刀片 配成0.5—0.1mol/L梯度浓度的蔗糖溶液各50ml。 称34.23g蔗糖用蒸馏水配成100ml,其浓度为1m0le/L(母液)。再配制成下列各种浓度: 0.50mol/L:吸母液25ml+水25ml 0.45mol/L:吸母液22.5ml+水27.5ml 0.40mol/L:吸母液20.0ml+水30.0ml 0.35mol/L:吸母液17.5ml+水32.5ml 0.30mol/L:吸母液15.0ml+水35.0ml 0.25mol/L:吸母液12.5ml+水37.5ml 0.20mol/L:吸母液10.0ml+水40.0ml

0.15mol/L :吸母液7.5ml+水42.5ml 0.10mol/L :吸母液5.0ml+水45.0ml 四、实验方法 将带有色素的植物组织(叶片),一般选用有色素的洋葱鳞片的外表皮、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等水生植物,也可用蚕豆、玉米、小麦等作物叶的表皮。撕取下表皮,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,5—10分钟后,从0.5mol/L 开始依次取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。实验中必须确定一个引起半数以上细胞原生质刚刚从细胞壁的角隅上分离的浓度,和不引起质壁分离的最高浓度。 在找到上述浓度极限时,用新的溶液和新鲜的叶片重复进行几次,直至有把握确定为止。在此条件下,细胞的渗透势与两个极限溶液浓度之平均值的渗透势相等。 将结果记录下表。 测出引起质壁分离刚开始的蔗糖溶液最低浓度和不能引起质壁分离的最高浓度平均值之后,可按下列公式计算在常压下该组织细胞质液的渗透势。 RTiC s =-? s ?-为细胞渗透势。 R 为气体常数=0.083×105/L·Pа/mol·K。 T 为绝对温度,单位K ,即273℃+t ,t 为实验湿度。

