切换成功率优化手册

切换成功率优化手册
切换成功率优化手册

目录

1 基本原理 (3)

1.1 指标含义 (3)

1.2 理论介绍 (3)

1.3 推荐公式 (3)

1.4 信令流程及统计点 (4)

2 影响切换成功率的因素 (5)

3 切换成功率分析流程和优化措施 (6)

3.1 切换问题的分析流程 (6)

3.1.1 通用切换问题定位流程 (6)

3.2 切换问题的优化方法介绍 (8)

3.2.1 切换问题分类 (8)

3.2.2 硬件和传输故障 (9)

3.2.3 数据配置不当 (11)

3.2.4 目标小区拥塞 (13)

3.2.5 时钟问题 (14)

3.2.6 干扰问题 (15)

3.2.7 覆盖问题及上下行平衡 (16)

3.2.8 BSC 间/MSC 间切换失败 (17)

3.2.9 自动邻区优化 (18)

3.2.10 测试工具选择及测试建议 (19)

3.2.11 现网测试配置建议 (19)

4 切换成功率优化案例 (20)

4.1 解不出BSIC码无法切换案例 (20)

4.2 MS和BSC对频点排序不一致导致无法切换案例 (20)

4.3 参数配置不合理导致无法切换案例 (20)

4.4 Handover Request如果不包含类标3,导致BSC入切换失败次数增加案例 (20)

4.5 A接口阶段标志配置错误导致入BSC切换失败 (21)

4.6 打开空闲burst导致干扰增大接收质量下降切换成功率低 (21)

4.7 不同交换机下发清除命令携带原因值不同导致切换成功率差异 (21)

5 问题信息反馈 (22)

5.1 反馈问题小区的TEMS测试log (22)

5.2 现网配置数据以及话统反馈要求 (22)

表目录

表1切换常用定时器列表 (12)

图目录

图1BSC内切换过程 (4)

图2BSC间切换过程 (4)

图3定时器详细说明和流程图 (12)

GSM BSS网络性能KPI(切换成功率)优化手册1 基本原理

1.1 指标含义

切换(Handover)是移动通信系统的一个非常重要的功能。作为无线链路控制的一种手段,切换能够使用户在穿越不同的小区时保持连续的通话。切换成功率是指所有原因引起的切换成功次数与所有原因引起的切换请求次数的比值。切换主要的目的是保障通话的连续,提高通话质量,减小网内越区干扰,为MS用户提供更好的服务。

1.2 理论介绍

切换成功率是移动保持类的重要指标之一,按照反映的流程不同可以分为切换成功率和无线切换成功率两类,按照涉及的网元关系可以分为BSC内切换成功成功率、入BSC切换成功率、出BSC切换成功率。切换成功率的高低,直接影响用户感受,是运营商重点考核的KPI指标之一。

1.3 推荐公式

切换成功率主要通过话统结果获得,其推荐的公式为:

切换成功率=切换成功次数/切换请求次数

无线切换成功率=切换成功次数/切换命令次数,具体统计公式请参见《GSM BSS 网络性能KPI(TCH掉话率)基线说明书》

1.4 信令流程及统计点

MS

BTS2

BSC

BTS1

MS

MSC

图1 BSC

内切换过程

MS BTS2BSC2MSC BSC1BTS1MS

图2 BSC 间切换过程

其中:A1——BSC内入小区切换请求次数、BSC内小区内切换请求次数

B1——BSC内入小区切换应答次数(BSC内入小区切换次数)、BSC内小区内切换命令次数

C1——BSC内入小区切换成功次数、BSC内小区内切换成功次数

A2——BSC间入小区切换请求次数

B2——BSC间入小区切换应答次数(BSC间入小区切换次数)

C2——BSC间入小区切换成功次数

A3——BSC间出小区切换请求次数

B3——BSC间出小区切换命令次数(BSC间出小区切换次数)

C3——BSC间出小区切换成功次数

各种切换成功率的公式对应到统计点可以表示为:

切换成功率:(C1 +C3)/(A1 +A3)

无线切换成功率:(C1 +C3)/(B1 +B3)

BSC内切换成功率:C1/A1

BSC内无线切换成功率:C1/B1

入BSC切换成功率:C2/A2

入BSC无线切换成功率:C2/B2

出BSC切换成功率:C3/A3

出BSC无线切换成功率:C3/B3

注:目前版本中,对BSC间切换过程,如果BSC收到MSC发来的CLEAR COMMAND消息,将不统计为切换失败,而BSC内切换过程中,如果用户主动挂机,将统计为切换失败。

2 影响切换成功率的因素

根据现网处理该问题的案例和现网实施的经验,影响切换成功率的因素有很多,例如:硬件传输故障类;

数据配置类;

拥塞类;

覆盖问题及上下行不平衡

干扰;

时钟问题;

BSC间\MSC间切换失败;

这些因素在第3章第2节进行了详细的说明。

3 切换成功率分析流程和优化措施

本章的重点在于给出在数据配置基本遵循参数基线的建议,工程质量没有任何问题,覆盖较好的情况下如何去解决一些切换问题。

3.1 切换问题的分析流程

切换一般存在如下几类问题:不发生切换引起掉话,切换失败,频繁(乒乓)切换,切换慢导致下行质量差;这些问题直接导致终端用户主观感受差,容易引起投诉,因此有必要提炼出一套快速甚至自动优化切换成功率的方法来提升网络质量和用户感受。

3.1.1 通用切换问题定位流程

一般切换问题的定位方法如下,通用流程:

3.2 切换问题的优化方法介绍

切换问题最终都可以归纳为两个小区之间的切换,小区的关系可能是BSC内不同基站间、BSC内相同基站间、BSC间等等。因此只要掌握如何对两个小区的切换问题进行定位和优化,就可以以点及面,解决一个大网的切换问题。

切换问题的可能原因大概分为如下几条:

硬件传输故障(载频坏、合路天馈问题);

数据配置不合理;

拥塞问题;

时钟问题;

干扰问题;

覆盖问题及上下行不平衡;

当出现切换成功率低的问题时,首先按照切换问题分类,了解切换问题的范围,然后根据硬件、数据配置、拥塞、时钟、干扰、覆盖等方面入手逐一排查解决,排除这些影响切换成功率的客观因素,然后根据自动邻区优化提升切换成功率。

3.2.1 切换问题分类

3.2.1.1分类说明

切换分类需要在分析切换成功率问题之前确定如下几方面内容:

首先,通过话统分析确定切换失败的范围,如果是所有小区切换成功率低,要从切换特性参数、A口电路、BSC时钟来检查问题;

其次,其他情况则过滤得出TOPN最差小区,针对小区按照如下的步骤进行排查问题。

再次,可以通过切换成功率和无线切换成功率的差异来区分是否存在无线接口的问题。无线切换成功率大于等于切换成功率。如果切换成功率比无线切换成功率低很多,就要分析地面链路、容量方面的问题。如果两者差别不大要考虑覆盖,干扰等方面的问题。

第四,查询切换性能测量中的出小区切换和入小区切换成功率,来分析是切出失败还是切入失败。再分析问题小区的出小区和入小区切换性能测量,从出小区性能测量中找出是往哪些小区切换失败,分析所有这些切入失败的小区“入小区切换失败次数(由于拥塞)”和

“TCH话务量(业务信道)”和“TCH拥塞率(占用遇全忙)”,确认是否目标小区拥塞导致切换失败。

第五,查询目标小区TRX完好率,TCH可用率等指标来确认是否又设备故障。

第六,查询TCH占用时A接口失败次数和地面链路断链次数来分析是否又地面链路设备的故障。

3.2.1.2话统分析

登记如下指标,通过以下指标的分析,基本可以确认切换问题的范围和基本的切换失败的原因。

3.2.2 硬件和传输故障

硬件故障的现象表现为:告警系统上报相应的告警信息。首先要排除这些硬件故障告警,若硬件故障告警恢复,则查看话务统计信息和分析切换指标。

硬件故障的情形如下:

BTS 传输管理单元;

BTS 载频故障;

BTS 合分路单元;

BTS 天馈故障;

