厂用电谐振过电压分析及预防(2021新版)

厂用电谐振过电压分析及预防(2021新版)
厂用电谐振过电压分析及预防(2021新版)

( 安全论文 )

单位:_________________________

姓名:_________________________

日期:_________________________

精品文档 / Word文档 / 文字可改

厂用电谐振过电压分析及预防

(2021新版)

Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

厂用电谐振过电压分析及预防(2021新版)

摘要:在中性点不接地电力系统中,由于电磁式电压互感器激磁特性的非线性,当电压发生波动使网络中电抗接近容抗时,便产生谐振过电压,影响电气设备安全运行。为此,从两起典型的6kV 厂用电谐振过电压入手,分析计算产生谐振过电压的条件及其现象。最后,阐述了解决谐振过电压问题所采取的措施。

关键词:厂用电;谐振;过电压;电压互感器;分析;措施

1谐振过电压产生条件、特点和危害

在中性点不接地电力系统中,由于电磁式电压互感器(TV)激磁特性的非线性,当电压发生波动使网络中电抗接近容抗时,便产生谐振过电压。特别是遇有激磁特性不好(易饱和)的TV及系统发生单相对地闪络或接地时,更容易引发谐振过电压。轻者令到TV的熔断器熔断、匝间短路或爆炸;重者则发生避雷器爆炸、母线短路、

厂用电失电等严重威胁电力系统和电气设备运行安全的事故。

2两起谐振过电压及其分析

2.1铁心饱和过电压

这种过电压最常见于投空母线时,由于系统电压偏高致使激磁特性差的TV饱和,当TV电抗降至和系统对地容抗相等时便引发谐振过电压。现在由于采取一系列技术手段这一现象已很少发生,但其它形式谐振过电压却还时有发生,应引起我们注意,请看下面实例。

2.1.1事发经过

1998年10月8日8时58分,6kVⅢ段工作电源开关632甲、632乙跳闸,3号炉甲、乙送风机和3号机循环水泵跳闸,备用电源开关630甲、乙联动,6kVⅢA和ⅢB段母线电压表无指示,3号炉甲、乙送风机强送未成功,发电机组与电网解列。

事后检查发现6kVⅢ段母线有电压,判断是TV保险熔断,使带有低压保护设备跳闸,恢复TV保险后,3号机组于当天9时55分重新并网。

2.1.2原因分析

事故发生时,与6kVIIIA段相联的输煤I段上有停3号炉除渣泵电动机的操作,由于6kVⅢ段的2台TV的熔断器三相均熔断,因而初判发生了三相谐振过电压。6kVⅢA、ⅢB和输煤Ⅰ段上三台TV 均是JDZJ-6型干式电压互感器。

a)计算激磁感抗

从中可计算出TV在线电压下激磁感抗为

因三台TV为同一制造厂同一批产品,故激磁特性相近,则3台TV总对地感抗为

b)计算6kVⅢ段及输煤Ⅰ段设备对地电容及容抗

3号高压厂用变压器至632甲、乙开关电缆总长724m,对地电容0.432μF;6kVⅢA段至输煤Ⅰ段电缆长度722m,对地电容0.430μF;甲、乙送风机、1号燃油工作变压器、3号机低压厂用工作变压器、3号机循环水泵、低压厂用公用变压器总对地电容0.884μF;6kVⅢ段辅机对地电容0.065μF。则

c)用等效电源方法等效成两端口网络,L1,L2,L4为6kVⅢA

段、ⅢB段和输煤Ⅰ段TV的激磁电感,L3为电缆电感。

d)谐振频率估算

本次谐振落在分频谐振区A点,由H.A.Peterson谐振理论可知,此时发生的谐振频率是1/2电源频率。这表明如果参数配置不当,由于电源波动更易引发低频谐振。

该厂6kVⅢ段在未引入6kV输煤Ⅰ段前未曾发生铁磁谐振,其谐振参数计算如下:

计算电容为从总电容中减去711开关以后输煤Ⅰ段对地电容,对地容抗计算感抗为2台并联TV的感抗,

这一点落在B点处,在谐振区外,故发生谐振概率大为降低。

2.2单相对地闪络激发电感-电容效应过电压

网络中电感、电容匹配不好或者TV激磁特性不好,当外界电压波动,尤其是系统中发生单相对地闪络时,故障相等值的电容就会与另外两相等效电感形成谐振参数,但当此电压升高时,电容上电压较电感上电压升高快,因而故障相阻抗又等值成感抗,从而谐振参数被破坏,使电压升高有限,因而称之为电感-电容效应电压。

