海洋生物学小论文

海洋生物学小论文
海洋生物学小论文

濒危海洋生物—白鲸生存现状及保护

应151-3 王淑婷 201569503302一切生命都起源于海洋,人类也不例外。海洋是生命的故乡,也是人类最重要的生态资源。无论从感情倾向还是现实需要来说,海洋都是人类的朋友。海洋生物多样性是全球生物多样性的重要组成部分,中国具有丰富的海洋生物资源,也是生物多样性受威胁比较严重的国家之一,目前有记录的濒危海洋生物已达556种。今天,就白鲸的生存现状以及保护白鲸的措施进行讨论。

首先,我们先来了解一下白鲸。

白鲸(学名:Delphinapterusleucas)额头向外隆起突出且圆滑,嘴喙很短,唇线宽阔。身体颜色非常淡,为独特的白色。白鲸与其他鲸类相比,惟一明显不同的是:当夏季皮肤呈淡黄色的色调时,可以蜕换。游动时通常比较缓慢,在海浪和浮冰中难以辨识。白鲸喜欢生活在海面或贴近海面的地方;潜水能力相当强,对于北极的浮冰环境有很好的适应力。世界上绝大多数白鲸生活在欧洲、美国阿拉斯加和加拿大以北的海域中。几个白鲸集中的地区已成为赏鲸圣地,包括加拿大东部的圣劳伦斯河下游与哈德逊湾西部的丘吉尔河河口。白鲸繁殖季一般在2月末到4月初,妊娠期持续14个月,不过,也可能有胚胎延迟着床的现象。幼兽在5~7月的夏日诞生,初生仔鲸全身暗灰色。雌鲸分娩时,有护卫鲸群在周围巡视,分娩完成后,鲸群主力撤离,仅留下年轻的育幼雌鲸,育幼地一般选在水温10℃左右,靠近河流的水域,这对仔鲸很重要,因为它们没有成年鲸那样多的御寒鲸脂。仔鲸被两个成年雌鲸护在中间,由雌鲸顺水流拖着游动。白鲸哺乳期1.5~2年。雄鲸7~9年,雌鲸4~7年发育成熟,生殖间隔2~3年,雌鲸二十出头停止生育。已分辨出5种主要的白鲸种群:栖息在白令海、楚科奇海与霍姆次克海的种群约有2.5~3万头;加拿大北极高纬

区与西格陵兰种群约1~1.4万头;加拿大哈德逊湾与詹姆斯湾种群约9000~1.2万头;斯瓦尔巴海种群约5000~1万头;加拿大圣劳伦斯河湾种群约300~500头。

自从17世纪以来,由于捕鲸的高额利润,捕鲸者对白鲸进行了疯狂地捕杀,致使白鲸数量锐减。更加可悲的是白鲸的生态环境遭到毁灭性的破坏,一批批白鲸相继死亡。科学家们经过尸体解剖才找到了引起死亡的因素:由于受到一系列有毒物质的侵害,使其免疫系统遭到严重的破坏,这些白鲸患过胃溃疡穿孔、肝炎、肺脓肿等疾病;更有甚者,有的白鲸患了膀胱癌,这在鲸类动物中真是闻所未闻的。更重要的是,白鲸体内已发现一些污染物,如聚氯联苯、DDT 及某些剧毒农药,有的白鲸大脑组织中含有大量已发生代谢变化的可致癌的PAH (多环芳烃)苯嵌二素,这种东西已经转变成基因的一部分,导致了白鲸基因遭到不可逆转的破坏。

由以上资料我们可以看出,白鲸妊娠期哺乳期长,但是生殖期短,白鲸群新生白鲸幼崽更新换代速度缓慢,但是部分过去为重要白鲸集散地的河口三角洲,现今为乘快艇的猎人所占据,已不再能支持大族群的分布。并且随着科学技术的进步与发展,科学在一方面也加快了破坏环境的步伐,越来越多的环境问题开始涌现,白鲸种群就是其中的受害者,可致癌的PAH(多环芳烃)苯嵌二素已经转变成基因的一部分,这种伤害是不可逆转的,是会一直影响整个白鲸种群的发展的,例如生活于圣劳伦斯河族群体内有高污染物的积累,罹癌率也高,一些白鲸体内除了睾丸和输精管以外,同样还存在着子宫和卵巢(有两个性别的动物)我们现在的一个小小的错误有可能会造成整个白鲸种群的灭顶之灾。而且为我们破坏的不仅是白鲸此时的基因,我们破坏的是整个白鲸栖息地的环境,这种影响是是只要环境一天没有治理好,就会一直存在下去并且持续

施之以消极影响的,相信累加效应是十分可怕的,可能白鲸现在还有十万头,那若干年以后呢?让人不寒而栗。

世界各个国家包括中国对保护白鲸都十分重视,从下列各国对保护白鲸的态度和收录的就可见一斑:

列入《濒临绝种野生动植物国际贸易公约》(CITES)附录Ⅱ。

列入《保护迁徙野生动物物种公约》(CMS)附录Ⅱ。

列入《世界自然保护联盟濒危物种红色名录》(The IUCN Red List):近危物种(NT),2008年评估。

列入《国家重点保护野生动物名录》:国家二级保护动物(1988年12月10日生效,鲸目*其它鲸类)

破坏掉白鲸的栖息地可能是一个短暂的,在我们意识到之前几乎就已经是定局的结果。可想而知,恢复白鲸的栖息地甚至整个地球的生态环境是一个漫长而艰难的过程,路漫漫其修远兮,吾将上下而求索。尽管这个任务是艰巨的,但是我们也要明知山有虎,偏向虎山行。因为这是我们自己的错误,我们必须有勇气直面它并尝试着解决它。为此,世界各国采取了以下措施:其一,设置了专门的保护区,这是最关键的事情,可避免了人类对白鲸栖息地地带来更多的破坏。还白鲸一片天堂。

其二是投入专门力量,加大了对白鲸生活习性的研究,为未来人工繁育奠定了基础。但是人工繁殖只是最后的手段,其根本还是保护野生的白鲸,促进白鲸种群数量的增长,努力最大限度消除化学物质影响