3.2.2.1处理过程

首先检查硬件数据配置,如果出现故障的小区及其相邻小区的数据配置在近期没有修改,突然出现切换问题,则应首先考虑是否BTS 硬件故障造成。

若该BTS 下只有一个小区出现切换问题,则考虑是否由该小区本身的硬件故障造成,如部分载频损坏,引起呼叫切换到该载频时失败。

若该小区的共站址邻区也有类似问题,则考虑是否由各小区的共有硬件故障造成,如TMU 是否故障。

对于上述问题,可以采用闭塞部分载频的方式来验证。若闭塞某个载频后,切换成功率恢复正常,则可以查看是否该载频故障,或与该载频相关的CDU 或天馈故障。

若某载频的上下行信号严重不平衡,则会经常造成切换问题,如频繁切换、切换成功率下降等。

其次,采用跟踪Abis 接口的方式,观察该小区的信令是否正常,包括测量报告中的上下行接收质量是否良好,具体操作请参见《M900&M1800基站子系统信令分析手册》。

如果测量报告中的半速率信道接收电平质量或全速率信道接收电平质量较差,则该小区的硬件有故障,或存在严重干扰,信令不能正常交互,从而产生切换问题。

3.2.2.2话统分析

略。

3.2.2.3告警分析

观察告警,是否有如下ID的告警上报,如果有如下告警,请参考《BSS系统告警帮助》进行处理。

3.2.3 数据配置不当

3.2.3.1处理过程

数据配置不当导致的故障现象表现为:MS 不发起切换或过多的发起切换,从而影响切换成功率。

由于切换判决算法受切换参数的控制,如果切换参数配置不当,可能导致MS 不发起切换或过多的发起切换,此时可从以下五个方面来考虑:

数据配置中的PBGT切换门限设置是否合理

避免因切换门限设置过大导致难切换现象,或设置过小导致频繁切换现象,设置合理的切换保证不发生乒乓切换,各门限的设置参考《GSM BSC6000 性能参数基线(V900R008)(中英文)V2.0》,一般不要出现大幅偏离基线值的情况。

数据配置中的切换候选小区参数设置是否合理

避免因邻区漏配导致MS 无法切换到该邻区。

数据配置中的切换磁滞设置是否合理

避免因切换磁滞设置过大导致难切换现象,或设置过小导致频繁切换现象。

数据配置中的N、P 设置是否合理

避免因N、P 值设置过大导致切换判决不敏感、难切换的现象,或设置过小导致切换目的小区不是最佳的目的小区。

数据配置中避免出现同BCCH同BSIC小区

避免给同一小区设定同BCCH和同BSIC的邻区。

CIC电路异常造成切换失败

假如,目标BSC收到的Handover REQ 所分配的的CIC电路在该BSC被被标志为BLOCK状态,因此该BSC将回应MSC以Handover Failure,原因值为“地面资源不可用”。这种情况需要检查A口两侧电路状态,保证两侧电路状态一致。

电路状态不一致导致的切换失败,可以通过维护台跟踪A口信令的方式来确认,首先,跟踪A口信令,然后过滤Handover Failure信令,点开Handover Failure信令,查看原因值是否为“地面资源不可用”。

切换定时器

当切换发生异常时,需要快速检查一下切换定时器,保证切换定时器不低于设定的默认值。

定时器列表

表1切换常用定时器列表

定时器详细说明和流程图

图3定时器详细说明和流程图

3.2.3.2话统分析

略。

3.2.3.3告警分析

略。

3.2.4 目标小区拥塞

3.2.

4.1处理过程

目标小区拥塞的故障现象表现为:MS 发起切换请求后申请不到信道而切换失败。

导致小区拥塞的原因如下:

小区下用户数目激增,超过设计用户数;

网优参数设置不当,导致小区吸收了过多用户;

切换参数设置不当,导致切入小区的用户数增多;

当目标小区出现拥塞导致切换失败后,为避免MS试图再次切换到此目标小区,应对目标小区进行惩罚。建议将“惩罚处理允许”设为是。

查看拥塞小区信道状态是否正常,如果载频故障或信道状态异常,首先排除相关故障。

如果小区未允许将全速率信道调整为半速率信道,建议通过“BSC6000 本地维护终端”调整信道属性(全速率与半速率),打开该小区下所有载频的“TCH 速率调整允许”项,如果小区允许将全速率信道调整为半速率,则适当降低话务忙门限提早分配半速率信道来增加系统容量。以上方式仍然无法解决,则通过分裂小区或者小区扩容解决拥塞问题。在扩容短时间内无法完成,可以通过配置“预留信道数”为1或者2,为切换保留信道,减少拥塞导致的切换失败,提升切换成功率。

3.2.

4.2话统分析

登记测量单元信道分配遇全忙测量<小区>话统,通过该话统的分析,可以清楚了解立即指配、指配、BSC内小区内切换、BSC内入小区切换、BSC间入小区切换流程中,BSC分配SDCCH、TCHF、TCHH信道时,信道全忙或未配置的次数。然后结合切换失败对目标小区进行调整,如果是SDCCH拥塞则打开SDCCH动态分配允许,如果TCH拥塞,则通过降低半速率分配门限来及早分配半速率来缓解拥塞,同时可以将预留信道数设为1或者2为切换预留信道。

3.2.

4.3告警分析

略。

3.2.5 时钟问题

3.2.5.1处理过程

时钟不同步,BTS时钟不稳是引起切换掉话的重要原因,应注意保持基站时钟稳定,否则会因为时钟不稳,引起切换失败以及掉话过多。

13MHz失锁告警,基站BSIC无法解开,所在小区切换成功率降低。

时钟参考源异常,基站时钟与其他基站时钟之间可能出现偏差,导致手机在切换时可能出现异常。

解决时钟失锁以及参考源异常问题,首先需要检查告警:首先检查是否出现2214 E1本地告警或2216 E1远端告警,如果存在,则根据告警处理手册进行处理,然后观察切换成功率。然后检查基站传输线路时钟,用频率计测试基站传输线路时钟的频偏,观察频偏是

否大于0.05ppm;频偏大于或等于0.05ppm,说明传输时钟异常,E1传输线路或光传输线路可能出现故障,或者是时钟源出现故障,用逐段自环的方法排除传输线路故障,告警处理结束。如果仍然没有解决,四级复位基站,观察告警和切换成功率,如果仍然没有改善,更换TMU解决。

3.2.5.2话统分析

略。

3.2.5.3告警分析

观察告警,是否有如下ID的告警上报,如果有如下告警,请参考《BSS系统告警帮助》进行处理。

3.2.6 干扰问题

3.2.6.1处理过程

网络存在较大的干扰,容易引起接收质量下降,导致干扰切换或者质差切换增多,降低了PBGT切换比例,从一定程度上降低了现网的服务质量,影响用户的感受,甚至一定程度上影响切换成功率。

目前较为常见的干扰是同邻频规划干扰,联通CDMA干扰以及E频段大量复用带来的持续质差;空闲burst功能打开后未手动关闭也会带来全网干扰的上升,底噪变大,全网质量下降,影响切换成功率。

部分光纤直放站会由于拉远其源信号,容易造成同频干扰,这点在优化的时候,需要对源信号的频点和直放站附近的小区频点进行检查,使得频点间隔在400k以上。

对服务小区存在直放站的情况,需要在数据配置上配置:小区软参->是否有直放站,选择是。

干扰问题主要通过路测发现现网存在的干扰大的小区或者频点,然后通过调整天馈倾角,更换频点,调整发射功率和小区覆盖范围等常规的RF优化手段解决。也可以通过辅助手段,登记干扰带测量,来估计下行的干扰情况。

干扰问题主要通过RF优化来解决,详情请参考《GSM干扰分析指导书》进行干扰问题的排查和解决。

3.2.6.2话统分析

略。

3.2.6.3告警分析

略。

3.2.7 覆盖问题及上下行平衡

3.2.7.1处理过程

信号覆盖问题的现象表现为:切换成功率低、伴随着掉话且语音质量较差,用户直观感受差,通话过程中有杂音和金属声。信号覆盖问题主要存在三类,一类是越区覆盖,由于边缘门限设置过低,基站功率过大,倾角不合适导致越区覆盖,形成同频干扰,影响切换成功率;一类是孤岛效应引起的切换成功率低,如服务小区的覆盖远远超过其邻区,且未与其邻区的邻区配置相邻关系,这种情况容易在服务小区的边缘发生切换失败;弱覆盖形成的覆盖漏洞,不再详述。信号覆盖问题主要通过网优的路测报告发现现网的覆盖问题,通过RF优化解决。

越区覆盖引起切换成功率低;

孤岛效应导致切换失败;

弱覆盖形成的覆盖漏洞;

