电吸附除盐技术优选稿

电吸附除盐技术优选稿
电吸附除盐技术优选稿

电吸附除盐技术

Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

电吸附除盐技术

电吸附除盐技术(Electrosorb Technology),简称(EST),又称电容性除盐技术,是20世纪90年代末开始兴起的一项新型水处理技术。该技术利用通电电极表面带电的特性对水中离子进行静电吸附,从而实现水质的净化目的。

电吸附技术原理

时间:2011-08-02 来源:作者:

水处理中的盐类大多是以离子(带正电或负电)的状态存在。电吸附除盐技术的基本思想就是通过施加外加电压形成静电场,强制离子向带有相反电荷的电极处移动,使离子在双电层内富集,大大降低溶液本体浓度,从而实现对水溶液的除盐。

电吸附原理见图,原水从一端进入由两电极板相隔而成的空间,从另一端流出。原水在阴、阳极之间流动时受到电场的作用,水中离子分别向带相反电荷的电极迁移,被该电极吸附并储存在双电层内。随着电极吸附离子的增多,离子在电极表面富集浓缩,最终实现与水的分离,获得净化/淡化的产品水。

工作过程示意图

在电吸附过程中,电量的储存/释放是通过离子的吸/脱附而不是化学反应来实现的,故而能快速充放电,而且由于在充放电时仅产生离子的吸/脱附,电极结构不会发生变化,所以其充放电次数在原理上没有限制。

当含有一定量盐类的原水经过由高功能电极材料组成的电吸附模块时,离子在直流电场的作用下被储存在电极表面的双电层中,直至电极达到饱和。此时,将直流电源去掉,并将正负电极短接,由于直流电场的消失,储存在双电层中的离子又重新回到通道中,随水流排出,电极也由此得到再生。

再生过程示意图

由于电吸附过程主要利用电场力的作用将阴、阳离子分别吸附到不同的电极表面形成双电层,这会使同一极面上的难溶盐离子浓度积相对低得多,可有效防止难溶盐结垢现象的发生。其次,电吸附极板间水径流与极板呈切线方向,不利于水中析出难溶盐结晶在极板上的生长。电吸附可以在浓水难溶盐过饱和状态下运行。另外,在电吸附模块中,由于电吸附过程中阴、阳离子吸附不平衡导致产生氢离子含量较多的出水,通过倒极的方式,略偏酸性的出水同样会使有微量结垢现象的垢体溶解掉。

电吸附模块处理效果的好坏主要取决于电极的吸附性能。

电吸附技术特性

时间:2011-08-02 来源:作者:

科技创新点

一、原理创新:电吸附除盐技术利用带电电极表面吸附水中离子,使水中溶解的盐类在电极表面富集浓缩而实现水的净化/淡化。独特的除盐原理是将水中溶质从溶液中提取出来,而不是将水中溶剂从溶液中提取出来。

二、工艺创新:电吸附模块的电极采用惰性材料加工而成,具有化学性能稳定、使用寿命长(10年以上)的优点。以电吸附模块为核心元件的电吸附除盐系统具有抗污染性强、预处理简单、不需要添加专用药剂、通量稳定、不用频繁清洗、运行成本低、节能环保的特性。

三、应用创新:该项目突破了污(废)水再生回用技术的瓶颈。为污(废)水再生回用领域的发展提供了一项抗污染性强、经济环保、应用范围广的除盐技术。

电吸附装置的技术特点

一、节能节水,环境友好,运行成本低

首先,电吸附技术能耗低。电吸附技术进行水的除盐处理时,其主要的能量消耗在使离子发生迁移,而在电极上并没有明显的化学反应发生。与蒸馏法、反渗透法等除盐技术相比,电吸附技术是有区别性地将水中离子提取分离出来,而不是把水分子从待处理的原水中分离出来,无需高温或高压,因此所耗的能量相对较低。另外,由于电极加电后即为充电电容器,所施加的电能被储存在双电层电容上,如有必要,就可以将所存储的能量在电极再生时回收一部分,即将吸附饱和的模块上储存的电能再加到另一再生好的模块上,也即所谓的“秋千式”供电。这样可以大大地节约能源。

其次,电吸附技术得水率高,用于再生的冲洗水可重复使用,一般情况下得水率可以达到75%以上;如采用适当的工艺组合,甚至可达90%以上。

同时电吸附还是一项环境友好型技术。电极再生时只需将储存的电能释放掉,不需任何化学药剂进行再生。与离子交换技术相比,减少了在浓酸、浓碱的运输、贮存和操作上的麻烦,而且不向外界排放酸碱中和液;与反渗透相比,无需加入还原剂、分散剂、阻垢剂等化学药剂,所排放的浓水系来自于原水,系统本身不产生新的排放物,从而避免了二次污染问题。另外,抗污染性能较强,并表现出一定的去除COD的能力。