实验3植物细胞渗透势的测定质壁分离法

实验 3 植物细胞渗透势的测定(质壁分离法) 植物细胞的渗透势主要取决于液泡的溶质浓度,因此又称溶质势。渗透势与植物水分代谢、生长及抗逆性等有密切关系。已知在干旱、盐渍等条件下,一些植物常在细胞内主动积累溶质,以降低其渗透势,增加吸水能力,而在一定程度上维持细胞膨压,保障细胞的生长和气孔的开放,这种现象叫做渗透调节作用。渗透调节能力的大小可以用逆境条件下细胞的渗透势的降低值来表示,在水分生理与抗逆性生理研究中经常需要测定。 一、原理 将植物组织放入一系列不同浓度的蔗糖溶液中,经过一段时间,植物细胞与蔗糖溶液间将达到渗透平衡状态。如果在某一溶液中细胞脱水达到平衡时刚好处于临界质壁分离状态,则细胞的压力势(Ψ p )将下降为零。此时细胞液的渗透势(Ψs )等于外液的渗透势Ψs 0 。此溶液称为该组织的等渗溶液,其浓度称为该组织的等渗浓度,即可计算出细胞液的渗透势(Ψs )。实际测定时,因为临界质壁分离状态难以在显微镜下直接观察到,所以一般均以初始质壁分离作为判断等渗浓度的标准。处于初始质壁分离状态的细胞体积,比吸水饱和时略小,故细胞液浓缩而渗透势略低于吸水饱和状态时的渗透势称基态渗透势。 二、实验材料、试剂与仪器设备 (一)实验材料 洋葱鳞茎、紫鸭跖草、苔藓、红甘蓝或黑藻、丝状藻等。 (二)试剂 1 . 1 mol/kg 蔗糖水溶液:称取预先在 60 ~ 80 ℃下烘干的蔗糖 34. 2 g 溶于 100 g 蒸馏水中,即为 1 质量摩尔浓度的蔗糖溶液。 2 . 0.0 3 %中性红溶液。 3 .蔗糖系列标准液:取干燥洁净的小试剂瓶 9 支编号,用 1 mol/kg 蔗糖水溶液依据 C 1 V 1 =C 2 V 2 公式配制 0.30 mol/kg 、 0.35 mol/kg 、 0.40 mol/kg 、 0.45 mol/kg 、 0.50 mol/kg 、 0.55 mol/kg 、 0.60 mol/kg 、 0.65 mol/kg 、 0.70 mol/kg 等一系列不同浓度的蔗糖水溶液(具体范围可根据材料不同而加以调整),贮于试剂瓶中,瓶口加塞以防蒸发浓缩。 (三)仪器设备 显微镜,载玻片,盖玻片,温度计,尖头镊子,刀片,小培养皿(直径为 6 cm ),试剂瓶,烧杯,容量瓶,量筒,吸管,吸水纸等。 三、实验步骤 1 .取干燥、洁净的培养皿 9 套编号,将配制好的不同浓度的蔗糖溶液按顺序加入各培养皿,使之成一薄层,盖好皿盖备用。 2 .用镊子撕取(或用刀片刮取)供试材料的表皮,大小以 0.5 cm 2 为宜,迅速分别投入各种浓度的蔗糖溶液中,使其完全浸入,每一浓度 4 ~ 5 片。同时记录室温。为了便于观察,可先将切片于 0.03% 中性红内染色 5 min 左右,吸去水分,再浸入蔗糖溶液中,但如不染色即能区别质壁分离时,仍以不染色为宜。 3 . 5 ~ 10 min 后,取出表皮薄片放在滴有同样溶液的载玻片上,盖上盖玻片,于低倍显微镜下观察,如果所有细胞都产生质壁分离的现象,则取低浓度溶液中的制片作同样观察,并记录质壁分离的相对程度。如果在两个相邻浓度的切片中,一个切片没有发生质壁分离,另一个切片发生质壁分离的细胞数超过 50 %,则这两个浓度的平均值为其等渗浓度。每一制片观察的细胞不应少于 100 个。检查时可先从中间浓度开始。

植物水分等测定

植物水分、干物质和粗灰分的测定 植物水分、干物质和粗灰分的测定 植物水分和干物质的测定 植物体由水和干物质两部分组成。含水量多少是反映植物生理状态和成熟度的一个指标,含水量过高,植株易徒长倒伏;而过低又易调萎。植物需要有适宜的含水量才能生长健壮。在研究土壤、施肥、栽培和气候等因子对植物生长发育影响和光合利用率等问题时,一般要测定植株的水分和干物质积累状况。新鲜植物体一般含水量为70~95%,叶片含水量较高,又以幼叶为最高;茎秆含水量较少,种子含水量更少,一般为5~15%。新鲜植物体除去水分的剩余部分即为于物质,它包括有机质和矿物质两部分。其中有机质占植物干物质的90~95%,矿物质为5~10%。 水分含量测定也是农作物产品的品质检定和判断其是否适于贮藏的 重要标准。在植物成分分析中,都是以全干样品为基础来计算各成分的质量百分含量。因为新鲜样品的含水量变化很大,风干样品的含水量也会受环境湿度和温度的影响而变动,只有用全干样作计算(干基),各成分含量的数值才比较稳定。 水分的测定方法 测定植物水分的方法很多,应根据植物样品成分的性质、对分析精度的要求和实验室设备条件等情况适当选择。常用的方法有常压恒温干燥法、减压干燥法和蒸馏法,其中用得最多的常压恒温干燥法准确度较高,适用于不含易热解和易挥发成分的样品,被认为是测定水分的