上下行不平衡导致的切换成功率低,一般多发与上行较弱的情况。如CDU合路器等硬件存在问题,上行通道损耗过大,上行信号弱,入小区切换成功率较低。入小区无线切换成功率低一般是由于数据有问题(如小区描述数据表中CGI有误、BA1、BA2缺少测量频点或同邻频干扰等),存在高话务覆盖盲区或者上行弱手机接入困难等原因。可以通过以下步

骤进行测试和分析。首先,检查相应小区的硬件、维护单板状态是否正常,是否存在硬件故障类以及驻波告警。刷新信道状态,TCH是否能被正常占用。排除硬件和信道问题之后,检查切换数据配置,切换数据保证与参数基线基本吻合。登记小区级切换话统,检查是否存在某些小区间切换成功率始终很低。针对切换成功率始终低的小区,进行实地测试,做强制切换和锁定主B分别做主叫和被叫,根据切换和主被叫的情况来判断上下行的问题。如果存在上行损耗过大,建议替换合路器进行观察和测试。

覆盖问题和上下行平衡主要通过RF优化解决,详细分析,请参考《GSM BSS 网络性能KPI(覆盖问题)优化手册V1.0.doc》

3.2.7.2话统分析

对切换成功率低的小区登记话统测量报告上下行平衡测量<载频>,对各载频上下行平衡情况进行统计和分析。

3.2.7.3告警分析

略。

3.2.8 BSC 间/MSC 间切换失败

3.2.8.1处理过程

BSC 间/MSC 间切换失败的故障表现为:无法在BSC 间或MSC 间进行切换。

导致BSC 间切换失败或MSC 间切换失败的原因如下:

MSC 切换的相关小区数据配置错误;

目的BSC 切换的相关小区数据配置错误;

MSC 与BSC 对A 接口切换信令的理解不一致,导致A 接口配合失败;

BSC 间时钟不同步;

首先,检查MSC 上与切换失败小区相关的数据配置是否正确,如小区CGI、小区归属的局向等。如果存在异常,修改正确后观察切换是否成功。

其次,检查切换相关的源BSC 和目的BSC 的邻区配置是否正确,如果存在异常,修改正确后观察切换是否成功。

再次,跟踪A 接口信令,检查源BSC 与MSC 以及MSC 与目的BSC 在切换流程的信令配合上是否存在异常,如是否存在MSC 异常释放切换等流程。如果存在异常流程,需

要先找出导致异常流程的原因,解决后观察切换是否成功。信令分析请参考《M900&M1800基站子系统信令分析手册》。

最后,检查切换相关的源BSC 和目的BSC 的时钟是否锁定了上级MSC 时钟,如果BSC 没有锁定MSC 的时钟,则先找出时钟不能锁定的原因,解决后观察切换是否成功。

3.2.8.2话统分析

略。

3.2.8.3告警分析

略。

3.2.9 自动邻区优化

自动邻区优化是目前最好的优化切换成功率的手段,自动邻区优化曾经在MTN大局的新功能中经过充分验证,该思想目前被工具部采用进行优化。主要思想:通过多次的邻区选择和裁剪,给服务小区选择最优的邻区作为相邻小区的优化方法。自动邻区优化可以更好的贴近服务小区的话务模型,避免人为根据地理位置强行配置邻区导致切换不能正常进行,引起掉话等问题。

自动邻区优化的前提是基本排除了硬件问题、越区覆盖、上下行不平衡等客观因素。自动邻区优化之前需要清楚服务小区切向哪个邻区成功率比较低,然后针对该邻区做相应的优化。优化措施包括参数的调整、邻区的调整两类。

具体优化流程如下:

根据地理位置远近,给服务小区配置尽可能多的邻区,争取达到32个的上限;

登记“出小区切换性能测量”类话统,话统周期15分钟;

观察话统,将切换成功率低于30%的邻区、掉话率高于80%或者根据话务情况将切换次数稀少,如折合每小时30次切换的小区从邻区中剔除;

剔除某个邻区后,根据TA由小到大的原则,重新加入新的邻区并重复以上的操作;

邻区自动优化流程图:

TA 的限制为平均站间距的6倍,超过平均站间距6倍的邻区就不需要考虑了。切换成功率低的标准可以灵活操作,切换次数少的标准也可以灵活设置。

3.2.10 测试工具选择及测试建议

测试工具一般选择业界公认和大规模使用的TEMS ,对于切换成功率低的小区,需要对其进行路测。路测可以模拟终端用户的实际移动方式和习惯,对于优化邻区有着重要的作用,可以避免只根据地图的地理位置分布添加不合适邻区导致切换少或者切换成功率低的风险。路测中任何切换异常都要引起重视,重点分析,这些都是引起切换成功率低的可能因素。

3.2.11 现网测试配置建议

现网配置请参考最新的《GSM BSC6000 性能参数基线(V900R008)(中英文)V2.0》按

照场景进行配置。出现切换成功率低时,需要重点检查与参数基线出入较大的数据配置。

循环优化

4 切换成功率优化案例

4.1 解不出BSIC码无法切换案例

某局路测发现手机无法解析邻区的BSIC码,导致手机在检测到邻区电平很好时,也无法发起切换。

经过分析是PTCCH信道指向错误的内存区域(全0),导致部分手机误认为此信道为FCCH信道,从而同步SCH信道失败,BSIC解不出来,属于产品问题,通过版本升级解决。

4.2 MS和BSC对频点排序不一致导致无法切换案例

某局现场通过查看TEMS路测文件发现,E频点主B小区无法切向P频点切换。经查MS侧对各个频段频点的排序规则与BSC不同,在服务小区为E频段并且配置了1800邻区的情况下,MS侧先排E频段的频点,后排1800邻区,而BSC会排了1800邻区后再排E 频段的频点,这样导致B侧和MS侧邻区排序不一致导致无法切换。

通过关闭“BA下发优化方式”可以规避该问题。

4.3 参数配置不合理导致无法切换案例

某局(BSC6000V9R8版本)发现无论如何不能够发生BQ切换。经查服务小区的小区间切换磁滞设为63。经过核对代码,如果质量差切换带设定为默认值时,小区间切换磁滞设为63,服务服务小区的电平相当于被认为提高63个等级,因此服务小区的计算电平非常高永远大于任何一个邻区的电平,所以无法发起切换。

通过将质量差切换带加大到127解决。

4.4 Handover Request如果不包含类标3,导致BSC入切换失败次数增加案

某局对BSC边界的小区,小区主B配置为PGSM,而其他载频为EGSM。具体现象:BSC入切换失败次数增加,失败原因为无可用信道。BSC6000依据类标3来判断切入手机的频段支持能力,如果没有类标3就认为手机只支持主B的频段。如果Handover Request

不包含类标3且小区内其他载频频段和主B不同,则切入的手机都会被分配到主B上导致拥塞,切换失败。将载频频段改为PGSM后,由于无可用信道导致的入BSC切换失败次数降为0,问题规避。但按照协议,类标2也有相应字段标识手机是否支持EGSM或RGSM (不能标识DCS1800)。某些MSC在handover request中只带类标2,或者开通了EGSM 的小区,手机未上报类标3,都会导致这种情况的发生。

LTE切换优化专题-参数功能和优化思路

内容:参数功能及设置、切换原理、信令流程、优化案例等。 1LTE切换原理 1.1Intra-eNodeB切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当UE从当前所处的服务小区切换到同一eNodeB下的另一小区时,会发生Intra-eNodeB切换。 基于X2接口的切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当两个eNodeB之间存在X2接口时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于X2接口的切换。 基于S1接口的切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当两个eNodeB之间不存在X2接口,或X2接口不可用时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于S1接口的切换。 1.1.1LTE到3G的切换 实现LTE到3G的切换首先需要满足几个前提: 1.网络侧,LTE系统和3G系统均支持LTE到3G的PS切换 2.UE侧,UE需要支持LTE到3G的PS切换,UE的Feature Group Indicator bit 位8 和bit位22数值必须为1。 LTE到3G切换的流程概述: 1.LTE基站如果收到UE上报的A2测量报告,发现LTE的覆盖较差。 2.LTE基站通过RRC重配置消息对UE配置B2事件的测量的相关参数。 3.LTE基站收到B2事件的测量报告后,通过MobilityFromEutranCommand通 知UE发起到3G的切换。 4.LTE基站收到UE上发的MobilityToUtranComplete,切换成功。 主要的LTE RRC空口信令: ●UE上报B2测量报告:Measurement Report ●UE在LTE小区收到往3G切换命令:MobilityFromEutranCommand ●UE向LTE小区反馈到3G切换成功:MobilityToUtranComplete