其三是加大了对社会受众对白鲸保护的宣传力度。使保护白鲸这一珍贵的生物的观念在社会受众中形成良好共识。保护白鲸的共识有利于持续有力的积极促进保护白鲸事业的发展。

结构动力学 论文

《结构动力学》 课程论文

结构动力学在道路桥梁方面的应用 摘要:随着大跨径桥梁结构在工程中的应用日趋广泛,施工控制问题也越来越受重视。结构动力学在各方面都有极为重要的作用,其特性也被广泛应用于桥梁结构技术状态评估中。结构动力学在道路桥梁方面应用十分广泛,比如有限元模型、模态挠度法、桥梁结构(强度、稳定性等)、状态评估、结构模态、结构自由衰减响应及其在结构阻尼识别中的应用、结构无阻尼固有频率与有阻尼固有频率的关系及其应用等,尤其是结合桥梁的检测、桥梁荷载试验与状态评价。本文就其部分内容进行介绍。 关键词:结构动力学道路桥梁应用 如今,科学技术越发先进,结构动力特性越来越广泛地应用于桥梁结构抗震设计、桥梁结构故障诊断和桥梁结构健康状态监测等工程技术领域,由此应用而涉及到的一些动力学基本概念理解的问题应运而生。对于此类知识,我了解的甚少,上课期间,老师虽有讲过这相关内容,但无奈我学到的只是皮毛。我记忆最深的是老师给我们放的相关视频,有汶川地震的,有桥梁施工过程的,还有很多因强度或是稳定性收到破坏而倒塌的桥梁照片。老师还告诉了我们修建建筑物的原则:需做到小震不坏,中震可修,大震不倒。还有强剪弱弯,强柱弱梁,强结点强锚固。桥梁在静止不受外力扰动时是不会破坏的,大多时候在静止的荷载作用下也不会发生破坏,但当桥梁受到动力荷载时就很容易发生破坏了,所以我们在修建桥梁是必须事先计算好最佳强度等等需要考虑的量。下面简单介绍一下结构固有频率及其应用和弹性模量动态测试。 1.结构固有频率及其应用 随着对结构动力特性的深入研究,其被越来越广泛地应用于结构有限元模型修正、结构损伤识别、结构健康状态监测等研究领域.一般情况下,由于结构阻尼较小,因此在结构动力特性的计算分析中,往往不计及结构阻尼以得到结构的振型和无阻尼的固有频率fnj(j=1,2,∧∧);而在结构的动态特性的试验中,识别的却是结构有阻尼的固有频率fdj.理论上有[1,2]fdj

海洋生物学论文

海洋生物学论文集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

海洋生物学论文 —浅谈海洋藻类与人类生活的关系 内容摘要 藻类植物和人类的关系,主要谈谈藻类的贡献与危害.三分田地七分水,这是地球与陆地与水的比例.显然,水是占了优势.生活在水中的植物也随着水的优势而占优势.如果从水中植物的数量上和光合作用产量上看,它 更是占绝对优势.水中的植物很多,有高等的、低等的,但主要是低等的藻类.藻类的家族很多,现知有十大家族(门)约1500~3600种,它们对自然 界和人类做出了巨大的贡献,但也带来了危害。 关键词:海洋藻类人类贡献危害 海洋藻类与人类生活的关系 藻类,是最简单的光合营养有机体。藻类一般都具有进行光合作用的 色素,能利用光能把无机物合成有机物,供自身需要,-是能独立生活的一类自养原植体植物。藻类在形态上是千差万别的,它们基本上是没有根、茎、叶分化的原植体植物。藻类的生殖器官多数是单细胞,虽然有 些高等藻类的生殖器官是多细胞的,但生殖器官中的每个细胞都直接参 加生殖作用,形成孢子或配子,其外围也没有不孕细胞层包围。它可以 定义为:无胚、具叶绿素的自养、叶状体、孢子植物。藻类是低等植物中的一大类。藻类种类多,分布广,与人们的生活、生产活动有着密切的 关系,在国民经济中起着重要的作用。藻类可以分为海水藻类和淡水藻类。严格意义上讲,它可以分为8个门类:蓝藻门,金藻们,硅藻门,甲藻门(其中包括隐藻),裸藻门,绿藻门,红藻门和褐藻门,后两门为海水藻类,如:

裙带菜、紫菜、石花菜和海带等肉眼可见的较大的海洋藻类。淡水中6个门的藻体需显微观察。我国劳动人民很早就利用藻类作为食物、药材、饲料等。藻类与工业、农业、水产、地质、水域环境保护、航天业及人民生活息息相关,认识和研究藻类。 三分田地七分水,这是地球上陆地与水的比例。显然,水是占了优势。生活在水中的植物也随着水的优势而占优势。如果从水中植物的数量上和光合作用产量上看,它更是占绝对优势。水中的植物很多,有高等的、低等的,但主要是低等的藻类。藻类的家族很多,现知有十大家族(门)约1500~3600种,它们对自然界和人类做出了巨大的贡献,但也带来了危害和破坏。 大约在四、五十亿年前,地球上一片浑沌,到处雷电轰鸣、风暴疾驰、激浪滔天,没有氧气、没有生命、一片死沉、荒凉的景象。世界上这样的情景度过了漫长的十多亿年,到了距今约三十五亿年前的太古代,地球上才出现了蓝藻。蓝藻里有叶绿素,能进行光合作用产生出氧气。氧气的诞生,给地球带来了曙光,带来了希望。随着时间的推移,大气中的氧气越积越多。直到距今十八亿年到六亿年之间的震旦纪,地球上完全成了个藻类世界,除了蓝藻外,还有绿藻、褐藻等,并出现了大型的藻类。这时氧气的浓度达到百分之一左右。有了一定浓度的氧气,才能产生动物。氢在六亿年前的寒武纪,海洋中出现了原生动物。如有孔虫,放射虫、水母等。而水生的藻类开始向陆地进军,产生了裸蕨。到了距今四亿年前的泥盆纪,陆地上已有了大量的蕨类植物了,海洋中出现了鱼类,陆地上已有大量的蕨类植物了,海洋中出现了鱼类,这时大气中氧气已达到百分之十。有了大量的氧气,在大气层上部形成

关于运筹学论文范例整理分享(共5篇)

关于运筹学论文范例整理分享(共5篇) 运筹学是一门应用性很强的学科,在培养学生分析和解决问题的能力,提高学生应用和创新能力方面发挥着重大的作用.本文针对运筹学教学的特点和现今存在的问题,提出了一系列改革建议及方案,构建了理论与实践相结合的教学体系,该体系能够使学生学以致用,增强学生的实践能力,为培养应用创新型人才创造良好条件. 第1篇:新业态下民航类专业运筹学教学模式改革研究 从网络售票到微信值机,从单一的“售舱位”到运用大数据“提供综合服务”,互联网在深刻改变整个社会的同时,也在冲击传统的航空运输业,航空公司开始关注乘客的兴趣爱好、企业的运输需求,重新定义飞行。 在移动互联网时代,随着消费者对服务要求的不断提高,从关注服务本身,向客户体验和价值链两端不断延伸,服务提供方需要把标准化的服务产品或项目细化拆分,让客户选择自由结合。航空运输业要想取得竞争优势,也必须不断创新服务理念,发展新业态。

新业态是指基于不同产业间的组合、企业内部价值链和外部产业链环节的分化、融合、行业跨界整合以及嫁接信息及互联网技术所形成的新型企业、商业乃至产业的组织形态。信息技术革命、产业升级、消费者需求倒逼不断推动新业态产生和发展,也要求高校教育与人才培养模式必须进行与之相适应的变革。 运筹学是民航类专业的一门专业基础课,它是民航运营活动有关数量方面的理论,运用科学的方法来决定如何最佳地运营和设计各种系统的一门学科,对系统中的人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。通常以最优、最佳等作为决策目标,避开最劣的方案[1]。 近年来,郑州航院运筹学课程组秉承“航空为本管工结合”的办学理念,针对民航类专业的特点进行了一系列教育教学改革,达到了预期效果。本文旨在介绍《运筹学》课程的教学改革过程,研究总结成功经验,并提出未来改革发展的思路。