标准方法;但对于幼嫩植物组织和含糖、干性油或挥发性油的样品则不适用。减压干燥法,运用于含易热解成分的样品;但含有挥发性油的样品也不适用,蒸馏法,适用于含有挥发油和干性油的样品,更适用于含水较多的样品,如水果和蔬菜等。其他如红外干燥法、冷冻干燥法、微波衰减法、中子法、卡尔·费休法等都要有特定仪器设备,不易推广使用。 常压恒温干燥法 方法原理将植物样品置于100~105°C烘箱中烘干,由样品的烘干失重(即为水分重)计算水分的含量。此法适用于不含有易热解和易挥发成分的植物样品。 植物样品在高温烘干过程中,可能有部分易焦化、分解和挥发的成分损失而使水分测定产生正误差;也有可能因水分未完全驱除(或在冷却、称量时吸湿)或有部分油脂等被氧化增重而产生负误差。但在严格控制操作条件下,该法仍是测定植物水分的标准方法。 操作步骤: 1.风干植物样品水分的测定取洁净铝盒,打开盒盖,放人100~105°C烘箱中烘30min,取出,盖好,移人盛有硅胶的干燥器中冷至室温(约需30min),立即迅速称重。再烘30min,称重,两次称重之差小于1mg可算作达恒重(m0)。 将粉碎(1mm)、混匀的风干植物样品约3g,平铺在已达恒重的铝盒中,准确称量后(m1),将盖子放在盒底下,移人已预热至约115°C 的烘箱中,关好箱门,调整温度在100~105°C,烘4~5h。取出,

土壤水份和植物组织含水量的测定

土壤水份和植物组织含水量的测定 一.实验的目的与要求: 通过对植物和土壤水分的测定来学习和使用烘干法水分测定仪,掌握实验和实习的技巧,了解一定的实习的规则! 通过对实习数据的比较,以及结合自身的知识来分析土壤和植物组织含水量的关系,了解水分对植物生长的影响,了解 土壤中水分对植物生长的影响。 结合生态学的知识来分析土壤和植物含水量受整个生态系统的影响。 二.实验的主要内容: 1.记录实验地的周围环境的各种生态环境因素,如温度,风向,湿度。 2.测量土壤和植物组织含水量值,在不同的环境下测量对比,同一环境下不同物种的值。 3.记录实验测量的数据值,分析得出结论。 三.实习的主要工具: 1.烘干法水分测定仪(LSH-100A型): 最大秤量:100g 实际标尺分度值:1mg 准确度级别:2级 水分测量允许误差:±0.2%(样品≥2克) 水分含量测定可读性:0.01%

测量水分范围:0~100% 加热源:卤素灯(环型400W) 温控精度:±1℃ 加热温度设定:室温~160℃(以1℃调整) 时间设定:0~180min(以1min调整) 测量方法:手动、自动 操作温度范围:10~30℃ 电源及功耗:AC220V±22V 50Hz 420W 秤盘尺寸:¢100mm 外壳尺寸:360mm×250mm×270mm 净重:7kg 实验用剪刀、小袋子 四.实验原理: 首先对同一环境下的不同生长情况的高山榕进行水分的测定,记录数据并比较,然后对不同环境下的不同株池杉进行水分的测定,在数据中得出结论。用烘干法测定仪进行含水量的测定,使用小塑料袋来装实验品以防止植物叶子和土壤水分的蒸发。 五.实验的步骤: 1.首先进行样本的采样,在学校的马路边分别进行不同生 长情况高山榕叶子的取样,然后再树下进行土壤的取样。 在昭阳湖旁不同地方生长情况相同的池杉的叶子和土壤 的进行取样。