LTE切换成功率分析-中兴20140818

切换分析 1.全网切换指标统计 近期切换成功率呈持续下降趋势,对切换失败原因进行统计,发现切换成功率降低与目标侧准备失败上升呈相同趋势,原因为近期核心网组POOL,个别站点漏配路由导致周围小区向该基站切换入全部失败和邻区参数存在5000多条不一致导致切换出侧准备失败。这两个问题在8月14日下午部分进行处理,8月15日切换成功率回归到98.07%,但仍跟8月6日98.5%存在差距。 提取8月17日切换成功率相关指标,发现子网-1、子网-2、子网-3、子网-4切换成功率差的主要原因为准备失败-目标侧准备失败;子网-6切换成功率差的主要原因为准备失败-其他原因。 子网1:

子网2: 子网3: 子网4:

子网5: 子网6:

子网10: 集团切换成功率公式: (C373250980+C373261280+C373271580+C373281880+C373292180+C373302480)/(C3732509 00+C373250901+C373250902+C373250903+C373261200+C373261201+C373261202+C37326 1203+C373271500+C373271501+C373271502+C373271503+C373281800+C373281801+C373 281802+C373281803+C373292100+C373292101+C373292102+C373292103+C373302400+C3 73302401+C373302402+C373302403+C373250988+C373261289+C373271588+C373281888+ C373292189+C373302488) 相关计数器说明如下表:

如何提高切换成功率讲解

如何降低切换失败率 切换成功率是无线网络中一项重要的统计指标。高切换成功率显示了网络的某一方面的正常运转。因此,降低切换失败率,从而提高切换成功率是网络优化中关键的工作项目之一。 一.切换流程: 移动台不断将6个最强邻小区上报,基站子系统判决移动台是否需要切换,向哪个小区切换。网络向移动台发出切换命令(handover command),启动切换进程,切换命令包括目标小区TCH,接入目标小区的初始功率等信息。移动台多次向目标小区发送Handover Burst,如成功接入目标小区,由目标小区向BSC 发送切换成功的消息。目标小区等待移动台接入切换信道,如不成功,移动台返回源小区,并由源小区向BSC发送切换不成功的消息。如果移动台向目标小区的切换失败,而且源小区在定时器超时之前没有收到移动台返回的消息,则BSC 向MSC发送清除请求,移动台发生掉话。

二.切换失败: 切换失败可以划分为两方面的问题:即信道容量、无线链路失败。 Handover Selection Failure 是从BSC到BTS的HO_COMMAND数与BTS 收到的HO_INDICATION数之差。它可以帮我们找出由于目标小区信道资源不足引起的切换失败,或系统的问题(难以建立BSC与BTS之间的L2连接)。 HandoverExecutionFailure 是数与BSC发向BTS的HO_COMMAND数与BSC 收到的HO_COMPLETE之差。主要反映了空中无线接口的质量。 三.造成切换失败的可能原因及分析: ?硬件问题: 当切换失败率非常高时,硬件故障可能性最大 ?相邻小区关系问题 ?邻小区负荷 ?恶劣的无线环境 A.相邻小区关系问题: 如果两个小区有相同的(BSIC,BCCH),在正常的情况下这样的两个小区的相距距离应该足够大,他们之间不应该有什么关系。但由于孤岛现象的存在,一旦孤岛覆盖周围的小区的邻小区表上定义了与孤岛小区同BSIC、BCCH的邻小区,位于此地的通话手机将会收到孤岛小区的BCCH信号并上报BSC,这个虚假的邻小区测试报告将会误导切换控制程序发出切换指令,这样就使得这些小区内的通话频频尝试向实际信号并不好的小区发出切换请求。其结果往往造成乒乓切换,并导致孤岛覆盖周边小区的切出切换失败率大幅提高。而与孤岛小区具有相同BSIC、BCCH的小区的切入切换失败率也将大幅提高。

指派成功率和切换成功率专题分析解析

TCH指派成功率(不含切换)的优化 目前,无线系统接通率是联通总部考核的指标之一,从下面的无线系统接通率的公式可以看出,TCH分配成功率对该指标的优劣具有非常重要的影响,同时TCH指派成功率的提升对改善网络的寻呼成功率等指标也是有着积极意义的。 为此,我们专门对TCH指派成功率进行了专题优化。 首先分析TCH指派失败的成因,TCH指派失败的原因主要有五个方面:直接重试(directed retry)过程导致的失败、没有无线资源可用(no radio resource)导致的失败、无线接口故障返回SD(radio interface failure reversion to old channel)导致的失败、无线接口消息错误(radio interface message failure)导致的失败和其它原因(all other cause)导致的失败。其中以没有无线资源可用的原因所占的比例最大。 由上表列出了1月8日到1月25日20:00~21:00TCH指派失败的统计,可以看出,正是由于“没有无线资源可用”的原因导致的TCH指派失败次数主要集中在没有无线资源可用(no radio resource)导致的失败,这是由于TCH拥塞而造成的,而且随着TCH分配失败的次数越来越多,没有无线资源可用(no radio resource)导致的失败所占比例也越来越高,因此,解决TCH拥塞是提高TCH分配成功率的根本方法。缓解TCH拥塞可以通过减扩容

恒大新城12341小区扩容后拥塞情况得以解决,TCH指派成功率上升;

七星路林业大厦14352小区拥塞情况得以解决,TCH指派成功率上升; 高岭收费站18371小区扩容后拥塞情况得到解决,但是30号又出现拥塞,经检查发现 有一块载频TPU:0故障,经过测试恢复工作,若再出现退服则建议及时更换; 安吉路尾18583小区扩容后拥塞情况得以解决,TCH指派成功率上升;

切换优化操作手册

切换优化操作手册 在测试过程中,我们一般会遇到较多的切换问题,如强信号质差、切换失败、切换频繁等等切换问题,下面我们对测试过程中的一些切换问题的进行总结,希望对大家有所帮助。 一、切换基本原理: 切换就是指将一个正处于呼叫建立状态或BUSY状态的MS转换到新的业务信道上的过程。MS在通话过程中,不断地向所在小区的基站报告本小区和相邻小区基站的无线环境参数,同时BTS也在不停的测量上行信号的强度和质量,以及TA值。而后由BTS把测量报告送往BSC中进行locating运算,由BSC决定是否进行。 二、切换类型及触发条件 网络中的切换有很多种类型,现网中主要见到的有: 1)正常切换:这种切换通常是由于相邻小区能提供更好的链路。 2)质差或超TA紧急切换:主要是当前情况下出现链路质量非常差,或者时间提前量TA太大,将导致紧急切换。 3)小区内切:这种切换行为主要是为了提高C/I的载干比,当信号电平足够高,而误码足够大时就发生小区内切换。 三、常见切换问题 日常的测试过程中主要遇到的切换问题有切换失败、切换频繁等问题。 切换失败问题:

1)对于测试过程中遇到的切换失败问题,主要从以下几方面着手分析:是否存在较强邻区,但是不切换;是否有切换命令,但是切换不成功的; 2)对于有较强邻区,但是不切换的问题,可以从以下几方面着手考虑:有无定义邻区关系。用RLNRP检查是否定义相邻关系。 邻区关系定义是否正确,主要是考虑同MSC不同BSC之间切换,有 无在BSC定义外部小区,或定义是否正确(用RLDEP等指令检查); 不同MSC之间切换的,有无在MSC(用MGOCP等指令检查)和BSC (用RLDEP等指令检查)定义外部小区,或定义是否正确。 参数设置是否正确,影响较大的主要是层切换的参数,layer,layerthr, layerhyst等; 目标小区是否有硬件问题。可以通过分析话务统计数据、拨测、查 看小区故障记录等手段定位,提交基站检测单。 3)对于已经有切换命令,但是切换不成功的问题,可以从以下几方面着手考虑; 查看话务统计(主要是TCH拥塞率、话务量、数据业务相关统计等

切换成功率低处理案例

LTE吉州区人民广场基站S1口少配导致切换成功率低处理案例 一、现象描述 在LTE网络KPI指标监控过程中发现吉州区人民广场区域的几个站点切换成功率极低,严重影响全网切换类指标,其中吉州区人民广场切换入失败次数每天达到4600多次,吉州区富华宾馆、吉州区红雨宾馆、吉州区附属医院,切换出失败次数和为4500多次。 二、原因分析 1.处理流程图