结构优化设计论文

结构优化课程设计 学院土木学院 专业工程力学 班级1001

学号100120118 姓名崔亚超

总结结构优化设计的原理、方法及发展趋势 崔亚超 工程力学1001班学号100120118 摘要:阐述了工程结构优化设计理论从最初的截面优化发展到形状优化、拓扑优化的基本历程及其相关特点,对优化设计选用的各种算法进行归类,并简述结构优化设计的发展趋势。 关键词:尺寸优化;形状优化;拓扑优化;优化算法 Summary structural optimization design principles, methods and development trends Abstract:The structural optimization of engineering design theory from the initial cross-section to optimize the development of shape optimization, topology optimization of the basic course and its related characteristics, the optimum design on the range of algorithms are classified, and to outline the development trend of structural optimization design . Key words:size optimization; shape optimization; topology optimization; optimization algorithm 0 引言 结构优化设计的目的在于寻求既安全又经济的结构形式,而结构形式包括了关于尺寸、形状和拓扑等信息I对于试图产生超出设计者经验的有效的新型结构来说,优化是一种很有价值的工具,优化的目标通常是求解具有最小重量的结构B同时必须满足一定的约束条件,以获得最佳的静力或动力等性态特征。 集计算力学、数学规划、计算机科学以及其他工程学科于一体的结构优化设计是现代构设计领域的重要研究方向。它为人们长期所追求最优的工程结构设计尤其是新型结构设计提供了先进的工具,成为近代设计方法的重要内容之一。 结构优化设计也使得计算力学的任务由被动的分析校核上升为主动的设计与优化,由此结构优化也具有更大的难度和复杂性。它不仅要以有限元等数值方法作为分析手段,而且还要进一步计算结构力学性态的导数值。它要面向工程设计中的各种实际问题建立优化设计模型,根据结构与力学的特点对数学规划方法进行必要的改进。因此,结构优化设计是一综合性、实用性很强的理论和技术。 目前,结构优化设计的应用领域已从航空航天扩展到船舶、桥梁、汽车、机械、水利、建筑等更广泛的工程领域,解决的问题从减轻结构重量扩展到降低应力水平、改进结构性能和提高安全寿命等更多方面。 由于结构优化设计给工程界带来了经济效益及近年来有限元研究和应用的相对成熟,计算机条件的进一步改善和普及,人们对结构优化设计的研究和应用的呼声更高了。无论国内还是国外,对这一现代技术的需求都有增长的趋势。随着设计技术的更新和产品竞争的加剧,结构优化设计将会有更大的发展。

海洋生物学期末试卷A复习进程

海洋生物学期末试卷 A

上海海洋大学特色类选修课2013学年第二学期 《海洋生物学》课程期末考试试卷A 一、名词解释(每题2分,共10分) 1.赤潮: 2.钝顶螺旋藻: 3.游水母科: 4.海洋生物学: 5.海洋底栖生物 (benthos): 二、选择题(每题1分,共20分) 1.中水层在海洋中是 范围内。 A.200m 以内 B.200—1000m C.300—1000m D.200—500m 2.海洋生物外来物种可以通过多种途径由原来栖息地区扩散到其它地区,下列不属于这种途径的是 。 A.人为引进 B.天敌减少 C.船底携带 D.压舱水 3.下列关于藻类的论述,错误的是 。 A.藻类是低等植物,分布广,绝大多数生活于水中 B.个体大小相差悬殊,小球藻 3-4μm ,巨藻长 60m C.具叶绿素,能进行光合作用的自养型生物 D.大部分没有真正的根、茎、叶的分化,但存在极少部分有根、茎、叶的分化 学专业班级姓名学号

4.下列不属于藻类的繁殖方式的是。 A.有性繁殖 B.无性繁殖 C.异养繁殖 D.营养繁殖 5.关于描述:有些种类则在细胞内另生被膜,形成休眠孢子(hypnospore)。它们都要经过一段时间的休眠,到了生活条件适宜时,再行繁殖,描述的是。 A.厚壁孢子 B.动孢子 C.不动孢子 D.休眠孢子 6.下列不属于藻类生活史中的类型的是。 A.营养生殖型 B.孢子生殖型 C.无性和有性生殖混合型 D.三相型 7.植物生殖方式的演化方向是。 A.营养生殖、孢子生殖、有性生殖 B.营养生殖、有性生殖、孢子生殖 C.孢子生殖、营养生殖、有性生殖 D.孢子生殖、有性生殖、营养生殖 8.藻类的英文名是。 A. Algae B. Algea C.Cryptogamia D.Xanthophyta 9.关于海带的孢子体和配子体之间的差别,下列说法正确的是。 A.海带的孢子体和配子体之间差别不大 B.孢子体小但有组织的分化,配子体较大 C.存在异形世代交替生活史 D.存在营养生殖型生活史 10.下列按照海带发育期的顺序,排列正确的是。 A.幼龄期、凸凹期、厚成期、脆嫩期、成熟期、衰老期 B.幼龄期、脆嫩期、凸凹期、厚成期、成熟期、衰老期 C.幼龄期、脆嫩期、厚成期、凸凹期、成熟期、衰老期 D.幼龄期、凸凹期、脆嫩期、厚成期、成熟期、衰老期 11.下列属于海带厚成期特点的是。 A.叶片肥大,有韧性 B.生长部细胞分裂旺盛,叶片生长迅速 C.积累大量水分 D.合子分裂产生的小孢子 12.下列不属于头部附肢的是。 A.第一触角 B.第二触角 C.第三触角 D.第一小颚 13.下列属于樱虾科的是。 A.毛虾属 B.鼓虾属 C.管鞭虾属 D.对虾属 14.小三毛金藻区别于球等鞭金藻的最显著特征是。 A.具有3根近等长的鞭毛 B.具有3根鞭毛,中间一个较长,外边2个稍短 C.具有2根鞭毛,但其鞭毛较长 D.具有3根鞭毛,中间一个较短,外边2个近等长 15.拟软体动物包括形态差别极大的苔藓动物、腕足动物、帚虫动物,但这三者均有的且区别于其他门类动物的一个显著特征是。 A.体腔庞大,体不分节 B.营固着生活 C.具有触手冠 D.发育过程有类似担轮幼体期 16.剑水蚤的特征是。 A.可动关节在胸腹之间,尾叉刚毛5根。第一触角22-26节,一般大于体长一半,雄性第一右触角为执握肢。