植物组织水势的测定

实验四植物组织水势的测定 植物体内的生理生化活动与其水分状况密切相关,而植物组织的水势是表示植物水分状况的一个重要生理指标。目前,植物组织水势的测定主要有几种方法:小液流法、折射仪法、压力室法、露点法、热电偶法。前两种方法虽然简便,但精确性差。压力室法较适于测定枝条或叶柄导管的水势。露点法、热电偶法较适宜测定柔软叶片的水势,且精确度高,可在一定范围内重复测定叶片的水势,是较好的水势测定方法。植物的水势可作为制定灌溉的生理指标。 Ⅰ、小液流法 一、目的 通过实验,掌握用小液流法测定植物组织水势的原理和方法。 二、原理 水势代表水的能量水平,水总是从水势高处流向低处。水进入植物体内并分布到各组织器官中的快慢或难易由水势差来决定,水势越高,植物组织的吸水能力越差,而供给水能力越强。当植物组织与一系列浓度递增的溶液接触后,如果植物组织水势大于(或小于)外液的水势,则组织失水(或吸水),使外液浓度变低(或变高),密度变小(或变大)。如果植物组织的水势等于外液的水势时,植物组织既不失水也不吸水,外液浓度不变。当取浸泡过植物组织的溶液的小滴(亦称小液流,为便于观察应先染色),分别放入原来浓度相同而未浸泡植物组织的溶液中部时,小液流就会因密度不同而发生上升或下沉或不动的情况。小液流在其中不动的溶液的水势(该溶液为等渗浓度),即等于植物组织的水势。 三、材料、设备及试剂 1.材料:植物叶片;马铃薯块茎等。 2.仪器设备:试管;小瓶;小塞子;打孔器(直径0.5㎝);尖头镊子;移液管(1ml、5ml、10ml);注射针钩头滴管;刀片。 3.试剂:1mol·L-1蔗糖液;甲烯蓝粉。 四、实验步骤 1.系列糖浓度配制 1.1取干燥洁净试管6支,贴上标签,编号,用1mol·L-1蔗糖母液配成0.05、0.1、0.15、0.2、0.25、0.30 mol·L-1浓度的糖液,各管总量为10ml,并塞上塞子(防止浓度改变),作为甲组。 1.2另取干燥洁净的小瓶6个,标明0.05、0.10、0.15、0.20、0.25、0.30mol·L-1浓度,分别从甲组取相应浓度糖液1ml盛于小瓶中,随即塞上塞子,作为乙组。 2.取样及测定 2.1选取生长一致的叶片,用直径为0.5cm的打孔器钻取圆片,在玻璃皿内混匀,然后用镊子把圆片放进乙组小瓶中,每瓶放15~20片,(若采用植物块茎如马铃薯,先用打孔器钻取圆条,然后切成约1mm厚圆片,每瓶放5片),立即塞紧塞子,放置40min左右,其间轻轻摇动几次,以加速平衡。 2.2到预定时间后,各小瓶加入几粒甲烯蓝粉染色,摇匀,取6支干燥洁净的注射针钩头滴管,分别从乙组中取出溶液,插入甲组原相应浓度蔗糖溶液的中部,轻轻挤出钩头滴管内