二、设备可靠,运行稳定

由于电吸附技术不采用膜类元件,只采用特殊的惰性材料为电极,因此对原水预处理的要求不高,即使在预处理上出一些问题也不易对系统造成不可修复的损坏。电吸附除盐装置采用通道式结构(通道宽度为毫米级),因此不易堵塞,对颗粒状污染物要求较低;电吸附技术是利用电场作用将阴、阳离子分别去除,因此,阴、阳离子所处场所不同,不会互相结合产生垢体;少量油类、铁、锰、余氯、有机物、pH值等对系统几乎没有什么影响,对各类水质的原水具有良好的适应性;在停机期间也无需对核心部件作特别保养;系统采用计算机控制,自动化程度高;由于采用碳类电极材料,从理论上讲电吸附模块可以长期服役。

三、适应性强,操作及维护简便

系统对原水预处理的指标要求不高,铁、锰、氯等离子、pH值和有机物等对系统几乎没有什么影响,所以除盐技术适应性强。在停机期间也无需对核心部件作特别养,维护方便。即使在预处理上出一些问题也可以进行处理恢复,不易对系统造成不可修复的损坏。系统采用计算机控制,自动化程度高,操作程序简单容易掌握。

由于其广泛的适应性和良好的实用性,电吸附技术可以应用在工业废水回用处理、工业除盐水处理、苦咸水淡化等领域。苦咸水淡化乃至海水淡化将是EST技术的下一个更加诱人的应用领域。电吸附技术国内研究概况

时间:2011-08-02 来源:作者:

电吸附技术在国内的研究起步比较晚,这方面的文献并不多见,国内陈福明、尹广军等1999报道了用多孔大面积电极去除水中离子的方法,并对电吸附进行了一系列的理论和实验研究。杨慧云对NaCl溶液进行电容性除盐,结果分析表明,当溶液种类和浓度一定时,电极的吸附容量随外加电压的增加而增大,当溶液种类和外加电压确定后,吸附容量随着浓度的增加而增大,并达到一个极限值吸附。莫剑雄也尝试利用双电层电容的原理进行电吸附装置的研究。上述研究过程仍处于实验室研究阶段。

电吸附技术国外研究概况

时间:2011-08-02 来源:作者:

电吸附的研究始于20世纪60年代,俄克拉荷马大学的研究人员利用电吸附原理,从略带碱性的水中去除了盐分。在Caudle等的报告中描述了使用多孔电极的电容去离子装置。Johnson 和Newman等的研究则包括验证过程的理论基础、参数研究和对多种候选电极材料的评价。国外的研究工作也主要以炭电极的发展作为主线,但主要停留在小流量循环处理的实验阶段。

国外在电吸附应用方面取得研究成果最多的是美国劳伦斯·利弗莫尔国家实验室,他们从从上个世纪90年代,采用内部孔隙极多的炭气凝胶作为电极材料开发出来一套电容性除盐实验装置。虽然具有一定的除盐效果,但材料制作工艺复杂,制作成本很高。妨碍了这一技术的推广。

污水回用应用现状及主要问题

时间:2011-08-02 来源:作者:

污(废)水回用应用现状

随着经济的发展和人口的膨胀,工业及生活所需的淡水资源日益匮乏,水资源净化已经成为世界范围内普遍关注的问题。解决水资源匮乏的方法有很多,其中污(废)水回用及开发中水资源,即提高水的重复利用率是当前许多国家解决水资源短缺的有效途径。水处理技术的不断成熟,特别是近年来高级氧化、膜分离等高级处理技术的发展给城市、工业污水的达标排放处理提供了新的技术手段。然而,虽然水中的许多污染物可以通过传统的混凝、沉淀、过滤、吸附等方法去除,但对于水质要求较高的回用场合,如对于溶解在水中的盐的去除则需要采用适当的除盐手段来实现。常见的水的除盐方法有蒸馏、反渗透、电渗析、离子交换等。在工业界已有用超滤/微滤与反渗透(双膜法)进行污(废)水除盐处理的实践,通过采用超滤、微滤来降低污(废)水对反渗透膜的污染,取得了一定的经验。然而,由于双膜法用于污(废)水回用时工艺复杂,运行成本高、得水率较低,膜组件的使用寿命与常规水处理时相比要短得多,同时需要采用大量还原剂和阻垢剂,使浓水的排放难以达到环保要求。因此,在污(废)水回用领域,存在着技术经济上不尽合理的问题。

从20世纪60年代电吸附除盐技术面世到今天,电吸附在许多领域得到了初步的应用,如将电吸附作为除盐手段应用于管道直饮水、矿泉水、苦咸水淡化等不同的场所。近年来,随着对电吸附除盐技术的性质与功能的研究的进一步深入,电吸附除盐技术在污(废)水回用处理领域的应用正逐渐展开。