10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10 kV电力系统谐振过电压的原因及抑制措施 孟繁宏,李学山,张占胜 摘 要:通过对10 kV中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并提出以下抑制谐振过电压的措施:采用自动调谐接地补偿装置或可控硅多功能消谐装置,在电压互感器的中性点接消弧线圈,或接消谐器等。 关键词:铁路;电力;过电压;抑制措施 Abstract:By analyzing the resonant over-voltage in 10 kV power supply system with its neutral point being unearthed, illustrates the conditions causing the resonance over-voltage and their types and characteristics, and puts forward the following measures to suppressing resonant over-voltage: by adopting automatic tuned earthing compensation device or silicon-controlled resonance suppressor, connecting the arc-extinguishing coil with neutral point of the voltage transformer or connecting the resonance suppressor. Key words: Railway; power supply system; over-voltage; suppression measure 中图分类号:U223.6文献标识码:B文章编号:1007-936X(2005)03-0022-04 0 概述 在10 kV配电所的每段母线上都接有1台电压互感器,其一次线圈中性点直接接地。由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发某些重大事故的原因之一。近5年以来,在大同西供电段管内共发生谐振过电压烧坏电压互感器高压保险12次,烧毁10 kV电压互感器1台,烧断电压互感器瓷瓶内部引出线1次。 1 谐振过电压产生的条件 1.1 内部条件 铁路10 kV电力系统是中性点不接地系统,为了监视系统的三相对地电压,该配电所每段母线上均接有1台三相五柱电磁式电压互感器,其电气接线原理图略。 母线电压互感器的高压侧在接成Y型时其中性点是接地的,由于铁路10 kV电力系统中电缆较多,各相对地电容较高,电网对地电容与电压互感 作者简介:孟繁宏.朔黄铁路发展有限公司原平分公司,工程师,山西原平037005,电话:029-93638(路电); 李学山,张占胜.大秦铁路股份有限公司大同西供电段。器的电感相匹配构成谐振条件。当发生谐振时,电压互感器感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成电压互感器烧毁或保险熔断。 1.2 外界激发条件 激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。(2)不带馈线负荷的情况下向带有三相五柱电磁式电压互感器的母线送电。(3)进行空载线路的投切操作。(4)电力线路有雷电感应。(5)电网负荷轻,电压高,发生传递过电压。 2 过电压种类及特点 2.1 过电压种类 铁路10 kV电力系统过电压主要分为谐振过电压、雷电过电压和操作过电压,其中谐振过电压在正常运行操作中出现频繁,危害性较大;一旦产生过电压,往往造成电气设备损坏和大面积停电事故。运行经验表明,铁路10 kV电力系统中过电压大多数都是由铁磁谐振引起的。在实际运行中,故障形式和操作方式多种多样,谐振性质也各不相同。因此,为了制订防振和消振的对策与措施,应该了解各种不同类型谐振的性质与特点。 2.1.1 基波谐振 通常在配电所全所停电作业完成后向带有电 22

发电厂全厂失电的事故分析13

发电厂全厂失电的事故分析 摘要:本文介绍了发电厂全停的故障情况,通过故障现象分析了产生故障的原因,并对故障暴露的问题做了相应后续处理。 关键词:发电厂;全厂失电;故障分析;暴露问题 1、引言 如东热电电气主系统采用单母线分段接线方式与变电所相连,输电方式为双回路同杆塔 输电,输电线路长度7.5km,正常运行时110KV系统处于合环运行状态。厂用电源分别由1# 发变组带1#厂用分支、2#发变组带2#厂用分支、高备变接于110KVI段且高备变处于长期热 备用。发电机额定容量22.5MVA。具体接线方式见下图1。 图2:故障波形图 3、事件处理过程 事件发生后随即联系调度,拉开热宾线731、732开关,拉开主变高压侧701、702开关,拉开厂用分支611、612开关;各专业进行全面检查等待调度命令。6时40分,接调度令完 成倒送电操作,9时50分发电机组与电网并列恢复对外供电、供汽。 4、故障原因分析 4.1 如东热电厂内731、732开关未跳闸原因分析 如东热电线路成套保护装置的主要配置有:光纤差动保护,距离保护,零序方向过流保护。自动重合闸。线路保护的范围为热宾1#、2#输电线路。作用于线路731、732开关。从 故障波形分析以及对变电所的故障情况检查主要是系统侧变电所(宾洋线)负载发生了单相 接地故障,造成了110KV系统电压大幅度波动,由于故障点距如东热电较远,故障量未能达 到线路保护动作值,因此如东热电线路开关731、732未跳闸。 4.2发电机过电压保护动作分析 从励磁系统波形分析,在5:41:21出现了发电机AB相电压下降情况,励磁调节系统自动 增加励电流,发电机电压有所回升,在5:41:27变电所731、732开关跳闸到5:41:30发电机 过电压保护动作期间,励磁系统既没有从自动励磁切换手动励磁也未出现限制励磁,这说明 励磁调节系统参数响应时间较慢,未能起到电压升高而限制励磁的作用。 由于变电所内731、732开关的突然跳闸,如东热电发电机瞬时孤网运行并带两条空载长 距离输电线路,因输电线路分布电容的存在导致热电厂小系统内电压的突然升高而励磁系统 未能及时响应限制励磁从而引起发电机过电压保护动作出口。 5、暴露的问题及后续改进措施 5.1线路保护配置方面 为了提高热电厂孤网运行的可靠性,防止出现“小马拉大车”造成发电机组频率电压奔溃;针对变电所内731、732开关跳闸的同时应连锁跳开发电厂侧731、732开关。因此需要增加 配置线路保护远方联跳功能。 5.2励磁系统 通过对励磁系统设计图及现场接线核对发现励磁系统专用PT对发电机端电压检测不全面(只检测单相电压),不能全面反应三相电压变化情况;其次是励磁调节系统设备落后且为 模拟式电子调节设备,其本身响应时间较慢。 5.3后续改造 对于暴露的问题已于2015年12月进行了改进,对线路成套保护装置进行了升级并增加 了远方联跳功能,对于发电机励磁系统专用PT更改为三相PT,同时将励磁调节器由模拟电 子式MAVR更换为数字式DVR型励磁调节设备。通过模拟试验励磁调节系统均能满足系统电 压突变时的自动跟随调节能力。 6、结束语 通过对引起发电厂全厂失电的原因进行剖析,提出了外网变电所内母线保护动作时应快