植物细胞死活的鉴定和植物组织渗透势的测定

植物细胞死活的鉴定和植物组织渗透式的测定 中文摘要:植物活细胞是一个渗透系统,通过渗透的性质及现象可以鉴定一个植物细胞的死活。当植物细胞或组织放在外界等渗溶液中时,组织与外界溶液的水分交换达到动态平衡,植物细胞处于初始质壁分离状态,细胞压力势为零,此时溶液的渗透势就等于所测植物的渗透势。 英文摘要:Plants living cells is a osmosis system, we through permeating the nat ure and phenomena can be id entified a plant cell anyway. When the plant cell or tissue on external etc, organization and infilt ration solution when the moisture exchange reach outsid e solution dynamic balance, plant cells in its initial qualitative wall separated, the cellular pressure potential zero, then solution penetration of potential is measured the pl ant penetration of potential. Part I 植物细胞死活的鉴定 实验原理:植物细胞是一个渗透系统。当细胞处于比其水势低的高渗透溶液中时,细胞由于失水而使原生质体体积缩小,从而引起质壁分离。当提高细胞外溶液的水势,使其大于细胞内的水势时,细胞重新吸水,原生质体体积膨胀,可见质壁分离复原。 活细胞与死细胞的膜在性质上有许多差别,特别是透性的变化最为明显;因此活细胞在高渗溶液中能产生质壁分离,而死细胞不能产生质壁分离现象,即可以此鉴定。 实验目的:利用质壁分离现象验证植物细胞的死活. 实验器材和试剂 植物材料:洋葱鳞茎 实验器材:显微镜、载玻片、盖玻片、镊子、解剖针、刀片、酒精灯、滤纸、滴管、移液管、小培养皿 实验试剂:1mol/L蔗糖溶液 实验步骤 1取洋葱鳞片内表皮一小块,放在有1-2滴蒸馏水的载玻片上,盖上盖玻片并在显微镜下观察其自然状态,并绘图示细胞状态。 2在盖玻片的一边加上2-3滴1mol/L的蔗糖溶液,同时在对边用滤纸片吸去水分,使植物材料换入蔗糖溶液中。在显微镜下连续观察细胞有何变化,并绘图示细胞状态。 3观察后,即可从载玻片的一边小心加蒸馏水数滴,同时用滤纸缓慢的从另一边吸蔗糖溶液,反复进行数次以洗去蔗糖溶液,将材料又换入蒸馏水中。在显微镜下观察细胞又有何变化?并解释其原因。 4另取洋葱鳞片内表皮一小块,放在已加有数滴蒸馏水的载玻片上。先在酒精灯火焰上小心加热2-3分钟把植物细胞杀死。待冷却后于载玻片上加2-3滴1mol/L蔗糖溶液,盖上盖玻片进行镜检,看是否发生质壁分离。 Part II 植物组织渗透势的测定 实验原理:在一系列预先准备好的试液中寻找能引起生活组织里约一半的细胞发生质壁分离的溶液。即把一组同一目的的样品放置在一系列按照渗透势逐渐减低排列的蔗糖溶液里,并浸泡30分钟,然后转移到放有1-2滴同一浓度溶液的载玻片上,观察质壁分离发生的情况。镜检约50个细胞。若发生质壁分离,计算初始质壁分离细胞占镜检细胞数的百分比;若达50%,则细胞液的渗透势等于该浓度溶液的渗透势。或确定刚刚引起初始质壁分离和其相邻的尚不能引起质壁分离时溶液浓度的平均值,作为等渗浓度,代入公式ψs=-iCRT中计算出植物组织渗透势。 实验目的:利用质壁分离现象测定植物组织的渗透势。

植物组织水势的测定 ( 小液流法 )

植物组织水势的测定( 小液流法) 一、目的学会用小液流法来测定植物组织水势。 二、原理当植物组织浸入外界溶液中时,若植物的水势小于外液的水势,则细胞吸水, 使外液浓度变大;反之, 植物细胞失水,外液浓度变小,若细胞和外液的浓度相等,则外液浓度不发生变化。溶液浓度不同其比重也不同,不同浓度的两溶液相遇,稀溶液比重小而会上升,浓溶液比重大而会下降。根据此理, 把浸过植物组织的各浓度液滴滴回原相应浓度的各溶液中,液滴会发生上升、下降或基本不动的现象。如果液滴不动,说明外液在浸过组织后浓度未变,那么就可根据该溶液的浓度计算出其水势。此水势值也就是待测植物组织水势。小液流法就根据这个原理,把植物组织浸人一系列不同浓度的煎糖液中, 由于比重发生了变化,通过观察滴出小液滴在原相应浓度中的反应而找出等渗浓度,从而就可算出溶液的水势。 三、材料指管木架、指形管( 带软木塞)、弯头毛细吸管( 带橡皮头)、小镊子、移液管、温度计、打孔器、不同浓度的蔗糖液(0.2~ 0.6mol/L)、甲烯蓝( 亚甲基蓝)、叶片。 四、方法与步骤 1、配制一系列不同浓度的蔗糖溶液0.05、0.1、0. 2、0. 3、0. 4、0. 5、0.6 mol/l 各10ml 注入7支试管编号按顺序排列作为对照组。2、另取7支试管 编号按顺序排列作为试验组。然后从对照组的各试管中分别取溶液5ml移入相同编号的试验组试管中。 3、用打孔器在马铃薯上打孔 然后用刀片将马铃薯切成厚薄相等的