2.分析切换成功率低可能原因: 对KPI指标及周边环境分,可发现如下问题: 1)吉州区人民广场基站的邻区是否存在漏配、错配,外部邻区参数设置是否正确,PCI规划是否合理,切换参数设置是否有问题。 2)吉州区人民广场基站的切换入失败次数的和约等于周边基站切出失败的和,可定位为吉州区人民广场基站的问题导致其切入成功率低及周边基站切出功率低; 三、问题排查 1、吉州区人民广场及周边站点邻区核查 吉州区人民广场及 周边站点同频邻区核查

根据基站拓扑结构核查吉州区人民广场及周边站点的邻区,确定现网邻区无漏配的问题,确定吉州区人民广场及周边站点的PCI规划合理。 2、吉州区人民广场及周边站点外部邻区定义核查 吉州区人民广场及 周边站点外部邻区核查 核查吉州区人民广场及周边站点外部邻区的定义,主要核对外部邻区PCI及TAC设置,将外部邻区定义的PCI及TAC与现网比对,确定没问题。 3、同频切换参数检查及现场测试 吉安LTE网络刚开局,现网所有切换参数均为默认值,核查无问题。

现场测试,吉州区人民广场与吉州区附属医院切换正常,验证了该站的参数设置没问题,可能有其他不常见的问题导致。 4、后台跟踪 查询周边站点切换出失败原因全部为目标小区回复切换准备失败消息导致切换出准备失败

2G切换优化(缩写版)

广东移动 珠海移动无线网络规划与优化专案服务项目 切换性能的优化

目录: 1概述 (4) 2工作内容 (4) 3工作绩效 (5) 3.1E1局切换成功率达到指标要求(98%) (5) 3.2B2局切换成功率达到指标要求(96%) (5) 3.3提供了NCS、MRR、CTR、CER在切换优化研究中的使用方法 (6) 4OSS在切换优化研究中的应用 (6) 4.1NCS (6) 4.2MRR (7) 4.3CTR (8) 4.4CER (9) 5具体工作内容及优化思路详述 (9) 5.1全局性参数的检查与修改 (9) 5.1.1切换返回的惩罚时长(PTIMHF) (9) 5.1.2目标小区的切入电平(MSRXMIN) (11) 5.2优化切换成功率低的邻小区关系 (12) 5.2.1对BSIC的修改 (12) 5.2.2改善目标小区无线性能 (14) 5.2.3推迟向目标小区的切换时机 (14) 5.3删除不必要的邻小区关系 (20) 5.4切换相关计数器触发原理、切换丢失与掉话、评估公式 (20) 5.4.1切换统计相关计数器触发原理 (20) 5.4.2切换丢失与掉话的对应关系 (27) 5.4.3切换性能的统计方法说明 (33) 5.5乒乓切换的相关研究 (34) 5.5.1乒乓切换的产生原因 (34) 5.5.2乒乓切换的影响 (40) 5.5.3乒乓切换的处理 (40) 5.6小区内切换参数修改 (42) 5.6.1参数及原理说明 (42) 5.6.2参数修改 (43) 5.6.3修改前后主要网络主要指标前后对比 (43) 5.6.4修改前后网内整体干扰情况前后对比 (44) 5.6.5修改前后IHO数量的前后对比 (44) 5.6.6修改前后质量紧急切换数量的前后对比 (44) 5.6.7修改前后小区级的前后对比 (45) 5.6.8从IHO上判断基站问题 (47) 5.6.9结论 (47) 5.7质量紧急切换研究 (47) 5.7.1参数修改 (47)

切换成功率日常处理流程

切换成功率日常处理流程 一、切换的定义 切换过程是由MS、BTS、BSC以及MSC共同完成,MS负责测量无线子系统的下行链路性能和从周围小区中接收信号强度这些。BTS将负责监视每个被服务的移动台的上行接收电平和质量,此外它还要在其空闲的话务信道上监测干扰电平。BTS将把它和移动台测量的结果送往BSC,最初的判决以及切换门限和步骤是由BSC完成。对从其它BSS和MSC发来的信息,测量结果的判决是由MSC来完成。 系统对切换的判决取决于移动台定期对网络发送的测量报告(该测量报告是移动台在处于专用模式下时通过上行的SACCH信道来向系统报告),以及基站对上行链路的测量报告,这两份测量报告将同时送到BSC中进行判决。在SACCH信道的下行方向上,它负责向处于专用模式下的移动台来发送系统消息,其中有本小区和邻小区的参数设置情况。移动台就根据系统提供的这些信息,在通信过程中要向网络汇报本小区的接收电平和信号质量及TA值、功率控制和是否使用DTX的情况,此外还要对系统所定义的供该小区切换的邻小区来进行预同步并测量它们BCCH频点的接收电平。除空闲帧外,移动台要对所有的帧进行测量。空闲帧用于对最佳小区进行搜索,用于同步邻小区的FCH并解码SCH。上行方向上移动台将把在本测量周期内,它所测得的本小区的情况以及接收电平最强的六个邻小区通过上行的SACCH信道上报给系统,系统将根据这些情况来进行切换判决。二、切换的各类计算方法

HSR=(TCH切入成功+切出成功+DR成功)/ (TCH切入请求+切出请求 +DR请求) *100 _ TCH切入成功次数=(MC652-C92)+(MC642-C82)+(MC662-C102) _ TCH切出成功次数= (MC656-C96)+(MC646-C86) _ BSC内部DR切入成功次数=MC151 _ DR切出成功次数= MC142e+MC142f _ TCH切入请求次数= (MC821-C31)+(MC831-C331)+(MC871-C361) _ TCH切出请求次数= (MC650-C90)+(MC660-C100) _ BSC内部DR切入请求=MC153 _ DR切出请求= MC144e+MC144f > 作用:整体的切换成功情况> 坏门限: <95 %(根据各地实际情况而定) 三、切换成功率判断方法 1、在Cell lndicator(小区)级报表下,对全网切换成功率进行排序,用升序排序法筛选出切换成功率较低的小区。 2、用小区历史数据查询功能,检查指标异常出现在哪些时段。某一时段突发还是一直存在切换成功率较低的情况。 3、用小区详细质量分析功能,分析小区详细切换信息。(如下图)

X2接口切换成功率低问题分析处理

X2接口切换成功率低问题分析处理 一、发现问题 在日常指标监控中,发现龙泉市系统内切换成功率连续偏低且明显低于其他县市。 通过进一步的指标分析,发现龙泉全网的X2接口切换成功率异常。 二、问题分析 查看网管告警日志,并没有发现龙泉现网告警,硬件故障、底噪等异常情况。通过进一步分析npo指标发现: 1、龙泉全市的eNB小区间切换成功率保持在较高成功率水平; 2、X2接口切换次数较多,占到所有切换次数的75%(=66026/89982),成功率偏低; 而S1切换由于次数极少,只占到总切换次数的0.05%,对指标没有实质性的影响(在阿朗设计原则是优先选择X2 HO,如果X2 HO不能做,才选择S1 HO)。

通过提取小区级别指标来分析指标,我们发现部分基站X2接口切换次数多,切换成功率低。从地理位置上分析,这部分基站位于龙泉市区东侧,相互之间切换的次数较多。如下图所示。 进一步分析NPO计数器,从Indicator子项分析X2切换失败次数最多是12709_0 HOPreparationFailureOther (词条解释:X2AP HANDOVER PREPARATION FAILURE received from the target eNodeB目标小区x2AP切换准备失败)。

三、问题解决 第一步,实地测试 现场对问题区域内路段进行DT测试,让UE来回切换记录log,基站侧同时开启基站calltrace信令跟踪。 09:00:58:889UE发了一个MR消息,通过A3事件从PC150到148进行切换,之后UE连续发送了2个MR消息,但UE未收到eNB的RRC Connection Reconfiguration响应消息;RRC产生了掉线,最终重选回到LF_B_龙泉城东_1(PCI=150)。说明切换没有完成,尚在准备