浅谈热电厂谐振过电压及抑制措施

浅谈热电厂谐振过电压及抑制措施 在电力系统中性点经消弧线圈接地系统中包含有很多电感元件和电容元件。在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备。本文针对热电厂发生的故障进行了全面的分析论述,并提出解决问题的措施 标签:真空断路器消弧线圈谐振过电压抑制措施 1 问题出现 2008年10月20日15时40分,运行人员启动#3炉磨煤机产生操作过电压,造成已运行的#3炉排粉电机线圈开路,#4炉引风机电缆一相击穿接地,引起运行中高压电压互感器烧毁及一次高压熔丝烧断。#3炉、#4炉、#1机、#3机相继停止运行,终止对外供汽,反送电时间长达六小时之久,造成重大经济损失。 2 事故分析 2.1 我厂磨煤机、排粉电机小车开关是真空断路器。真空断路器由于灭弧能力强、电气寿命長、现场维护方便、技术含量高等优点,在电力系统35kV及以下电压等级中被广泛应用。但是,真空断路器在开断运行过程中出现过电压问题时有发生,已成为不可忽视的重要环节。产生过电压分析如下: 2.1.1 真空断路器由于具有高速灭弧能力,在切断电路时,往往在电流过零前被强行开断,在断弧瞬间储藏在负载内的电感与电容之间的电磁能量转换将在负载上产生过电压,这比一般断路器要突出,尤其在最先断开相触头间,有可能因过电压引起电弧重燃,而产生过电压。 2.1.2 如果由于某种原因引起真空开关真空度降低,将严重影响真空断路器开断过电流的能力,以至承受不住恢复电压发生电弧重燃,回路中出现高频电流,高频电流过零时,出现电弧熄灭、重燃循环过程。由于负载侧存在L-C振荡回路(电机线圈、电缆储能元件),则产生很高过电压。 2.2 消弧线圈运行方式存在问题 我厂共有两组消弧线圈,#1发电机中性点、#2、3发电机中性点各接一组消弧线圈。出现上述事故前是#1、#3发电机,#3、#4炉在运行中,而#1发电机中性点消弧线圈没有投入运行,只有#3发电机中性点投入运行。前述故障发生后,发生过电压,#3发电机循环泵运行中突然停运,备用循环泵联动不成功,汽轮机真空急剧下降,#3发电机被迫停机,也就是说电厂消弧线圈脱离系统,形成谐振,机、炉辅机相继跳闸,全厂停运。

发电厂主要技术经济指标项目与释义

火力发电厂节能技术经济指标释义 范围 本标准规定了火力发电厂节能技术经济指标定义与计算方法。 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。 1主要技术经济指标 1.1发电煤耗 b f 发电煤耗是指统计期内每发一千瓦时电所消耗的标煤量。发电煤耗是反映火电厂发电设备效率和经济效益的一项综合性技术经济指标。 计算公式为:b f = B b /W f×106 (1) 式中: b f——发电煤耗,g/(kW?h); B b——发电耗用标准煤量,t; W f——发电量,kW·h。 1.2生产耗用标准煤量 B b 生产耗用标准煤量是指统计期内用于生产所耗用的燃料(包括煤、油和天然气等)折算至标准煤的燃料量。生产耗用标准煤量应采用行业标准规定的正平衡方法计算。 计算公式为:B b = B h-B kc (2)

式中: B b——统计期内生产耗用标准煤量,t ; B h——统计期内耗用燃料总量 (折至标准煤),包括燃煤、燃油与其他燃 料之和,同时需考虑煤仓、粉仓等的变化,t ; B kc——统计期内应扣除的非生产用燃料量 (折至标准煤),t 。 应扣除的非生产用燃料量: a)新设备或大修后设备的烘炉、煮炉、暖机、空载运行的燃料; b)计划大修以及基建、更改工程施工用的燃料; c)发电机做调相运行时耗用的燃料; d)厂外运输用自备机车、船舶等耗用的燃料; e)修配车间、副业、综合利用及非生产用 (食堂、宿舍、生活服务和办公 室等)的燃料。 1.3全厂热效率ηdc 全厂热效率即电厂能源利用率,是电厂产出的总热量与生产投入总热量 的比率。 计算公式为:ηdc = 123/b f×100 (3) 式中: ηdc——全厂热效率,%; 123 ——一千瓦时电量的等当量标煤量,g/(kW?h)。 1.4生产厂用电率 L cy 生产厂用电率是指统计期内生产厂用电量与发电量的比值。

综合厂用电率偏高分析 (2)

20M 木仁高勒光伏电站综合厂用电率偏高分析 阿拉善左旗光伏电站近几月发电指标与新能源公司下发的发电计划对比如下表: 实际指标 计划指标 月份 发电量 厂用电率 综合厂用电率 发电量 厂用电率 综合厂用电率 1月份 295.620 1.60 3.16 250 0.87 3.03 2月份 270.925 1.03 2.51 250 0.86 3.03 3月份 316.577 0.46 1.73 310 0.47 1.45 完成率(%) 月份 发电量 厂用电率 综合厂用电率 1月份 118.2 183.9 104.3 2月份 108.4 119.8 82.8 3月份 102.1 97.9 119.3 由以上两表可见,三个月的发电量指标均完成,但一三月份的综合厂用电率却超出计划。 由综合厂用电率计算公式:%100?= 日发电量 综合厂用电量 综合厂用电率W W L 综合厂用电量W = 日发电量W –日上网电量W + 日购网电量W 由公式知,日发电量低、日上网电量低、日购网电量高都能导致综合厂用电率的偏高。现根据我厂站实际情况进行分析。 一、根据厂站实际情况分析,可能导致发电量降低的因素有以下几点。 1、受本地沙尘天气多发因素的影响,可能导致光伏板附尘较多影响光电转化效率,从而导致发电量的下降。基于此项,统计厂站光伏板清洗前后的发电量,得出下表: 时间 已清洗1区发电量(kw ·h ) 未清洗16区发电量(kw ·h ) 3月4日 6424.3 5771.5 3月5日 5444.5 4758.5