小块若干片。向试验组的每一试管中加20片马铃薯小块,摇动数次放置30分钟,后向每一试管中各加甲烯蓝粉末少许并振荡此时溶液变成蓝色。 4、用毛细滴管从试验组的各试管中依次吸取蓝色的液体少许,然后伸入对照组相同编号试管的液体中部。缓慢从毛细管尖端横向放出一滴蓝色试验溶液 观察小液滴移动的方向。如果小液滴向上移动说明溶液从细胞液中吸出水分而被冲淡,比重比原来小了。如果有色液滴向下移动则说明细胞从溶液中吸了,水溶液变浓比重变大。如果液滴不动(扩散均匀) 则说明试验溶液的密度等于对照溶液,即植物组织的水势等于溶液的渗透势。 5、记录每一试管中蓝色小液滴移动的方向 并记录液滴不动的试管中蔗糖溶液的浓度 6、按-ψw=RTiC 计算水势: 其中ψw为细胞水势 R(气体常数)= 8300L*Pa/mol*K。T 为绝对温度 单位K 即273℃+t t 为实验温度 记为25℃ 。i 为解离系数 蔗糖为1。 C 为等渗溶液的浓度 单位为mol/L。 五注意事项 1、准确配制蔗糖梯度溶液 正确使用移液管。 2、土豆块大小厚薄均一 每管个数相同。 3、实验中多次摇动试管 使反应充分进行。 4、甲烯蓝放少许 否则会影响溶液浓度。

实验一 植物组织自由水和束缚水含量的测定

中国海洋大学实验报告 2016年10月24日 姓名专业年级学号同组者 题目植物组织自由水和束缚水含量的测定授课老师 一、 实验目的 学会植物组织含水量、自由水和束缚水含量的测定方法,学会电子天平和阿贝氏折射以等仪器的使用方法。 二、 实验原理 植物组织中水分有自由水和束缚水两种存在状态,自由水易于流动和蒸发,可以做溶剂,而束缚水与此相反难以蒸发,也不可以做溶剂。根据这两种水的性质不同讲他们分离,然后再测定其含量。分离的方法是将待测的植物组织放入浓度很高的蔗糖溶液中脱水,如果蔗糖溶液的浓度足够高,体积足够大,那么在达到平衡是组织绝大部分的自由水将进入蔗糖溶液,根据蔗糖溶液浓度的变化,重量以及植物组织的鲜重可以求出植物组织中自由水含量,同时用烘干的方法测定出植物组织的含水量,束缚水含量等于植物组织含水量与自由水含量的差。 设:A 为植物组织中自由水的质量(g ),W 为蔗糖溶液的质量(g );C1为处理前蔗糖溶液浓度(%);C2为处理后蔗糖溶液浓度(%);W y 为植物组织鲜重(g )。 则 A=(W+A)(1-c 2)-W(1-c 2) 即 A= y W C C W ) (21- 自由水含量(%)= %100)(%100221?-=?y y W C C C W W A