关于珊瑚的论文

珊瑚礁——海底的绿洲 阴暗冰冷的海底世界中,珊瑚礁毫无疑问更像一片仙境:五颜六色的海洋动物游弋于奇形怪状的珊瑚丛中,构成了美丽的海中热带雨林景观。而却珊瑚礁被视为地球上最古老、最多姿多彩也最珍贵的生态系统之一。 一、珊瑚礁的定义、结构及其分类 珊是指造礁石珊瑚群体死后其遗骸构成的岩体。在热带和亚热带浅海,由造礁珊瑚骨架和生碎屑组成的具抗浪性能的海底隆起。造礁珊瑚具有分泌碳酸钙形成外骨骼的功能,它们世代交替增长,最终生长到低潮线。地质时期的礁,在中三叠世以前的各时代,造礁生物种类很多。中三叠世以后,才基本上以六射珊瑚为主,故统称为生物礁。地质时期的礁是与其同时代沉积层相比,垂向幅度较大的含有丰富造礁化石的碳酸盐岩体,也称古代礁。它由礁前带、礁核带和礁后带这3个基本相带组成。 珊瑚礁的主体是由珊瑚虫组成的。珊瑚虫是海洋中的一种腔肠动物在生长过程中能吸收海水中的钙和二氧化碳,然后分泌出石灰石,变为自己生存的外壳。每一个单体的珊瑚虫只有米粒那样大小,它们一群一群地聚居在一起,一代代地新陈代谢,生长繁衍,同时不断分泌出石灰石,并粘合在一起。这些石灰石经过以后的压实、石化,形成岛屿和礁石,也就是所谓的珊瑚礁。 珊瑚礁有很多种类:珊瑚礁与陆地相连接的地形。在适宜珊瑚生长的海域,因海底火山爆发和隆起等而形成陆地,周围的浅滩就会附着珊瑚。珊瑚不断向外侧生长,好像为岛屿镶边一样,逐渐向外扩张。现代最长的岸礁沿红海沿岸发育,中国台湾恒春半岛和海南岛沿岸也有岸礁发育。沿大陆或岛屿岸边生长发育,亦称裙礁或边缘礁称为岸礁;陆地与珊瑚礁之间有一个水深数十米的泻湖(lagoon)的地形。在原为岸礁的状态下,因地壳变动和海面上升等原因,岛屿逐渐下沉,而在外洋一侧,珊瑚礁不断延展便形成这样的地形。离岸有一定距离的堤状礁体,它与陆地隔以泻湖的堡礁,又称堤礁;岛屿完全沉没,仅留下围绕岛屿的环状珊瑚礁的地形。有时在reef(礁滩)上面砂石堆积,也会形成较小的岛屿。礁体呈环带状围绕泻湖,有的与外海有水道相通的称为环礁。马尔代夫(Maldives)和马绍尔群岛(Marshall Islands)等便广为知晓;呈台地状高出附近海底,但无泻湖和边缘隆起的大型珊瑚礁称为台礁;还有点礁,即斑礁,是堡礁和环礁泻湖中的礁体,大小不等,形态多样。 二、珊瑚礁的形成过程 珊瑚虫将食物消化以后会分泌出石灰质,形成骨骼与灰质外壳。当珊瑚虫死亡之后,其骨骼遗骸积聚起来,新生的后代又在这些遗骸上繁殖生长,久而久之,形成了海底千变万化的珊瑚形态。新一

工程结构动力分析小论文

薄壁管件的屈曲分析 摘要:本文针对薄壁件的失稳问题,采用线性特征值屈曲分析法和非线性屈曲分析法,借助ANSYS有限元商业软件对薄壁圆管进行模拟计算。特征值分析可以确定临界载荷、屈曲模态,特征值屈曲分析法得到的临界载荷作为非线性屈曲分析分析的初步缺陷载荷,接着进行非线性分析,得到结构完整的稳定性能。将两种结果进行对比讨论,可知非线性分析的结论更切合实际。 关键词:结构屈曲,ANSYS软件,特征值分析,薄壁圆管, 1.引言 薄壁钢材具有高强度、轻质、力学性能优良的特点,是一种良好的结构材料。但是实际工程结构中薄壁钢材的截面轮廓尺寸很小,构件细长,如果其在工艺上处理不当,当受到各种载荷时容易发生局部失稳或整体破坏,给人民的生命财产造成不可估量的损失,所以薄壁结构的稳定性问题成为工程设计人员关心的焦点。所谓失稳,就是当载荷仅有微量增加时,应变增长显著。比如圆筒受到环向载荷,其压缩应力尚未达到材料的屈服点时,就突然失去自身原来的形状被压扁或产生褶皱,这种在外力作用下结构突然失去原有形状的现象叫失稳,也称为屈曲。本文针对工程上常采用的薄壁管件的稳定性问题,借助有限元软件,用线性和非线性的分析方法计算其屈曲时的临界载荷。圆筒形构件的失稳分为整体失稳和局部失稳,其中整体失稳又分为侧向失稳和轴向失稳。 图1-1侧向失稳图1-2轴向失稳 1

22. 力学建模 预测结构发生屈曲时的临界载荷和屈曲后的形状通常的方法有两种,即特征值分析和非线性屈曲分析,但是特征值分析是基于材料完全线性无缺陷的,所以得出的结果与实际有较大差距,因此工程直接运用很少,但是它也是有意义的,一般取其第一阶模态作为非线性分析的初始扰动载荷的依据。用特征值分析得到的是屈曲上限,而用非线性分析得到的是屈曲下限,如图所示。 图2-1 特征值屈曲分析示意图 下面简单介绍特征值分析的理论知识。 设在单位外载荷作用下结构的应力刚度矩阵为[]K σ,那么[]K σλ(λ为载荷乘子)就代表另一强度下的应力刚度矩阵,在线性条件下,它们均与位移函数无关。如果基准状态下的位移矩阵[]D 加上虚位移矩阵[]D — ,而作用的载荷[]R 保持 不变,那么,为了使状态[]D 和_D D ??+????保持平衡状态,必须满足: [][][][]()K K D R σλ+=和[][][]_)K K D D R σλ??++=???? ( 将两个方程相减得到:[][]_)0K K D σλ??+=???? (,此即为经典的特征值问题,由[][]det()0K K σλ+=可得到特征值,其中最小的特征值就是临界载荷。 式中的λ是特征值, D ?????? —是位移特征向量,用λ乘以施加的载荷即得到临界载荷cr P ,D ?????? —是屈曲形状。

结构力学专题论文

结构力学专题论文 超静定梁的极限荷载分析与计算 一、 概述 弹性设计方法及其许用应力设计法的最大缺陷是以某一截面上的max σ达到[σ]作为衡量整个结构破坏的标准。事实上,由塑性材料组成的结构(特别是超静定结构)当某一局部的max σ达到了屈服应力时,结构还没有破坏,还能承受更大的荷载。因此弹性设计法不能充分的利用结构的承载能力,是 不够经济的。 塑性分析考虑了材料的塑性性质,其强度要求以结构破坏时的荷载作为标准: max []Pu P p u F F F k ≤= 其中,Pu F 是结构破坏时荷载的极限值,即极限荷载。u k 是相应的安全系数。 对结构进行塑性分析时仍然要用到平衡条件、几何条件、平截面假定,这与弹性分析时相同。另外还要采用以下假设: (1) 材料为理想弹塑性材料。其应力与应变关系如图所示。(图1.1) 图1.1 (2) 比例加载:全部荷载可以用一个荷载参数P 表示,不会出现卸载 现象。 (3) 结构的弹性变形和塑性变形都很小。 从应力与应变图中看出,一旦进入塑性阶段(AB 段),应力与应变不再是一一对应的关系,只有了解全部受力变形过程才能得到结构的弹塑性解答。但塑性分析法只考虑结构破坏状态时对应的极限荷载,所以比弹塑性分析法要简单的多。 值得注意的是,塑性分析只适用于延性比较好的弹塑性材料组成的结 D s σσ