切换问题分析优化流程

1 切换问题分析优化流程 切换问题分析优化流程和其他问题的优化流程的基本思路是一致的,详见下图。 1.1 切换问题搜集及优化目标 切换问题的搜集途径一般有网管后台性能统计报表、DT路测、用户投诉信息分析 等。 在赶赴工程现场后,需要和项目负责人(多数为办事处工程师)、运营商维护经理 等相关人员开会确定需要解决的问题以及优化KPI指标(暂时参考小区移动性能 报表中的统计项目)。 需要搜集的网络信息包括: 1)了解整个网络的组网方式、结构,确定系统由哪些RNC、CN组成,然后可以 根据这些组网信息,结合基站的分布和载频的配置情况,分析出哪些地方应该存 在异频硬切换,哪些地方应该是同频硬切换。 2)运营信息。包括用户数和用户分布信息,每天和每周的话务忙闲情况,以便数 据修改尽量避开话务忙时,以免给在网用户造成大的冲击。

3)告警信息和运行记录等,保证MSC、SGSN、GGSN、HLR、VLR的设备稳定 可靠,传输通畅,以便相应测试的进行。 4)工程参数总表。此表包括基站位置、配置和频点信息,天线高度、方位角、下 倾角等信息,更重要的是它还包含邻区列表,可以根据这些信息,结合组网信息 和覆盖连续需求,确定各载频间的同频相邻关系、异频相邻关系和系统间相邻关 系。 5)参数配置。收集现网的信道功率配置、切换参数和算法开关等等数据配置信息。 切换优化的指标包括硬切换成功率、系统间切换成功率等等,这些指标项和目标 要求需要和局方讨论确定。 1.1.1 小区移动性能报表 话统数据是网络优化中最重要的信息来源之一,也是评价网络性能的主要依据。 与切换相关的话统指标主要有以下几项:同频接力切换成功率(小区切换出)、同 频接力切换成功率(小区切换入)、异频接力切换成功率(小区切换出)、异频接力切 换成功率(小区切换入)、同频硬切换成功率(小区切换出)、同频硬切换成功率(小 区切换入)、同频硬切换成功率(RNC间切换出)、异频硬切换成功率(小区切换出)、 异频硬切换成功率(小区切换入)。 通过对以上和切换相关的指标的统计,既可以判断一个小区在切换上是否存在异 常之处。 注意:统计事件最好在一周以上。统计时间段可以按照忙时每小时进行统计,也 可按天统计。 1.1.2 DT路测分析 通行DT路过评估性的DT路测也是切换问题搜集的一种手段,特别是对于业务 量不高或者尚未投入商用的TD-SCDMA无线网络而言。 注意:进测时,需要进行往返性切换测试。 1.1.3 用户投诉信息分析 运维客服中心搜集到的用户投诉信息中,对于掉话较多的一些区域,切换掉话是 主要的原因之一,需要对覆盖相应区域的小区重点进行切换分析。特别是对于切 换不及时或者乒乓切换等进行重点分析。

TD-LTE网络性能KPI(切换成功率)优化手册

TD-LTE网络性能KPI(切换成功率)优化手册 1切换成功率定义说明 1.1指标公式 1.2COUNTER定义 1.2.1集团规范定义 1、eNB间S1切换出请求次数: 源eNB向MME发送的“切换请求”消息(HANDOVER REQUIRED)(3GPP TS 36.413),指示eNB间通过S1接口的切换出准备请求。向不同小区发送的同一切换准备请求,需要重复统计。 2、eNB间S1切换出成功次数: 源eNB收到MME发送的“UE上下文释放命令”消息(UE CONTEXT RELEASE COMMAND)(3GPP TS 36.413),指示eNB间通过S1接口的切换出执行成功。 3、eNB间X2切换出请求次数: 源eNB向目标eNB发送的“切换请求”消息(HANDOVER REQUEST)(3GPP TS 36.423),指示eNB间通过X2接口的切换出准备请求。向不同小区发送的同一切换准备请求,重复统计。 4、eNB间X2切换出成功次数: 源eNB收到目标eNB发送的“UE上下文释放”消息(UE CONTEXT RELEASE)(3GPP TS 36.423),指示eNB间通过X2接口的切换出执行成功。 5、eNB内切换出请求次数: eNB向UE发送携带mobilityControlInfo 的“RRC连接重配置”消息(RRCConnectionReconfiguration),指示eNB内小区间切换出请求。(3GPP TS 36.331) 6、eNB内切换出成功次数:

eNB收到UE发送的“RRC连接重配置完成”消息(RRCConnectionReconfigurationComplete),指示eNB内小区间切换出成功。(3GPP TS 36.331) 1.2.2NSN映射 1、eNB间S1切换出请求次数: M8014C14:INTER_ENB_S1_HO_PREP,The number of Inter eNB S1-based Handover preparations; 2、eNB间S1切换出成功次数: M8014C19:INTER_ENB_S1_HO_SUCC,The number of successful Inter eNB S1-based Handover completions; 3、eNB间X2切换出请求次数: M8014C0:INTER_ENB_HO_PREP,The number of Inter-eNB X2-based Handover preparations. The Mobility management (MM) receives a list with target cells from the RRM and decides to start an Inter-eNB X2-based Handover; 4、eNB间X2切换出成功次数: M8014C7:SUCC_INTER_ENB_HO,The number of successful Inter-eNB X2-based Handover completions; 5、eNB内切换出请求次数: M8009C6:ATT_INTRA_ENB_HO,The number of Intra-eNB Handover attempts; 6、eNB内切换出成功次数: M8009C7:SUCC_INTRA_ENB_HO,The number of successful Intra-eNB Handover completions; 1.3信令统计点 1.3.1eNB间S1切换

切换成功率低TOP小区分析

切换成功率低TOP小区分析 一、概述 提取最近一周粒度时间,切换成功率低于97%的为TOP小区,经过筛选总共816个为TOP小区。 TOP小区主要以农村乡下的小区分布居多,部分为城区小区和室分小区。 场景分布示意图: 二、切换分析 切换分析思路流程

◆切换出成功率低分析 1. 问题小区周边所有站点都切换成功率低:核查该区域站点是否存在GPS失锁、是否存在MR 弱覆盖; 2. 问题小区向所有邻区切换出成功率低:核查邻区配置参数是否异常; 3. 问题小区内部切换出成功率低,向其他邻区切换出正常:现场测试排查是否存在隐形故障或 安装不合理。 4. 问题小区向个别邻区切换出成功率低:核查目标小区是存在告警、干扰;问题小区是否添加 同PCI邻区;是否邻区配置不合理。 5. 小区覆盖是否合理,导致切换不及时,切换策略相关门限参数是否合理。 ◆切换入成功率低分析 1. 所有邻区向问题小区切换入成功率低:核查小区是否存在干扰、故障、资源不足。 2. 核查邻区配置参数是否异常;是否邻区配置合理。 3. 邻区是否存在同PCI 模三冲突 4. 是否存在干扰。 三、切换成功率低TOP小区定位原因 816个切换成功率低小区经过初步分析: 干扰小区:现场扫干扰确定干扰源,4ALHCX莲花气象局2 存在干扰,现场旁边有座监狱 农村郊区站点广度覆盖,信号未能连续覆盖,需进一步完善邻区关系,调整加大覆盖,或建议加站 室分站点:小区覆盖深度不足,需要增加天线补弱点,同时保证邻区关系完善,核查PCI冲突 城区站点: 现场调整重叠覆盖区域,防止模三干扰及近距离同PCI现象,降低干扰PS:附件为萍乡详细切换成功率低TOP小区,及分析原因。 _切换成功率(小区 级).xlsx

LTE切换成功率阶段性提升报告

中兴区域LTE 切换成功率阶段性提升报告 1各地市切换成功率指标 根据省公司的通报,汇总各地市切换成功率指标如下: 说明:所取指标为3月12日全省指标汇总。黄冈指标有明显异常。主要是由于黄州师院传媒楼站点出现故障,失败次数急剧增加造成切换指标下降,优化调整后指标恢复正常水平。 2原因分析 通过对各地市切换指标进行分析,总结原因主要有以下几类。 县城深度覆盖问题 97.40% 97.60% 97.80% 98.00% 98.20% 98.40% 98.60% 98.80% 99.00% 99.20% 99.40% 鄂州黄冈黄石江汉天门潜江切换成功率 切换成功率 40%24%23% 5% 8%所占比例 县城深度覆盖临区配置不合理空口链路质量问题TOP 小区问题 外部干扰问题