3月6日6595.4 5800 3月7日5406.1 4791.9 3月8日5884.2 5284.9 3月9日4017 3581.7 3月10日5166 4738.4 合计38937.5 34726.9 根据表格统计,算出清洁的光伏板全站全月(按30天计)应发333.75万kw·h。未清洗的光伏板全站全月(按30天计)应发297.66万kw·h。 根据截至3月23日的月综合厂用电率估算出3月的综合厂用电量为5.477万kw·h。 清洁后的光伏板未清洁光伏板月发电量(万kw·h)333.75 297.66 综合厂用电量(万kw·h) 5.477 5.477 综合厂用电率(%) 1.64 1.84 由此可见,光伏板的清洁程度会直接影响到场站的发电量,从而使综合厂用电率偏高。 2、由于厂站处在贺兰山脚下,早晨受山脉阻隔,日出较晚,导致厂站受光时间低于地区平均水平。若与相同装机容量和相近设计光照时间的四子王旗光伏电站相比较,我厂的发电量会与设计值有所降低,导致综合厂用电率会较高。 3、逆变器室轴流风机损耗导致厂站发电量降低 我厂轴流风机风机,采用的是墙边式方形轴流风机,电机功率为8kw,全光伏区攻击该风机40个。轴流风机随变频器同时启停,全天运行小时数为约为8h。 全月耗电量为7.936万kw·h 月份1月2月3月 平均最高气温(℃)-1 2 12 最高气温(℃)9 11 24 1-3月份平均最高气温 由于近三个月平均气温较低,轴流风机在允许条件下,可不必须运行。轴流

厂用电率

电厂建设技术经济的考核指标主要有厂用电率、汽机热耗、锅炉效率、发电机效率、变压器损耗等,这些指标在工程建设过程中控制的好坏,直接影响电厂长期运行的经济效益。控制和减少消耗在电厂内部的能量。就增加了电厂输出的能量。现在国内外电厂已在逐步重视和解决这个问题。下面仅就厂用电率谈一些看法。 厂用电率是电厂主要技术经济指标之一,我国电力行业一般认为是发电厂电力生产过程中所必需的自用电量占发电量的百分比。厂用电量包括电力生产过程中电动机、照明、采暖通风以及其它控制、保护装置等所耗用的电能,不包括非发电(如机修厂、基本建设、大修理后试运转以及食堂、宿舍、办公室、道路照明等)用电。 近年来,我国电厂向大装机容量发展,厂用电率有所降低,这也是大机组效益好的一个体现。现在相同装机容量的机组的情况与过去比较是有变化的,厂用电率随着电厂自动控制水平提高而使机组运行状态逐步趋于合理。同时,设备性能的改善,设计水平、管理水平的提高使电厂厂用电率也有所降低。 2.3国内外电厂过去对厂用电的要求 胜利发电厂2×210MW发电机组工程(1987年开始建设)在设计中提出厂用电率是8.3%。 近年来,随着市场经济的发展,招标的发展,业主对厂用电率是重要的技术经济指标的认识有了提高,国内外业主有了新的要求。从下面的叙述可以看到,现在业主不仅提出技术性能指标要求,还提出对超标者给予严厉的经济制裁的要求,表现出对厂用电率的极大重视。 电厂本身是用电大户,业主应该对厂用电率给予重视。现在国内外用户对厂用电率(厂用电量)超过标准就罚款的做法是正确的,尤其在市场经济的情况

下,更是有必要的。承包电厂建设的单位在这个问题上首当其冲。此外,还要靠设计管理部门、设计部门、制造厂、安装单位、运用单位共同努力,共同把关,厂用电率才会降低,电厂综合技术经济指标才会从计划变成现实。 设计规程应适应市场要求 设计规程(2000版)总则中提到“应选用高效率的大容量机组”,在总体规划中提到“应符合工程造价低,运行费用小,经济效益高”的要求。规程同时在对一些风机选用时提出要留压头裕量达到5%~35%,风量裕量有些达到5%~35%,却没有对风机的运行效率选择提出要求。一些泵也提出压头和流量裕度的要求,但没有对运行效率提出要求。实际上还是没有把电厂技术经济指标(如厂用电)的事情放在要求和必保的规程内,也说明有关部门组织编写的规程应随着市场经济的要求进行调整。否则,作为电力工程设计的依据将没有保证用户需求,也无法适应国内外电厂建设的要求。 系统设计优化 布局选型合理性 尽量达到满足规范、经济合理、适合运行、便于管理的要求,最大限度地发挥设备的功能。如: (1)送引风机及其它风机的烟风道的位置、距离、通径、转弯半径等,降低烟风道系统阻力,风门正常工作时的开启状况; (2)储煤场的位置,输煤设备的输送距离、倾角、输送能力等; (3)循环水泵房的位置、取水口的位置、转弯的半径等直接影响泵的输送距离和管道阻力;