构,而不适用于脆性材料组成的结构,也不适用于对变形条件要求较严的结构。 二、 相关概念 1、极限弯矩 (1)屈服弯矩 随着M 的增大,截面最外层纤维处的应力达到屈服应力s σ时,截面承受的弯矩称作弹性极限弯矩或者屈服弯矩。 e s M W σ= 式中,W 是弹性弯曲截面系数。 (2)极限弯矩 M 不断增大,整个截面的应力达到屈服应力s σ时,截面承受的弯矩称作极限弯矩。 u s s M W σ= s W 是塑性截面系数,其值为等截面轴上、下部分面积对该轴的静矩。 可见,纯弯曲时,M 只与材料的屈服应力s σ和截面的几何尺寸、形状 有关。剪力和轴力对M 的影响可以忽略不计。 2、塑性铰 2.1 概念 当整个截面应力达到屈服极限时,保持极限弯矩不变,两个无限靠近的截面可以发生有限的相对转动,这样的截面称为塑性铰。 2.2 塑性较的特点 (1)塑性铰可以承受极限弯矩。 (2)塑性铰是单向铰。 (3)卸载时塑性铰消失。 (4)随着荷载分布的不同,塑性铰可以出现在不同的位置。 3、破坏机构 结构在极限荷载作用下,由于出现足够多的塑性铰而形成的机构叫做破坏机构。 破坏机构可以在整体结构中形成,比如简支梁;也可以在结构上的某一局部形成,比如多跨连续梁。同一结构荷载不同时,破坏机构一般也不同。 静定结构在弯矩峰值截面形成一个塑性铰后,就形成破坏机构而丧失承载能力。对于超静定结构,因为有多余约束,要形成足够多的塑性铰才能丧失承载能力,这也是我们在做结构时,要设计成超静定结构的重要原因之一。 三、 判定极限荷载时的一般定理

海洋生物学课程论文

海洋生物学导论公选课论文论文题目双壳类特征及种类的介绍 所在学院交通学院 专业物流管理 年级 09级 学生姓名黄晓辉 学号 091375026 编号 116 2010年 11月14 日成绩

双壳类特征及种类介绍 摘要:双壳类又称瓣鳃纲,为软体动物的一个纲,约有2万种。体具两片套膜及两片贝壳,故称双壳类。双壳类是无脊椎动物中生活领域最广的门类之一,分布很广,由赤道到两极,,由潮间带至5800米的深海,由咸化海至淡水湖泊都有分布,其生活时代最早可追溯到寒武纪初。通过多方面收集整理资料,本文对双壳类各种特征进行系统介绍,依据绞合齿的形态、闭壳肌发育程度和鳃的结构等,进行系统分类。 关键词:双壳类列齿目异柱目真瓣鳃目 前言 双壳类因具有大小完全相等的两壳而得名,两壳左右对称,每一壳无对称面.因此可和腕足类区别。瓣鳃纲约有2万种,依绞合齿的形态、闭壳肌发育程度和鳃的结构等,分为列齿目、异柱目、真瓣鳃目等三个目。其生活环境:生活在水中,大部分海产,少数在淡水,极少数为寄生,主要以底栖爬行或固着生活,以海藻或浮游生物为食。一般运动缓慢,有的潜居泥沙中,有的固着生活,也有的凿石或凿木而栖,少数营寄生生活。具有食用性、药用性和工业用途。 1.特征 1.1分布历史 双壳类因具有大小完全相等的两壳而得名,两壳左右对称,每一壳无对称面.因此可和腕足类区别。双壳类是无脊椎动物中生活领域最广的门类之一,约有2万种,分布很广,由赤道到两极,,由潮间带至5800米的深海,由咸化海至淡水湖泊都有分布,其生活时代:最早出现于寒武纪初,地史上有四个繁盛期:O(奥陶纪)__S(志留纪)早期。D(泥盆纪)淡水型出现,海生的继续繁盛。[1]广大地质古生物工作者先后在全国各地泥盆系中,采集了大量双壳类化石,在华南和西南地区,双壳类已被证实是泥盆系的主要门类之一。据不完全统计,我国已知的泥盆纪双壳类达40余属,200余种。中生代为取代期,海生的取代腕足类的地位。始新世至现代,为本类的全盛期。[2] 1.2壳与外膜 大多数双壳类有两枚相似的壳,身体可以完全缩入壳内。壳的大小、形状、颜色等随种而异。最小的壳仅有2mm长,如珠蚬类(Sphaeriidae)的一些种,最大的壳长可超过1m,壳重达300kg,如砗磲(Tridacna)。两壳背面有一突出部分称为壳顶(umbo),壳顶所在的一端为前端。根据壳顶位于身体的前端背面,可以将壳定位。围绕壳顶形成许多细密的同心线,称为生长线,随着年龄的增加、生长线也增多。两壳的前、后端及腹缘游离,背面有韧带(ligament)及绞合齿

海洋生物学的研究与思考

2.海洋生物学-发展简史: 1674年,荷兰A.van列文虎克最先发现海洋原生动物。1777年,丹麦O.F.米勒应用显微镜观察北海的浮游生物。19世纪前期,C.G.爱伦贝格在海洋中发现硅鞭藻类。英国C.R.达尔文对他在1831~1836年“贝格尔”号航海中采集的蔓足类和珊瑚类,进行了出色研究。德国J.米勒于1845年使用浮游生物网,采集和研究海洋浮游生物。英国E.福布斯在19世纪中期先后提出海洋生物垂直分布的分带现象,按深度将爱琴海分成8个带;发表《英国海产生物分布图》;出版《欧洲海的自然历史》。德国V.亨森于1887年提出浮游生物(Plankton)的概念,并对海洋浮游生物开展了定量研究。1891年,德国E.H.哈克尔提出游泳动物(Nekton)和底栖生物(Benthos)两个概念。上述3个生态类群的概念,至今仍广为应用。1908~1913年,丹麦C.G.J.彼得松的工作奠定了海洋底栖生物定