典型问题地市黄冈、黄石、天门。在典型地市县城深度覆盖造成的切换指标问题占到 了该区域整体切换问题的近60%。黄石主要集中在大冶、阳新;黄冈主要集中在蕲春、麻城、罗田。 临区配置不合理 典型问题地市仙桃、潜江、鄂州。在典型问题地市由于临区配置不合理导致的切换指 标问题站到该区域整体问题的30%-50%。 空口链路质量问题 典型问题地市黄冈、黄石由于深度覆盖不足,关联影响到切换时空口链路质量陡降而 引发的切换失败也成为了主要原因之一。 TOP小区问题 典型问题地市黄冈、鄂州。部分站点故障小区单天贡献切换失败可达到近10万次, 验证影响了现网指标。 外部干扰问题 典型地市黄冈、鄂州。黄冈9个县城中有7个存在外部干扰。鄂州也存在广电塔站的干扰情况。 3提升举措 针对以上问题,各地市项目组制定了提升举措,并在逐步推进实施,具体情况如下: 黄冈: 黄石: 鄂州: 潜江: 天门: 仙桃: 4阶段性成果 通过前期的分析和提升工作,各地市的LTE切换成功率指标也在逐步提升中,具体可 参见下图:

ESRVCC切换成功率低处理案例

图-1分析流程图 二、分析判断可能原因 1.1、硬件是否存在告警 查询联发科技-SCDHLS3WM2GX站点的活动告警,无影响业务告警存在。 1.2、现场测试分析 2月27日下午09:00-12:00对联发科技-SCDHLS3WM2GX-E1小区的eSRVCC切换成功率低进行测试验证,180秒语音短呼测试;寻找覆盖差点,终端占用联发科技-SCDHLS3WM2GX-E1小区信号,平均RSRP≈-116dBm,SINR≈-2db,MOS平均值在2.93左右,发生12次eSRVCC切换,12次eSRVCC切换均正常。具体测试详情如下: 日期小区平均 RSRP 平均 SINR MoS平 均值 呼叫建 立时延 -IMS Packet Loss Rate 上行误 码率 VoLTE语 音呼叫建 立成功率 2016年2月27日发科技-SCDHLS3WM2GX-E1 -116 -2db 2.93 3.57 0.14 2 100% VoLTE 起呼成 功次数 VoLTE 起呼次 数 VoLTE 语音掉 话率 主被叫 在LTE 上掉话 个数 成功建 立呼叫 次数*2 LTE系 统内语 音切换 成功率 eSRVCC切 换次数 23 23 0 0 13 100% 12 表-1 测试指标统计

1.3、干扰查询 查询站点的上行干扰平均值,联发科技-SCDHLS3WM2GX-E1的系统上行每PRB干扰噪声平均值报纸的-115dBm以下,无上行干扰存在。 图-2上行干扰统计 1.4、切换参数核查 1)查询是否开启SRVCC功能,经过查询开启了SRVCC功能。 2)查询门限值是否设置合理,ESRVCC切换参数组ID为1的,异系统A2 RSRP触发门限为-105dbm,GERAN 切换B2 (本系统切换判决门限-115dbm,异系统判决门限为-89dbm)门限设置均合理。 3)提取两两切换失败小区核查外部小区参数定义是否错误,通过提取两两小区切换发现主要SCDDMB369GX:联发科技10、SCDDCB369GXN:天府软件园三期工程20和SCDDCB369GXN:天府软件园三期工程10小区之间切换失败,统计切换失败原因值为GERAN系统无响应导致切换出准备失败,外部邻区配置核查结果无异常。 图-3 GERAN外部小区 1.5、信令跟踪分析 E-UTRAN向GERAN特定两小区间切换出执行次数都为0,跟踪S1信令发现这几次失败的切换都是出现

23G切换成功率提升专题案例

23G切换成功率提升专题案例 一、问题描述 温州TD网络自2月份以来,经过对语音业务3G到2G切换的持续优化,该指标有一定的提升。下图为近两个月以来3G到2G切换成功率指标演进图。 图1 最近两个月全网异系统切换成功率趋势图 由上图可知,语音业务3G到2G切换成功率提升明显,由最初平均97.6%提升到最近的98.6%,提升了近1% 二、问题分析 1.TOPN小区分析 上图为电路域切换失败小区个数统计,可以看出TOPN小区随机出现,失败小区较均

匀分布于全网,因此TOPN小区离散化对全网指标提升造成了很大的难度。 2.失败原因分析 失败原因统计 对3月1日-3月15日电路域系统间切换失败按原因提取指标,如下图所示: 发现原因为<物理信道失败>的电路域系统间切换失败次数较多,占总失败次数的93%。因此我们需要集中针对物理信道失败原因进行深入的分析和解决。 异系统切换信令流程

信令说明: ◆RNC收到触发异系统测量报告后,发起handoverFromUTRANCommandGSM消息, 终端收到该消息后会在2G侧接收广播及接入过程,若接收广播失败或同步过程失 败,则会向3G网络侧响应handoverFromUTRANFailure,原因值为<物理信道失败> 的电路域系统间小区间切换出失败。 ◆由此可知物理信道失败的主要原因在UE和GSM小区无法正常同步造成。 三、优化方案 1.邻区优化 由于GSM信号覆盖较好和减少终端对异系统邻区小区的测量,一般GSM的邻小区配

置为6个左右,温州平均配置2G邻区为7个左右,随着增补站点的不断开通,根据实际情况对温州TD网络23G邻区进行优化: 每日核查3g配置2g邻区信息准确性,及时修改参数配置错误; 2.邻区梳理 主要包括删除过多、不合理的邻区,添加更优小区为邻区关系。对于过远邻区、背向无关邻区,需要集中梳理和删除;截止目前,对全网共462条邻区关系进行核查和修改。 附《TD小区异系统邻区调整记录》: 3.异系统同频邻区核查 联芯芯片手机对G网邻区测量机制缺陷,对于G网同频小区无法区分,统一上报为相同电平,导致测量不准确和在同频异BSIC邻区的处理上存在问题。导致切换失败。 由于温州现网站点较密,BCCH复用距离较短,造成现网异系统同BCCH邻区高达五百多个。 附《异系统邻区中同BCCH的小区》: 根据现网情况,我们加大了对TOP N小区同BCCH异BSIC邻区的优化力度。一方面每周定期提供同频邻区TOP20,提交G网测进行频点修改,另一方面,如果邻区信号差异较大,从网络侧可以采用删除弱信号邻区的办法进行规避和GSM1800小区替换。 附:《异系统邻区为1800小区汇总》 4.异系统切换参数优化 异系统判决门限调整 进行异系统切换判决时需要同时满足本系统判决门限和异系统判决门限要求,才能发起切换请求。适度提高异系统切换判决门限,使切换目标GSM小区的信号质量门限提高,有助于提高UE与GSM小区同步成功的概率。

切换成功率优化手册

目录 1 基本原理 (3) 1.1 指标含义 (3) 1.2 理论介绍 (3) 1.3 推荐公式 (3) 1.4 信令流程及统计点 (4) 2 影响切换成功率的因素 (5) 3 切换成功率分析流程和优化措施 (6) 3.1 切换问题的分析流程 (6) 3.1.1 通用切换问题定位流程 (6) 3.2 切换问题的优化方法介绍 (8) 3.2.1 切换问题分类 (8) 3.2.2 硬件和传输故障 (9) 3.2.3 数据配置不当 (11) 3.2.4 目标小区拥塞 (13) 3.2.5 时钟问题 (14) 3.2.6 干扰问题 (15) 3.2.7 覆盖问题及上下行平衡 (16) 3.2.8 BSC 间/MSC 间切换失败 (17) 3.2.9 自动邻区优化 (18) 3.2.10 测试工具选择及测试建议 (19) 3.2.11 现网测试配置建议 (19) 4 切换成功率优化案例 (20) 4.1 解不出BSIC码无法切换案例 (20) 4.2 MS和BSC对频点排序不一致导致无法切换案例 (20) 4.3 参数配置不合理导致无法切换案例 (20) 4.4 Handover Request如果不包含类标3,导致BSC入切换失败次数增加案例 (20) 4.5 A接口阶段标志配置错误导致入BSC切换失败 (21) 4.6 打开空闲burst导致干扰增大接收质量下降切换成功率低 (21) 4.7 不同交换机下发清除命令携带原因值不同导致切换成功率差异 (21) 5 问题信息反馈 (22) 5.1 反馈问题小区的TEMS测试log (22) 5.2 现网配置数据以及话统反馈要求 (22) 表目录 表1切换常用定时器列表 (12)