三、 仪器试剂 1.仪器及器皿 阿贝氏折射仪,超级恒温水浴,1/1000电子天平,吸管,烘箱,扁型称量瓶,剪刀,5ml 移液管,滤纸,吸水纸。 2.试剂 65%一70%蔗糖溶液(W/V)。 四、 实验材料 新鲜白菜叶 五、 实验步骤 (1) 取称量瓶4个,编号、洗净、烘干,用电子天平称量、记录。 (2) 取待测的植物样品4份,每份在1g 左右(0. 900一1. 100 g ),用剪刀剪成1~2mm 长的小段,放人称量瓶中,盖上盖子,称量、记录。 (3) 其中两瓶用来测含水量。将盖子打开,放入100℃~105℃的烘箱中烘至恒重,称量,记录,代人公式计算植物组织含水量。 (4) 另外两瓶分别加人蔗糖溶液5 mL ,盖上瓶盖,称量、记录,放在实脸台上进行水分交换2~3小时,其间不时摇动。用阿贝氏折射仪分别测定处理前、后的重量百分比浓度。 (5) 将阿贝氏折射仪的进样旋钮打开,用吸管吸取待测蔗糖溶液1~2滴加人折射仪进样棱镜的磨砂表面上,将棱镜关闭,调节色散旋钮至色散消失调节读数旋钮,将黑白分界线调到望远镜筒的十字交叉点上,然后在读数镜筒中读出蔗糖的质量百分浓度。 六、 计算 样品含水量(%)= %100-?鲜重 干重 鲜重 样品自由水含量(%)= %100)(%100221?-=?y y W C C C W W A

第2章 植物水分干物质测定.ppt.Convertor

第二章:植物水分和粗灰分测定 第一节植物水分概述 一般将样品在101.325 kPa下,100℃左右加热至恒重所失去的质量定义为“水分”,这种定义是狭义的。因植物组织或农产品中的水分有游离水和结合水之别,其中游离水容易分离,而结合水则不容易分离。但如果不加限制的长时间烘烤,必然使其它成分发生变化,影响分析结果。 供测定的样品多种多样,其含水量可由百分之几到98%,因此人们一直在多方面研究适合于各种试样性状的精确测定水分子“H2O”含量的方法。同时,研究能满足不同要求的准确、快速测定方法。 目前常用的水分测定方法可分成以下几类: (1)加热干燥法 (2)蒸馏法。该法特别适用于脂肪类产品和除水分外含有大量挥发性物质的试样。样品在蒸馏过程中始终受到载体的惰性气雾保护,因而不致发生化学成分的改变。 上述两种方法用于检测水分含量较高(65% ~ 95%)的新鲜样品时效果更好。 (3)化学反应法。包括卡尔-费歇尔(Karl-Fischer,即K-F法)方法、水与电石(碳化钙)产生乙炔或水与浓酸混合时产生热等为基础的方法。其中很多分析参考书中将K-F法测定水分定为农畜产品、食品、化工、肥料准确定量水分的一般标准方法。但该法的缺点是必须防止水分进入滴定容器及试剂吸水,且其校准的程序颇为严格、费时。 农产品的成分中,水分是最容易变化的组分,其含量会因散湿而减少或吸湿而增加。因此,要精确定量水分并非易事。一般应根据待测样品特性、分析精密度的要求以及实验室设备条件等选择适当的方法。本章主要介绍常压直接烘干法、常压二步烘干法、减压加热干燥法和共沸蒸馏法等。 第二节干燥法 一、直接干燥法:(GB/T 5009.3—2003,GB 5497—85,GB/T 14489.1—93 ) 方法原理 样品在100~105℃下烘干一定时间至“恒重”,损失的质量被认为是水分的质量。水分含量是用差减法计算而来,所以这是一种间接测定水分含量的方法。 但在严格控制条件的情况下,对多数试样而言,烘干法仍然是测定水分较准确的标准方法。此法适用于不含有易分解和易挥发成分农产品水分的测定。 (二)仪器 1. 电热恒温干燥箱。 2. 铝盒。 3. 干燥器。宜使用经135℃干燥2~3 h的变色硅胶作干燥剂,对油脂类样品宜用吸湿力强的五氧化二磷等作干燥剂。 4. 分析天平(精确到1 mg)。 精密烘箱 高温电炉 (三)操作步骤 取洁净铝盒,打开盒盖,放入100~105℃烘箱中烘30 min,取出,移至干燥器中冷至室温后(约20 min)称重,继续烘干至“恒重”(m0)。 将粉碎、混匀的风干样品3.000~5.000g平铺在已达衡重的铝盒中,盖好盖子,尽快称量铝盒和内容物质量(m1)。 将盖横放在盒旁,置于已预热至约115℃的烘箱中,关好箱门,调整至温度在100~105℃之间,烘干3~4 h(注2),取出,盖上铝盒盖,移入干燥器中冷却后称重,如此重复,直至“恒