关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施 发表时间:2019-04-11T13:54:14.127Z 来源:《河南电力》2018年19期作者:唐振华 [导读] 谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中 唐振华 (福建省万维新能源电力有限公司福建福州 350003) 摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。 关键词:谐振过电压;预防;技术措施 1.谐振的危害性 在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。 目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。 2.产生谐振过电压的因素 2.1互感器铁磁谐振过电压的因素 电压互感器伏安特性的影响。铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。考虑到电力系统中运行着的电压.互感器及系统的具体情况总与模拟情况有差异,因此,对于不同型号、不同出厂日期、不同厂家制造的电压互感器,其谐振区域应根据实际试验加以确定。 电压互感器损耗的影响。运行着的互感器,一般损耗较大,例如,35kV的互感器其阻尼系数r/XL为>15/10000.损耗电阻大,可以吸收一部分能量,对谐振有一定的抑制作用,特别是对1/2频谐振,这种抑制作用很明显。 电压互感器结构的影响。现场运行着的电压互感器,既有三台单相电压互感器组,也有三相五柱电压互感器,它们在谐振激发上是不同的。试验研究表明,单相电压互感器组的起振电压较三相五柱电压互感器的低,也就是说,单相电压互感器组容易激发谐振。这主要是由于两者碰路结构的差异,造成零序阻抗不同所致。 单相互感器组零序磁通的磁路和正序磁通的磁路一样,每相都有自己的闭合回路,因而零序阻抗等于正序阻抗。对三芯玉柱电压工感器,由于零序磁通经过两个边往返回,所以其磁路长,而且铁芯截面小,因而其零序磁通磁阻较单相互感器组要大得多。由上所述,谐振是由于零序磁通造成的,三芯五柱互感器零序磁通遇到的磁阻大,谐振就不容易产生。 应当指出,由于磁路的差异,计算和测量这两类电压互感器零序阻抗时所用的电压是不同的。由于电网发生谐振时,作用在电压互感器上的电压是正序电压与零序谐振电压的选加,对于单相互感器组,正序电压和零序电压合成下的服抗值接近干线电压下的阻抗值,因此,XL为额定线电压下的激磁感抗。对于三芯玉柱互感器,零序电压接近于相电压,正序电压对零序电压阻抗影响不大,所以应取相电压下的相应感抗值。 2.2电网零序电容的影响 实践可知,谐振区域与阻抗比XC0/XL有直接关系,对于1/2分频谐振区,阻抗XC0/XL约为0.01~0.08;基波谐振区,XC0/XL约为0.08~0.8;高频谐振区,XC0/XL约为0.6~3.0.当改变电网零序电容时,XC0/XL 随之改变,回路中可能出现由一种借振状态转变为另一种谐振状态。如果零序电容过大或过小,就可以脱离谐振区域,谐振就不会发生。在现场,一般可以测量出电网的对地电容电流,进而计算出对地电容,由XC0/XL估算该电网是否处于谐振区。若在诸振区,再进一步判定可能是哪一种谐振。除上述情况外,电网零序电容还对谐振过电压、过电流的大小和谐振频率有一定影响。 2.3其他影响因素 激发程度。实际激发试验表明,即使阻抗参数XC0/XL落在诸振区域内,也并不是每次都能激发起稳定的谐振。这是因为谐振的产生不仅与XC0/XL有关,还与电压冲击、涌流大小、合闸相角等激发因素有关。激发程度不同时,互感器饱和程度有异,因此谐振特性就不相同。 回路的阻尼作用。当激发起中性点不稳定过电压后,元论是基波、三次谐波还是1/2分次谐波谐振,总是由电源供给谐振所需的能量。如果输入和输出的能量得以平衡,诸波将维持下去;如果能量平衡关系一旦被破坏,则谐振便会自动消除。根据谐振原理,增大回路电阻可使诸振区域缩小,维持谐振所需的电压提高,从而能阻尼振荡。 电网频率的变动。电网频率的变化,使谐振回路中的阻抗参数发生变化,是导致谐振现象不稳定的重要原因。 电网频率变动可能使谐振现象突然发生;突然消失;也可能使谐振由一种状态转变为另一种状态。 3.采取措施 一是防止电压互感器铁磁谐振措施。选择励磁特性好的电压互感器,使其工作点在伏安特性的线性部分,当有激发因素时,铁芯不饱

火力发电厂生产指标介绍

三、火力发电厂生产指标介绍 一、主要指标介绍 1、供电煤耗:指火力发电机组每供出单位千瓦时电能平均耗用的标准煤量。他是综合计算了发电煤耗及厂用电率水平的消耗指标。因此,供电标煤耗综合反映火电厂生产单位产品的能源消耗水平。 供电煤耗=发电耗用标准煤量(克)/供电量(千瓦时)=发电耗用标准煤量(克)/发电量X(1-发电厂用电率)(千瓦时) 2、影响供电煤耗的主要指标 1)锅炉效率:锅炉效率是指有效利用热量与燃料带入炉热量的百分比。 2)空预器漏风率:是指漏入空气预热烟气侧的空气质量流量与进入空气预热器的烟气质量流量比。 3)主汽温度:主汽温度是汽轮机蒸汽状态参数之一,是指汽轮机进口的主蒸汽温度。 4)主汽压力:主汽压力也是汽轮机蒸汽参数状态之一,是指汽轮机进口的主蒸汽压力。 5)再热汽温:再热汽温度是汽轮机蒸汽参数状态之一,是指汽轮机进口的再热蒸汽温度。 6)排烟温度:排烟温度是指锅炉末级受热面(一般指)空气预热器后的烟气温度。对于锅炉末级受热面出口有两个或两个以上烟道,排烟温度应取各烟道烟气温度的算数平均值。 7)飞灰可燃物:是指锅炉飞灰中碳的质量百分比(%)。 8)汽轮机热耗率:是指汽轮机发电机组每发出一千瓦时电量所消耗的热量。以机组定期或修后热力试验数据为准。 9)真空度:是指汽轮机低压缸排气端真空占当地大气压的百分数。 10)凝汽器端差:是指汽轮机低压缸排汽温度与冷却水出口温度之差。 11)高加投入率:是指汽轮机高压加热器运行时间与机组运行时间的比值。 12)给水温度:是指机组高压给水加热器系统出口的温度值(℃)。