量研究的基础。1946年,美国C.E.佐贝尔的《海洋微生物学》奠定了海洋微生物,主要是海洋细菌的研究基础。瑞典S.埃克曼的《海洋动物地理学》(1935、1953)、美国J.W.赫奇佩斯等主编的《海洋生态学和古生态学论文集》(1957)和H.B.穆尔的《海洋生态学》(1958)等,都促进了海洋生物学的发展。 19世纪下叶 各国竞相派出海洋考察船、设立滨海生物研究机构,海洋生物的研究工作日益兴盛。其中,最有名的海洋考察是英国“挑战者”号调查船历时三年半(1872~1876)的环球调查,学者们采集了大量深层和中层生物,出版了50卷巨著,所记载的生物的新种达4400多个,使当时已知的海洋生物种数翻几番。最古老的海洋生物研究机构是意大利那不勒斯(那波利)海洋生物研究所,成立于1872年,1874年正式开放。1888年,英国海洋生物学会成立了普利茅斯海洋研究所。美国在大西洋岸的伍兹霍尔,于1888年建立海洋生物研究所;在太平洋岸的斯克里普斯海洋研究所的前身海洋生物实验所,于1891年创建,等等。它们至今仍是世界上最活跃的海洋生物研究中心,特别是伍兹霍尔海洋生物研究所的工作,对海洋生物学的发展起了重要的作用。 20世纪 60、70年代以来,由于电子计算机、信息论、控制论和微量化学元素测定等数理化新成就、新技术的应用,海洋生物学的研究发展到新的阶段。如英、日学者利用生物工程技术研制出控制海洋鱼苗性别的方法;美国发射海洋卫星调查海洋鱼群的数量和种类变化等。该阶段的特点是:①海洋生物学研究出现了大综合趋势,海洋生态系研究兴起。如对珊瑚礁生态系、上升流生态系的研究。②实验生物学研究大力开展,并与生产实践密切联系,进行水产增养殖研究,“海洋水产生产农牧化”已成为重要的发展方向。据统计,中国海藻养殖1983年年产150多万吨(鲜品),日本约为50多万吨;中国对虾养殖产量1984年已达2万吨,大大超过了同年的捕捞产量。③向深海和远洋两个方向发展。研究深海和远洋生物的生命活动、代谢规律和演变及其资源,如对南大洋磷虾资源的调查和利用;美国等国学者在深海海底,发现独特的化能自养的细菌和动物等组成的海底热泉生物群落,它们组成了一个与陆地、淡水以及绝大部分海域迥然不同的物质循环和生态系统。④海洋生物药物研究兴起。自50年代后期在柳珊瑚中发现有价值的药用成分后,沿海各国纷纷从海洋生物中寻找药物,目前已知的海洋药用生物已有一千多种。 中国对海洋生物的科学研究始于20世纪20年代,以后曾活跃一阵。30年代初在厦门组织了全国性的“中华海产生物学会”,30年代中期海洋生物研究中心逐渐转移到青岛。30年代后期至40年代,中国海洋生物研究基本处于停顿状态。50年代及其以后,在中国科学院、教育部、国家水产局和海洋局系统以及一些省市,先后建立了海洋生物的研究机构,开展了全国性的海洋调查、渔场调查、海洋水产养殖和栽培,以及实验生物学和海洋生物学基础理论的研究,取得了许多较高水平的成果。 3.海洋生物学- 研究内容 海洋生物学研究的内容极为丰富,且随着海洋调查手段和开发技术的改进而不断地发展。可以说生物学的各个领域──分类、形态、区系分布、生态、生理、生化、遗传等,在海洋生物学中均有相应的发展。但研究程度相差甚远,目前海洋生态的研究较为成熟,已形成海洋生态学。

管理运筹学结业论文11

运筹学论文 运筹学(operational research,缩写O.R.)的“运筹”就是运算、筹划的意思。实际上,现实生活中几乎在每个人的头脑中都自然地存在着一种朴素的“选优”和“求好”的思想。例如,当准备去完成一项任务或去做一件事情时,人们脑子里自然地会产生一个想法,就是在条件允许的范围内,尽可能地找出一个“最好”的办法,去把需要做的事情做好。实际上这就是运筹学的基本思想。 运筹学作为一门科学最早出现在第二次世界大战前夕,英国面临如何抵御德国飞机轰炸的问题。当时英国的鲍德西雷达站负责人A.P.罗威建议马上展开对雷达系统运用方面的研究。为区分于技术方面的研究,他提出了“operational research”这个术语,原意为“作战研究”。当时所研究和解决的问题都是短期和战术性的问题,第二次世界大战结束以后,在英美两国的军队中相继成立了正式的运筹学研究组织。并以RAND公司为首的一些部门开始着重研究战略性问题。例如,未来的武器系统的设计和其合理运用的方法,各种轰炸机系统的评价,未来的武器系统和未来战争的战略部署,以及苏联的军事能力和未来的发展预测等问题。进入了20世纪60年代,运筹学的研究转入了战略力量的构成和数量问题的研究,同时除了军事领域的应用研究以外,相继在工业、农业、经济和社会问题等各领域都有了应用。与此同时,运筹学的研究进入了快速发展阶段,并形成了运筹学的许多新的应用分支。 O.R.传入中国后,曾一度被译为“作业研究”或“运用研究”。1956年,中国学术界通过钱学森、许国志等科学家的介绍,在了解了这门学科后,有关专家就译名问题达成共识,即译为“运筹学”。其译意恰当的反映了运

力学小论文

题目:自行车力学探究 摘要:自行车是我们日常生活中见到的最普遍的交通工具,然而当我们骑车时它的具体受力情况是怎样的我们却不太清楚,本实验目的主要是探究自行车轮胎的摩擦力系数的测定,并在此基础上探究它在转弯的时候的受力情况。 关键词:摩擦力系数、力偶、杠杆、自行车 引言: 自行车上的力学、结构方面应用了很多科学知识,简单举例:1、杠杆原理:车闸,你在车闸处轻轻一握,就可以产生一个很大的拉动刹车装置的力量。 2、滑动磨擦(两种情况的利用):刹车、车轮,刹车是利用了滑动磨擦使车子停下来,而车轮则正好相反,他利用了滑动磨擦,使车子向前行进,车轮上的花纹就是为了增大他的磨擦系数的。 3、滚动磨擦:他的目的是为了省力。自行车用滚动磨擦的地方

很多,比如在转向装置、车轮轴里安装的轴承,就是利用了滚动磨擦。 4、力偶的原理:手在车把上产生的力正在是以前车叉为原点的一对力偶,力偶比一个单向力更容易控制,也更省力。 5、弹性碰撞的原理:说白了主要就是减震,充气轮胎、车子上的弹簧,都是把钢性碰撞改变成弹性碰撞,从而减少对人体的冲击力,使人骑起来更舒适。 对于本实验,考虑到自行车运动时与地面的摩擦是滚动摩擦,于是用自行车轮胎制成滑块测出橡胶与地面的摩擦系数。我们采用在不同场地多次测量取平均值的方法,来测橡胶轮胎与摩擦面的摩擦系数,在进行这个实验时要注意两点:一是拉力保持水平;二是尽量使滑块保持匀速运动。 器材:5个弹簧秤、2个滑轮、自行车(说明:多个弹簧秤和滑轮是打算在单个弹簧秤不足时用的) 数据: 表一水磨地 表二水泥地