切换成功率低原因概述

通过日常工作中分析汇总,可将切换失败原因归纳为以下几种: 一、邻区数据的准确性及合理性异常 (1)无线参数的准确性与合理性 在通话过程中,移动台始终测量本小区和相邻小区的BCCH的电平强度,而这些相邻小区信息,都预先在系统自身定义,通过系统消息周期广播至移动台,这些信息中列出了与当前小区相邻的小区BCCH频道号。移动台必须从系统消息中提取该信息作为测量邻区信号的依据。如果由于覆盖或地形等其它原因造成实际存在相邻关系的小区之间切换数据漏作,将会产生孤岛效应,造成周围信号很强但手机所占的信号弱或者信号质量较差的现象,严重地影响网络质量,引起一些救援性的切换,导致切换成功率较低。特别是城市中的室内覆盖和农村的直放站造成覆盖范围不规则等现象,更容易造成切换数据漏作。 同时,由于工程割接等原因造成邻区参数设置错误而影响切换成功率的现象也比较普遍。当网络发生改变时,如增加了基站或对小区BCCH频点进行修改后,没有对涉及的邻区进行相应的修改,导致在切换中邻区描述错误,发生严重切换失败。 还有一种情况就是在边界地区定义邻区中的NCC,需要根据边界所涉及的NCC全部定义,不能仅仅根据自身网络情况定义所属的NCC,导致不能对其它NCC邻区进行扫描引起切换失败。 (2)MSC上数据的正确性与完整性 除了无线侧邻区数据准确合理外,MSC上也涉及邻区关系的定义,如REMOTLAC表中相邻交换机号、相邻交换机下LAC等信息,需要进行准确完整的定义,否则会发生跨MSC 切换不能实施的情况。 二、硬件故障 (1)基站硬件故障 在日常优化过程中,我们经常发现所有数据均正常但仍然出现切换失败率高的现象,其中基站硬件故障也可能是原因之一。最常见的就是由于基站载频故障引起分配失败,导致切入失败增加,同时天线性能下降也可能造成空中链路失败引起切换失败率高的现象。 (2)传输有误码或者同步不稳定 切换过程可能发生在基站内部小区之间,也可能发生在不同基站之间。切换发生时,需要通过TA值来判断手机所处位置,并决定基站和手机的发射功率以供手机接入新的信道。如果切换发生在基站内部,将不需要进行TA值的重新确认,但是如果发生在不同基站之间,则需要进行TA值的确认,这就是所谓的同步、异步切换方式。如果传输误码率高,就很容易因为A接口或者Abis接口失败导致切换失败。

精品案例_高铁异厂家切换成功率低典型案例

高铁异厂家切换成功率低典型案例

目录 高铁异厂家切换成功率低典型案例 (3) 1 问题描述 (3) 2 分析过程 (4) 2.1 问题点1分析: (4) 2.2 问题点2分析 (6) 3 解决措施 (7) 3.1 问题点1解决措施 (7) 3.2 问题点2解决措施 (8) 4 经验总结 (8) 5 下一步优化思路 (9)

高铁异厂家切换成功率低典型案例 【摘要】随着大规模高铁线路建成,电信VOLTE业务即将商用,如何保证高铁用户正常通信显得尤为重要,高铁网络质量和业务感知的好坏直接影响到用户对移动网络的口碑。因此,高铁4G网络的覆盖与感知优化成为重中之重。本文主要介绍合武关高铁隧道采用异厂家设备,由于网管定义及操作不同导致2处切换异常问题解决方案及后期优化思路探讨。 【关键字】异厂家、外部小区、RTP丢包率、PCI 1 问题描述 问题点1:3月28日省公司安排合武高铁一季度拉网测评,对LOG问题点分析发现离长岭关隧道入口位置200米处,隧道室分信号与长岭关高铁宏站信号之间切换出现异常事件,RTP丢包率较高。结合3月份以来的多次测试数据分析发现该问题点一直存在,而2月份之前测试该路段正常,判定为非偶然事件,需优化分析解决。

问题点2:3月28日省公司安排合武高铁一季度拉网测评,对LOG问题点分析发现离周家坳隧道出口位置,漆店宏站信号与周家坳隧道室分信号之间切换出现异常事件,RTP丢包率较高。

2 分析过程 2.1 问题点1分析: 分析麻城往合肥方向的LOG发现,在出长岭关隧道后,向基站侧发送测量报告并一直上报A3事件,请求切至金寨长岭关-913066站点,但始终无法切换成功,直至信号衰减至-140dBm,拖死导致无线链路失败,RTP丢包严重。上述现象,与邻区漏配导致的切换异常比较相似。 合武隧道段采用了异厂家竞合站点的组网方式,电信侧采用的是诺基亚设备,联通为华为设备,问题路段发生在联通主建区域。首先,联系联通公司核查长岭关隧道综合洞室1-168321-138与长岭关高铁-913066-53扇区之间的邻区的关系是否存在,得知的结果是两者的邻区关系存在,核查诺基亚网管发现电信侧双方邻区也存在,排除邻区漏配可能性。 联通侧邻区配置 电信侧邻区关系正常 该问题点从3月后开始出现,怀疑是网络割接类似问题导致,联通侧确认此期间未进行网络调整,电信侧则将金寨长岭关高铁与金寨墩义堂车站进行超级小区合并,合并后站号小区号均保持之前的数据,为避免与周边站点模三冲突,PCI调整为124(模三余1)。诺基亚设备邻区配置过程中只需配基站级邻区(IP地址,站号),小区级会自动生成,即使PCI 更改也只会造成模三等问题,不会出现邻区异常等问题。但华为设备的邻区配置方式却不一

华为GSM切换成功率优化

华为GSM切换原理错误!未找到引用源。基本原理1.1指标含义 切换(Handover)是移动通信系统的一个非常重要的功能。作为无线链路控制的一种手段,切换能够使用户在穿越不同的小区时保持连续的通话。切换成功率是指所有原因引起的切换成功次数与所有原因引起的切换请求次数的比值。切换主要的目的是保障通话的连续,提高通话质量,减小网内越区干扰,为MS用户提供更好的服务。 1.2理论介绍 切换成功率是移动保持类的重要指标之一,按照反映的流程不同可以分为切换成功率和无线切换成功率两类,按照涉及的网元关系可以分为BSC内切换成功成功率、入BSC切换成功率、出BSC切换成功率。切换成功率的高低,直接影响用户感受,是运营商重点考核的KPI指标之一。 1.3推荐公式 切换成功率主要通过话统结果获得,其推荐的公式为: 切换成功率=切换成功次数/切换请求次数 无线切换成功率=切换成功次数/切换命令次数,具体统计公式请参见《GSM BSS 网络性能KPI(TCH掉话率)基线说明书》

1.4 信令流程及统计点 MS BTS2 BSC BTS1 MS MSC 图1 BSC 内切换过程 MS BTS2BSC2MSC BSC1BTS1MS 图2 BSC 间切换过程

其中:A1——BSC内入小区切换请求次数、BSC内小区内切换请求次数 B1——BSC内入小区切换应答次数(BSC内入小区切换次数)、BSC内小区内切换命令次数 C1——BSC内入小区切换成功次数、BSC内小区内切换成功次数 A2——BSC间入小区切换请求次数 B2——BSC间入小区切换应答次数(BSC间入小区切换次数) C2——BSC间入小区切换成功次数 A3——BSC间出小区切换请求次数 B3——BSC间出小区切换命令次数(BSC间出小区切换次数) C3——BSC间出小区切换成功次数 各种切换成功率的公式对应到统计点可以表示为: 切换成功率:(C1 +C3)/(A1 +A3) 无线切换成功率:(C1 +C3)/(B1 +B3) BSC内切换成功率:C1/A1 BSC内无线切换成功率:C1/B1 入BSC切换成功率:C2/A2 入BSC无线切换成功率:C2/B2 出BSC切换成功率:C3/A3 出BSC无线切换成功率:C3/B3 注:目前版本中,对BSC间切换过程,如果BSC收到MSC发来的CLEAR COMMAND消息,将不统计为切换失败,而BSC内切换过程中,如果用户主动挂机,将统计为切换失败。 2影响切换成功率的因素 根据现网处理该问题的案例和现网实施的经验,影响切换成功率的因素有很多,例如:硬件传输故障类; 数据配置类; 拥塞类;

相关文档
最新文档