13)发电补给水率:是指统计期汽、水损失水量,锅炉排污量,空冷塔补水量,事故放水(汽)损失量,机、炉启动用水损失量,电厂自用汽(水)量等总计占锅炉实际总蒸发量的比例。 注:以上指标偏离设计值对煤耗的影响见附表 3、综合厂用电率:是指统计期综合厂用电量与发电量的比值,即: 综合厂用电率=(发电量/综合厂用电量)×100%。综合厂用电量是指统计期发电量与上网电量的差值,反应有多少电量没有供给电网。 辅机单耗:吸、送风机、制粉系统、给水泵、循环水泵、脱硫等。 4、发电燃油量:是指统计期用于发电的燃油消耗量。 5、发电综合耗水率:是指发单位发电量所耗用的新鲜水量(不含重复利用水)。在统计耗水量时应扣除非发电耗水量。 6、100MW及以上机组A、B级检修连续运行天数:是指100MW及以上机组经A、B级检修后一次启动成功且连续运行天数,期间任何原因发生停机则中断记录。 7、等效可用系数:等效可用系数是指机组可用小时与等效降出力停运小时的差值与统计期日历小时的比值。 8、机组非计划停运次数:机组非计划停运次数是指机组处于不可用状态且不是计划停运的次数。 二、保证生产指标的措施 1、深入开展能耗诊断,认真落实整改措施,不断提高能耗管理水平。 2、不断深化对标管理,通过运行优化、设备治理、科技创新、节能改造等技术手段,不断提高机组经济运行水平。 3、深化运行优化,加强耗差分析,确定最优经济运行方案,合理调整运行方式; 4、全面推行经济调度,明确各台机组调度顺序,提升机组安全、经济运行水平;

[沙角,电厂,用电,其他论文文档]沙角C电厂厂用电结线分析

沙角C电厂厂用电结线分析 1、方案选择沙角C电厂(简称沙角C厂)有3台660MW机组,每台机组发出的电能都是经各 自的主变压器升压至500kV,由500kV变电站进入广东省主网。 方案一:全厂设高压厂用起动/备用变压器,而不设发电机开关; 方案二:每台机装设发电机开关,而全厂只设1台容量较小的高压厂用备用变压器。 方案二的优点是: a)机组正常起、停不需切换厂用电,只需操作发电机开关,厂用电可靠性高。 b)机组在发生发电机开关以内故障时(如发电机、汽机、锅炉故障),只需跳开发电机 开关,厂用电源不会消失,也不需切换,提高了厂用电的可靠性,同时减轻了操作人员的工作量和紧张度。这一点在沙角C厂的调试过程中,表现非常突出。同时对于国内大型机 组采用一机只配一主操作员和一副操作员的值班方式非常有益。 c)对保护主变压器、高压厂用工作变压器有利。对于主变压器、高压厂用工作变压器发 生内部故障时,由于发电机励磁电流衰减需要一定时间,在发电机-变压器组保护动作切 除主变压器高压侧断路器后,发电机在励磁电流衰减阶段仍向故障点供电,而装设发电机开关后由于能快速切开发电机开关,而使主变压器受到更好的保护,这一点对于大型机组非常有利。 d)发电机开关以内故障只需跳开发电机开关,不需跳主变压器高压侧500kV开关,对系统的电网结构影响较小,对电网有利。 方案一无上述优点。 对于方案二,当时我们主要担心发电机开关价格昂贵,增加工程投资,以及发电机开关质量不可靠,增加故障机会。对于工程投资的比较是如果不装设发电机开关,按目前国内大型火力发电厂设计规程要求的2台600MW机组需配2台高压厂用起动/备用变压器的原则, 沙角C厂则要配4台较大容量起动/备用变压器,且由于条件所限,起动/备用变压器的电源只能从沙角A厂220kV系统引接。因而,方案一需增加220kVGIS间隔4个,220kV电缆4根,220kV级的较大容量起动/备用变压器4台;方案二需增加33kV电缆1根,33kV级的较小备 用变压器1台,发电机开关3台。方案一的投资可能超过方案二。对发电机开关质量问题,经调查了解,当时GEC-ALSTHOM公司法国里昂开关厂生产的空气断路器,额定电流33.7kA,额定开断电流180kA,这种断路器已供应美国、法国许多大型核电站使用,运行良好。 因此,我们最终选择了方案二,并选用了GEC-ALSTHOM公司的PKG2C空气断路器。目前这种断路器经在沙角C厂多年的运行,上百次的动作,证明其性能良好。 2、设计原则

电磁式电压互感器谐振过电压分析及抑制措施

电磁式电压互感器谐振分析及抑制措施研究 (江建明四川省电力工业调整试验所610072) 电力系统接地系统为直接接地系统和不接地系统。直接接地系统易发生并联谐振,不接地系统在单相接地时易发生串联谐振,有并联电容器的断路器易发生串联谐振。长期以来,电力系统谐振过电压严重威胁着电网的安全。特别是对中性点不接地系统,铁磁谐振所占的比例较大。随着电网的日益发展,中性点直接接地系统的铁磁谐振问题越来越严重,出现的概率也越来越大。近年,在四川发生过多次铁磁谐振引起过电压的案例,应引起高度重视。本文将介绍产生铁磁谐振的机理、原因、现象以及应采取的措施。 1.产生铁磁谐振的原因 铁磁谐振存在三种情况:直接接地系统对地电容引发的铁磁谐振;不接地系统的单相接地引起的铁磁谐振;断路器端口并联的电容形成的铁磁谐振。 电力系统中许多元件是属于电感性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能量作用下特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱和,极易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感与线路的对地电容C,当C大到一定值且电压互感器不饱和时,感抗X L大于容抗X C;而

当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗X L小于容抗X C,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振: (1)当投入电力系统的电力线路长度发生变化时,线路对地电容与线路电阻发生改变。如空载线路投切操作,对空母线充电,尤其是短母线进行倒母线时,易产生对地电容引起的并联谐振。 (2)当系统运行状态突变,在暂态激发条件下,TV铁芯饱和,其电感量L处于非线性变化。如有线路瞬间接地,雷电感应侵入电网,尤其系统出现单相接地,易产生串联谐振。 (3)直接因突然投入系统的电容变化而引起谐振。如补偿电容器的投入,断路器断口打开时的并联电容易产生并联谐振。 (4)由于线路分合或运行状态突变时,会产生多次或分次谐波,从而使ω发生变化。如拉合刀闸、跌落式熔断器动作等,可能引起并联或串联谐振。 2.产生铁磁谐振的机理 由于电压互感器的中性点位移现象,常常在中性点不接地绝缘系统中引起铁磁谐振过电压。在正常运行条件下,励磁电感三相相等,三相负荷相等,电网的中性点电位为零。当线路中出现瞬时单相故障时,其它两相电压升高,三相电压互感器两相电压升高而饱和,其励磁电感相应减小,电网中性点出现位移电压,当三相总导纳之和为零时,便会发生串联谐振,中性点电压将急剧上升。由于铁芯的磁饱和会引起电流、电压波形的畸变,即产生了谐波,使上述谐振回路还会