结果:摩擦力系数:水磨地取平均值:0.38 水泥地取平均值:0.72 讨论:当过弯半径R分别为50m、20m、10m时,在水泥地上骑车最大速度Vm分别为多少。受力图如下: 自行车M:10 Kg 人m:60 Kg (M+m)Vm^2/R=μG Vm=(μGR/(m+M))^1/2 当转弯半径为50m时:Vm=18.2m/s 当转弯半径为50m时:Vm=11.9m/s 当转弯半径为50m时:Vm=8.4m/s 结论: 1、橡胶轮与水磨地的摩擦力系数为0.38 橡胶轮与水 泥地摩擦力系数为0.72;

结构力学结课论文:结构动力学振动理论在建筑结构抗震中的应用研究

结构动力学振动理论在建筑结构 抗震中的应用研究 摘要:随着社会的不断发展,抗震功能在建筑结构设计中的要求日益提高。通过结构动力学振动理论的研究应用,抗震技术得到了很大发展。本文将运用单自由度无阻尼和有阻尼受迫振动的理论知识,通过对动力学中的结构动力特性、建筑结构设计中的抗震功能的分析,简要介绍装有粘弹性阻尼器的单自由度体系的应用实例。 关键词:建筑结构抗震结构动力学振动理论单自由度体系简谐荷载 一、综述 随着社会的不断向前发展,建筑结构形式日益多样化,结构设计中对于抗震功能的要求也越来越高。与此同时,各门学科的交叉发展使得建筑结构抗震技术的运用走上了一个新的阶段。 传统的结构抗震设计不仅仅使得结构的造价大大增加,而且由于地震的不确定性而往往难以达到预期效果。通过运用动力学的相关知识来分析隔震减震装置在地震作用下的反应可以发现,自振振动在结构的地震反应中经常占有主导地位,不能够忽略。那么运用动力学理论分析,找到结构反应的最大控制量,通过改进材料的性能参数,就能够使用最合适的材料来制造隔震减震装置,提高装置的使用效能,这样就有希望把被动控制技术推向一个新高度。

二、单自由度无阻尼受迫振动 当体系上作用的外荷载为简谐荷载,同时忽略体系的阻尼,单自由度体系的运动方程为: 式中:p0为简谐荷载的幅值;为简谐荷载的圆频率。 体系的初始条件为: 该方程的解为: 解的第一部分为结构的自振频率振动的部分,即伴生自由频率的振幅,记为: 其中,为自振频率的振幅: 解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中,为自振频率的振幅:

解的第二部分为激振频率振动的部分,即稳态动部分,记为: 其中:为激振频率振幅: 比较两部分振动的振幅得到: 由上面的式子可以看出,结构自振的振幅与稳态振动部分的振幅的比值是成反比例的。当1 θ≥时,按自振频率部分的振幅大于按荷载频率的部分的振幅,尤其是当1 θ>时,自振部分在结构反应中将占相当重要的部分。 三、单自由度有阻尼受迫振动 在简谐荷载作用下,单自由度体系的运动方程和初始条件为: 该方程解为:

海洋生物学

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 海洋生物学是研究海洋中生命有机体的起源、分布、形态结构、进化与演替特征、生命过程及其规律,并探索海洋生物之间以及生物与海洋环境之间相互作用和影响的科学。本课程主要介绍海洋生物的形态学、分类学、生理功能、习性和分布、生殖与发育、资源开发与合理持续利用、各生物类群与环境的相互关系等,使学生对海洋生物类群有一个全面而系统的认识和了解。 2.设计思路: 作为专业核心课程,《海洋生物学》设置的目的是使学生掌握海洋生物的形态学、分类学、习性、分布以及各生态类群与环境的相互关系等。教学思路如下:1)介绍海洋生物学的概念和特点、海洋生物学研究的历史和现状;2)简述海洋生物与海洋环境的关系及海洋生物对海洋环境条件的适应;3)讲述海洋生物的分类与特征,主要介绍原核生物、原生生物、海洋真菌、海洋植物、海洋无脊椎动物、半索动物、脊索动物(包括海洋鱼类、海洋爬行类、鸟类和哺乳类)等;4)海洋生物资源利用与保护。 3. 课程与其他课程的关系: 先修课程:普通生物学、基础生态学等;并行课程:环境海洋学、环境微生物学、 - 1 -

环境生物学、生物化学、分子生物学、生态毒理学;后置课程:海洋生物学实验、生物海洋学。 本课程与上述课程构成了环境科学专业环境生物与化学方向有关海洋生物与生态的课程群,内容和要求各有侧重、联系密切。 二、课程目标 《海洋生物学》是环境科学专业的核心课程,主要目标是通过课程的学习,使学生掌握海洋生物学的基本理论和知识,包括海洋生物形态学、分类学、生理功能、习性和分布、资源开发与合理持续利用、各生态类群与环境的相互关系及各生态类群的研究方法等,使学生对海洋生物类群有一个全面而系统的认识和了解,为今后学习其他相关专业课程打下扎实的基础。 三、学习要求 教学过程包括课堂授课与讨论、课外作业等形式,要求学生做到课前提前预习教材相关章节、课后完成课下作业;教学过程中,重点内容会组织小组讨论,由学生分组针对特定的科学问题做调研,并以PPT的形式课上报告,交流讨论。 要完成所有的课程任务,学生必须: (1)按时上课,上课认真听讲,积极参与课堂讨论、随堂练习和测试。本课程将包含较多的随堂练习、讨论、小组作业展示等课堂活动,课堂表现和出勤率是成绩考核的组成部分。 (2)按时完成常规作业。这些作业要求学生按书面形式提交,只有按时提交作业,才能掌握课程所要求的内容。延期提交作业需要提前得到任课教师的许可。 (3)完成教师布置的一定量的文献和背景资料阅读等作业,其中大部分内容要求以小组合作形式完成。这些作业能加深对课程内容的理解、促进同学间的相互学习、并能引导对某些问题和理论的更深入探讨。 - 1 -

运筹学论文及案例

运筹学课程论文与案例分析 专业: 姓名: 学号: 指导老师:

运筹学课程论文与案例分析 摘要:运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。运筹学思想贯穿了企业管理的始终,它在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用。本文主要通过对运筹学的分析,结合企业管理,浅谈了运筹学对企业管理的影响。掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。 关键词:管理运筹学线性规划 正文: 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法解决。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。” 运筹学的具体内容包括:规划论,包括线性规划、非线性规划、整数规划和动态规划、库存论、图论、决策论、对策论、排队论、可靠性理论等。而《应用运筹学》作为运筹学的一部分,则重点介绍了管理运筹的思想与建模方法。具体包括了线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。其主要特点是注重运筹学原理及方法在解决实际管理问题时应用,突出了管理问题的分析和运筹模型的构建过程,淡化了模型的理论推导和数学计算。借助于十分普及的Excel软件来求解模型,使得运筹学模型的应用更加简明直观。 线性规划是运筹学的一个重要分支。线性规划解决的是,在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,