第三章 水分的测定

第三章水分和水分活度的测定 本章的主要学习内容包括: 第一节水分的概述,复习食品化学中学到的水分存在形态和水分测定的意义。 第二节水分的测定,讲述三种测定方法,干燥法和K-F法需要掌握,蒸馏法了解第三节水分活度的测定,讲述三种方法,掌握康威氏皿扩散法。 第一节水分的概述 水是生物体的溶剂、载体、反应介质、构象稳定剂。一切生理生化反应、酶反应、微生物活动,都需要水的参与。水分在食品分析中,几乎是所有产品的必检项,因为它是: 1.重要的质量指标:影响感官(干瘪、结块等)、物性(持水性、弹性等)、 保藏性(主要指水分活度的影响,对微生物、酶、化学反应有直接影响)。 2.重要的经济指标:成本(每增加一个百分点,成本相差很多,特别是高附 加值产品),它还是其它成分的测定基础。 食品中固形物:指食品内水分排除后的全部残留物,包括蛋白质、脂肪、组纤维、灰分等。它们的含量可以用干基含量/湿基含量来表示。 一、水分存在的形态:分结合水和自由水。 结合水:食品中与其它成分结合在一起水。此部分的水在沸点和冰点不发生相变;压榨不与组织细胞分离;不具有溶剂特性。 如:1)与蛋白质的活性基团(-OH,=NH,-NH3,-COOH,-CONH2)和碳水化合物的活性基团(-OH)以氢键相结合而不能自由运动的水; 2)与蛋白质、淀粉水合作用和膨润吸收作用水分、以及某些盐类结晶水等。自由水:包括动植物食品组织中通过毛细管作用力所吸存的不可移动的凝胶态水;存在于细胞外各种毛细管和腔体中的水;吸附于食品表面的吸附水。此部分水具有水的基本特性,有相变,有溶剂特性,可以热力去除。 二、水分活度 水分活度是指食品中水分存在的状态,表征水分与食品结合程度(游离程度)。 (1)水分活度值越高,结合程度越低;水分活度值越低,结合程度越高; (2)水分活度数值:用Aw表示,水分活度值等于用百分率表示的相对湿度; (3)水分活度的测试意义:Aw值对食品保藏具有重要的意义。因为A W反映了食品与水的亲和能力程度,它表示了食品中所含水分作为化学反应和微生物生长的可用价值。食品的水分活度的高低是不能按其水分含量来考虑的。例如,金黄色葡萄球菌生长要求的最低水分活度为0.86,而相当于这个水分活度的水分含量则随不同的食品而异,如干肉为23%,乳粉为16%,干燥肉汁为63%,所以按水分含量多少难以判断食品的保存性,只有测定和控制水分活度才对于食品保藏性具有重要意义。 第二节水分的测定 水分测定有两种方式: ①直接法——利用水分本身的物理性质,采用烘干、化学干燥、蒸馏等方法 去除样品中水分,再通过称量等手段得到水分含量。如重量法、蒸馏法、卡尔·费休法等。 ②间接法——不去除水分,利用食品的物理常数通过函数关系确定水分含量。 如:测相对密度、折射率、电导、旋光率等。 其中直接法比间接法准确度高。 一、干燥法

相关文档
最新文档