关于厂用电率分析

电厂厂用电率分析 一、厂用电率现状 厂用电率的高低是电厂运行的重要经济指标之一,越来越受到领导们关注。通过查看电厂记录,现将电厂厂用电率以表格形式呈现如下: 二、影响厂用电率的因素 1、机组负荷率的影响 机组负荷率低是目前电厂面临的最主要的现实问题。我们的机组设计负荷30MW,而在实际的运行当中由于各种现实原因,一般负荷只能达到22MW上下,甚至只有18MW,所以负荷率只有72%左右。电厂的辅机设备是按照额定出力选型的,机组出力减小,厂用电设备耗电量也减少,但两者并不是一个成比例减少的线性关系。总的来说,负荷率越高,厂用电率越低,理论上讲当机组负荷率最大是厂用电率最低;当机组发电量减少,负荷率降低时,由于厂用电耗电量并没有按照比例相应的减少,所以造成厂用电率居高不下。 2、生物质燃料的影响 生物质燃料是影响负荷率的重要因素。我们都知道生物质又称农林废弃物,燃料的水分、热值受环境湿度的影响比较大。通过请

教锅炉人员得知目前北流电厂入炉燃料水分都在百分之五十以上,水分过高造成引风机等设备已经达到额定出力,但机组负荷无法提升到更高的水平。换句话说,机组设备的耗电已达到额定值,机组的负荷却没有达到30MW设计值,这样就造成厂用电率偏高。 3、辅机设备选型的影响 电厂主要电动设备包括引风机、电动给水泵、一次风机、二次风机、高压流化风机、循环水泵等,这些电动设备的耗电量大概占厂用电的65%,甚至更高。辅机设备根据不同的选型基准点设计容量差别很大,再加上辅机设备的驱动电机要考虑1.15倍的储备系数并根据电动机的标准容量进行选择。如果辅机设备选型不合理,累计下来的名牌功率就和实际功率差距很大,造成很大的功率损耗,这部分也是造成厂用电率偏高的原因。 4、人为因素的影响 电厂各专业人员操作用电设备不合理、不科学也会造成用电量增大,厂用电率偏高。比如锅炉专业:⑴经常堵塞给料系统⑵锅炉缺氧燃烧,造成负荷低,燃料浪费。汽机专业:⑴循环水泵运行不合理⑵凝汽器真空低。电气专业:⑴锅炉和厂区等照明设备停送电不及时⑵对电动机检查不够,造成电机散热降低,摩擦增大,耗电增加。化学专业:造水过程中对设备开度不合理,造成设备运行时间变长,损耗电量等。 三、降低厂用电率的措施 1.最大限度提高机组运行负荷率。

电网谐振过电压的防治

电网谐振过电压的防治 刘志清山东诸城市供电公司(262200)电网谐振过电压与系统结构、容量、参数、运行方式及各种自动装置的特性有关。谐振过电压,一般因操作或故障引起系统元件参数出现不利组合而产生。诸城市电网10~35kV系统为不接地或经消弧线圈接地系统,电网中存在大量星形接线的电压互感器,其一次绕组直接接地,成为电网对地电容电流、高次谐波电流的充放电途径,此电流必然通过电压互感器一次绕组,使电压互感器铁心深度饱和,在电网接地、倒闸操作、运行方式变化等情况下,将出现电网电压不稳定,甚至出现谐振。另外,近年来热电厂联网数量不断增多,发电机电感参数周期性变化将引起发电机自励磁(参数谐振)过电压。 谐振过电压对电网造成危害极大,诸如造成电压互感器熔丝熔断、电压互感器烧毁、电网设备绝缘损毁,甚至造成相间短路、保护装置误动作等等,所以加强对其防治非常必要。 诸城金安热电厂并网发电后,数月时间在其并网的35kV系统内连续发生3次谐振过电压。谐振时,相电压最高达到41kV、最低16kV,持续时间15min左右。谐振期间,采用切除电容器等操作电网手段改变电网参数后,只能使谐振暂时消除几分钟,然后再次谐振,所幸未导致电网设备损坏。 谐振发生后,经过分析论证热电厂联网发电机是该区域35kV电网谐振源,该区域35kV电压互感器一次绕组中性点接地点多达9

个,电网抗谐振过电压能力薄弱且无任何防治措施,致使电网具备了发生谐振过电压的条件。为此,应从技术上采取措施。 为防止并网运行发电机电感参数周期性变化引起的自励磁过电压,要求并网发电热电厂必须采取如下措施: ·尽量避免发电机直接空充线路,无法避免时应确保发电机容量大于并网空载线路的充电功率; ·避免发电机带空载线路启动,或避免以全电压向空载线路合闸; ·要求并网运行的热电厂发电机采用快速励磁自动调节器,限制发电机同步励磁过电压; ·并网发电的热电厂35、10kV母线上的星形接线电压互感器,其中性点一次侧加装消谐器。二次侧开口三角加装二次消谐器或合适消谐电阻。 为防止不接地系统或经消弧线圈接地系统中,因合闸充电或在运行时接地故障消除等原因的激发,使中性点接地的电压互感器过饱和可能产生的谐振过电压,采取如下措施: ·优先选用励磁特性饱和点较高的抗谐振型电压互感器; ·减少同一系统中电压互感器高压侧中性点接地数量,除电源侧电压互感器高压侧中性点接地外,其它电压互感器中性点尽可能不接地; ·在电压互感器开口三角绕组装设二次消谐器或消谐电阻; ·在电压互感器一次绕组中性点装设一次消谐器。 采用性能良好的设备,提高运行维护水平,避免下列条件下的铁