结构力学论文

结构力学论文

————————————————————————————————作者: ————————————————————————————————日期:

成绩 土木工程与建筑学院 结构力学论文 (2016—2017 学年度第一学期) 课程名称:结构力学 论文题目: 浅谈位移法 任课教师: 姓名: 班级: 学号: 2017 年 1 月 1

日 浅谈位移法 摘要位移法是超静定结构分析的基本方法之一,也称变位法或刚度法,通常以结点位移作为基本未知数。位移法有两种计算方式,一种是应用基本结构列出典型方程进行计算,另一种是直接应用转角位移方程建立原结构上某结点或截面的静力平衡方程进行计算。 关键词基本原理典型方程超静定结构 一、简介 位移法以广义位移(线位移和角位移)为未知量,求解固体力学问题的一种方法。位移法的思想是法国的C.-L.-M.-H.纳维于1826年提出的。 位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,可以应用于有侧移刚架结构的计算。此外,对于结构较为特殊的体系,应用位移法可以很方便地得出弯矩图的形状,位移法不仅适用于超静定结构内力计算,也适用于静定结构内力计算,所以学习和掌握位移法是非常有必要的。 二、计算种类 1.典型方程法 位移法可按两种思路求解结点位移和杆端弯矩:典型方程法和平衡方程法。下面给出典型方程法的解题思路和解题步骤。 1.1位移法典型方程的建立: 欲用位移法求解图a所示结构,先选图b为基本体系。然后,使基本体系发生与原结构相同的结点位移,受相同的荷载,又因原结构中无附加约束,故基本体系的附加约束中的约束反力(矩)必须为零,即:R1=0,R2=0。 而Ri是基本体系在结点位移Z1,Z2和荷载共同作用下产生的第i个附加约束中的反力(矩),按叠加原理Ri也等于各个因素分别作用时(如图c,d,e所示)产生的第i个附加约束中的反力(矩)之和。于是得到位移法典型方程:

世界海洋生物学研究历史

世界海洋生物学研究历史 海洋生物学是海洋学的分支学科,同时也是生物学的分支学科。它主要关注海洋生物本身,在细胞、机体和种群水平上,研究生物体形态结构、生理以及行为上对环境的适应性等(杨万喜 2012)。自古以来,人类就因为捕鱼、航海等活动与海洋发生着关系,逐步了解一些海洋生物与海洋环境的关系。但是,海洋生物学作为一门系统学科的历史较短(沈国英施并章 2002)。 早在古希腊时期(公元前四世纪),科学家亚里士多德就在《动物志》中记述了170多种海洋生物,按现代分类包括有海绵动物、腔肠动物、蠕虫、软体动物、节肢动物、棘皮动物、原索动物、鱼类、爬行类、海鸟、海兽等十多个主要动物类群,其中海洋鱼类即有110多种(价值中国网站 2006 )。而在中国,公元前三世纪左右刊行的中国《黄帝内经》中,就也已经有了用墨鱼治病的记载。更不要说公元前一世纪前成书的《尔雅》,不仅记载有海洋动物,甚至还有海洋藻类。还有公元初古罗马普利尼乌斯的《自然历史志》,记录了170多种海洋生物。中国明朝屠本睃的《闽中海错疏》,记载有200多种海产生物(价值中国网站 2006 )。不仅如此,《闽中海错疏》即是我国也是世界比较早的一部水产经济动物志,又是动物学从以实用为主向系统动物学方向发展的重要著作之一。而且《闽中海错疏》比较全面地记载了福建的水产动物,包含不少动物形态、生态和生活习性方面的知识(湖南省科普网 2010)。我们可以发现,在古代,人类就已经体现出了对海洋生物学的巨大好奇以及浓厚兴趣。尽管那时还没有海洋生物学的这个学科观念,但这并没有阻止人类对海洋生物的探索。这便是海洋生物学的萌芽阶段。 随着自然科学和航运事业的发展,海洋生物学进入到了科学的研究时期。海洋生物学逐渐由萌芽阶段向初始阶段迈进。一些科学家开始进行零星的调查。例如,1674年,荷兰列文虎克最先发现海洋原生动物;1777年,丹麦米勒开始应用显微镜观察北海的浮游生物;英国的Forbs用底托网采集并观察底栖生物,提出海洋生物垂直分布的分带现象——潮间带(littoral zone)、昆布带(laminarian zone)、珊瑚藻带(coralline algae zone)以及深海珊瑚带(deep sea coral zone)并且按深度将爱琴海分成九个带和发表《英国海产生物分布图》(沈国英郭丰黄凌风施并章 2010)。以后科学家们也相继进行了多次大范围的海洋生物调查。19世纪前期,爱伦贝格在海洋中发现硅鞭藻类;英国达尔文对他在1831~1836年“贝格尔”号航海中采集的蔓足类和珊瑚类,进行了出色研究;德国米勒于1845年使用浮游生物网,采集和研究海洋浮游生物。1908~1913年,丹麦彼得松的工作奠定了海洋底栖生物定量研究的基础;1946年,美国佐贝尔的《海洋微生物学》奠定了海洋微生物,主要是海洋细菌的研究基础(价值中国网站 2006 )。 此外,海洋生物学的一些概念、术语也陆续被提出来。例如,1887年Hensen首先使用“浮游生物”(plankton)一词,1891年德国的Haeckel首先提出“底栖生物”(benthos)和“游泳生物”(nekton)两个名词,这是迄今为止仍继续沿用的海洋生物三大生态类群(沈国英施并章 2002)。此时,海洋生物学已经初步形成了一门系统的学科。 19世纪下半叶开始,出于自身的好奇心理,各国竞相派出海洋考察船,海洋生物的研究工作日益兴盛。各国的海洋生物学都取得了巨大的突破。其中,最有名的海洋考察是英国“挑战者”号调查船历时三年多(1872~1876)的环球调查,学者们采集了大量深层和中层生物,出版了50卷巨著,所记载的生物的新种达4400多个,使当时已知的海洋生物种数翻了几番(沈国英施并章 2002)。各国在此期间也设立了许多考察站,相继建立了许多海洋生物研究机构(最古老的海洋生物研究机构是意大利那不勒斯海洋生物研究所,成立于1872年,1874年正式开放。1888年,英国海洋生物学会成立了普利茅斯海洋研究所。美国于1888年在伍兹霍尔建立海洋生物研究所等等(价值中国网站 2006 ))这对海洋生物学的发展,起到了重大的促进作用。 20世纪初至50年代可以认为是海洋生物学研究的发展阶段。这个时期海洋生物学的主要特点是在大量的定性研究的基础上开展定量研究。例如,对于浮游动物和底栖动物的数量分布的研究等等。而且,在游泳生物上,人类也取得了不小的进展。例如研究人员开始对一些鱼类的分布、洄游和数量变化等开展调查(沈国英郭丰黄凌风施并章 2010)。这对捕鱼业以及鱼类研究专家积累了很多珍贵的材料资源。

相关文档
最新文档