电厂厂用电率及对策

电厂厂用电率及对策 2007-03-06 17:06:54| 分类:论文| 标签:无|字号大中小订阅 电厂厂用电率及对策 中国东方电气集团公司刘玉宁 摘要简介国内外电厂厂用电率的状况,从业主对电厂厂用电率提出的要求谈谈总承包单位采取的对策。 关键词发电厂;厂用电;对策 1 引言 电厂建设技术经济的考核指标主要有厂用电率、汽机热耗、锅炉效率、发电机效率、变压器损耗等,这些指标在工程建设过程中控制的好坏,直接影响电厂长期运行的经济效益。控制和减少消耗在电厂内部的能量。就增加了电厂输出的能量。现在国内外电厂已在逐步重视和解决这个问题。下面仅就厂用电率谈一些看法。 2 国内外电厂厂用电率的状况 2.1 概念 厂用电率是电厂主要技术经济指标之一,我国电力行业一般认为是发电厂电力生产过程中所必需的自用电量占发电量的百分比。厂用电量包括电力生产过程中电动机、照明、采暖通风以及其它控制、保护装置等所耗用的电能,不包括非发电(如机修厂、基本建设、大修理后试运转以及食堂、宿舍、办公室、道路照明等)用电。 2.2 一些国家火力发电厂厂用电率 下表记载的是一定时期里国际上认可的一些数据。但由于没有反映出机组容量、燃料(煤、油或天然气)、水质和电厂的特定条件(如地理位置、电厂布置、锅炉和汽机发电机整套机组的水平等)等,故只能宏观参照比较数,而不能认为是某些电厂准确的厂用电率数值。 近年来,我国电厂向大装机容量发展,厂用电率有所降低,这也是大机组效益好的一个体现。现在相同装机容量的机组的情况与过去比较是有变化的,厂用电率随着电厂自动控制水平

提高而使机组运行状态逐步趋于合理。同时,设备性能的改善,设计水平、管理水平的提高使电厂厂用电率也有所降低。 2.3 国内外电厂过去对厂用电的要求 胜利发电厂2×210MW发电机组工程(1987年开始建设)在设计中提出厂用电率是8.3%,有要求,但合同没有惩罚条款。 成都热电厂扩建1×200MW发电机组工程也是在设计院设计时提出了厂用电率,合同没有惩罚条款(1988年开始建设)。 孟加拉国吉大港电厂2×210MW燃汽机组建设项目(1990年和1994年各1台议标的项目)技术建议书提出厂用电率6%,业主没有提出超标罚款的要求,。 伊朗阿拉克4×325MW燃油电厂建设工程(1995年中标项目)仅为汽机岛和锅炉岛,业主没有提出要求也不进行考核。 马来西亚古晋2×50MW燃煤电厂建设项目(1994年议标项目)是1994年5月签的合同,设计院的设计说明书提到该厂的厂用电率为85%,业主也没有提出超标罚款的要求。 综上所述,过去,不论国外还是国内业主,对这个关系到电厂长期运行经济效益的重要技术经济指标重视是不够的。 3 厂用电率的考核和罚款 近年来,随着市场经济的发展,招标的发展,业主对厂用电率是重要的技术经济指标的认 识有了提高,国内外业主有了新的要求。从下面的叙述可以看到,现在业主不仅提出技术性 能指标要求,还提出对超标者给予严厉的经济制裁的要求,表现出对厂用电率的极大重视。 3.1 孟加拉国库尔纳电厂1×210MW燃油或天然气的火电机组扩建项目(2000年开始投标的项目) 业主在招标书中要求电厂辅助用电超过计划保证值,业主有权根据辅助用电超过的功率,减少合同价格。同时提出厂用电的测量计算:在发电机出口测量发电总功率,减去在输出功率系统测量得到的净功率。 厂用电率每增加1%,合同总价相应降低1%。也就是说,如果厂用电率绝对值每提高1%,罚款将如下式: (性能实测厂用电率-投标厂用电率)÷投标厂用电率=厂用电率提高百分比 也就是说在性能实测时的厂用电率比合同厂用电率高出0.1%时,罚款将超过合同总价的1%。

防止谐振过电压的措施

防止谐振过电压的措施 电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。 谐振过电压分为以下几种: 1、线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。 2、铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。 3、参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd~Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。 限制谐振过电压的主要措施有: 1、提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。 2、在并联高压电抗器中性点加装小电抗用这个措施可以阻断非

全相运行时工频电压传递及串联谐振。 3、破坏发电机产生自励磁的条件,防止参数谐振过电压。 4、严格执行调度规程 在运行方式上和倒闸操作过程中,防止断路器断口电容器与空 载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。它包括两个方面: ①应避免用带断口电容器的断路器切带电磁式电压互感器的 空载母线。 ②避免用带断口电容器的回路的刀闸对带电磁式电压互感器的 空载母线进行合闸操作。 具体可采用下述方式来实现:在切空母线时,先拉开电压互 感器,对母线断电;在投空母线时,先断开被送电母线PT, 对母线送电,再合母线电压互感器。 5、避免操作过电压 在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振 时,应立即合上带断口电容器的断路器,切除回路电容,终止 谐振,防止隐患发展形成事故。 6、中性接地点 增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压,如:在变电站基建设计时,采用

相关文档
最新文档