主要问题

污(废)水除盐技术市场发展目前存在的主要问题是:污(废)水的成分比一般自来水和天然地表(下)水要复杂得多,传统污水除盐技术在该领域应用时,易受水中有机物、油类等物质的影响而造成污堵,造成设备在产水量、得水率及使用寿命不能满足设计要求。同时对预处理的要求很高,又需要投放大量药剂,不仅增加工程的总体投资,也使运行成本居高不下。因此,寻找一种对原水耐受性好,既能以较低的运行成本对污(废)水进行除盐又对环境友好的除盐技术成为业界的一个重要课题。

电吸附技术优势

时间:2011-08-02 来源:作者:

一、采用高效功能材料

EST模块采用了高效功能材料作为电极,该电极材料不但除盐效果好,而且具有化学性质高度稳定、耐酸、耐碱、耐腐蚀、抗氧化等特点,这使得电吸附除盐装置具有对来水水质约束小、抗污染、设备可靠、运行稳定等优点。

这种高效功能材料属于惰性的多孔无机物质,比表面大,且在电吸附运行中还有一定量的初生活性氧化基团产生,对原水中的有机物具有一定的去除效果,扩大原水水质约束范围。经过适当的

预处理,原水就可以进入EST模块,即使在预处理上出一些问题,如遇到包含少量油污在内的有机物污染,也不会使电吸附材料受到大的危害,仍能保证相对较高的除盐率。因此,在这种情况下,可以在半年甚至一年的长期运行后,利用酸洗或碱洗的方式对电极材料进行清洗恢复。

停机期间,无需对核心部件作特别保养,维护方便。

二、微通道设计

电吸附除盐装置采用微通道式设计(通道宽度为毫米级),水流是在宏观通道中运动的,因此少量悬浮物和有机物不会污堵设备。对前处理要求相对较低,而且可以大大提高得水率,一般情况下可达75%以上,如有特殊需要,部分浓水经回收再处理工艺,可使系统得水率达到85%以上。

三、设备集成度高,实行智能化控制

电吸附除盐技术的开发依据于水力学、电化学、机械学、电子控制学等理论。系统采用模块化设计,各个环节在中央控制计算机的集中控制下形成整个系统。所有的执行机构、检测仪表等均由计算机按设定程序实现操作,正常运行时不需人工干预。

四、绿色技术节能、环保

由于电吸附除盐技术利用了双电层电容静电吸附的原理,工艺运行过程中不需添加缓蚀剂、阻垢剂、还原剂之类的专用药剂,系统所排放的浓水均来自于原水,所以系统不会产生新污染物。这既节约了运行成本,又避免了二次污染。

另外,与其他技术相比,电吸附技术属于常压操作,提升能耗少,其主要的能量消耗在使离子发生迁移,并通过控制电压使电极表面不发生极化现象,同时工作时所储存的电能可以在再生时回收一部分,因此,总体能耗较低。

五、适应性好,应用领域广泛

电吸附除盐技术对进水水质要求不高,并且可以根据电压调节来控制除盐率在60%-90%的范围内变化。因此,拓展了电吸附技术的适用领域。电吸附可以被广泛应用于饮用水、废水、污水处理等方面,包括冶金、化工、电子、电力、制药、纺织、造纸等工业领域。对于那些污染较重,不需要完全除盐的场合来说,电吸附不失为一种良好的选择。

电吸附除盐回用工程的经济评价

时间:2011-08-02 来源:作者:

城市污水回用作为工业净水工程的经济评价:

目前城市污水处理(二级处理)投资大约在900-1400元/m3·d,在此基础上三级再生处理约

400-600元/m3·d。加上管网配套总计600-1000元/m3·d。三项相加1900-3000元/m3·d,到“十一五”末期形成40亿立方米再生水源的投资大约在300亿元左右。为扩大城市污水处理在工业企业中的应用,通过进一步除盐提高水质,以城市污水处理(三级再生处理)为基础上,采用电吸附除盐技术,只增加2000-2500元/m3·d。到“十一五”末期形成40亿立方米替代水源的投资大约在200亿元左右。而形成同样规模的长距离引水,以大连引英入连为例,则需600亿元左右,海水淡化则需1000亿元左右,可见采用电吸附除盐技术进行污(废)水回用在经济上具有明显优势。

工业循环冷却水的排污水回用作为工业净水工程的经济评价:

采用电吸附除盐技术,具有很大经济优势,由于循环冷却水的排污水水体污染较轻,经过简单处理就可以进入电吸附除盐系统,电吸附除盐系统处理出水就地使用,不需要长距离输送,减少管网配套投资,预处理费用相当于城市污水三级再生处理约400-600元/m3·d,加上电吸附2000-2500元/m3·d,共计2400-3100元/m3·d。

经过二级污水处理后达到排放标准的城市废水或工业污水,如果作为工业循环冷却水的补水,需要进行脱盐处理,脱盐工艺采用电吸附技术,因原水水质较好,可以简化电吸附的预处理,整体投资可以进一步降低。

电吸附除盐回用技术的经济优势

时间:2011-08-02 来源:作者:

电吸附污(废)水回用系统建设一次性投资费用2000元-2500元/吨产水·日(原水为经二级污水处理达到排放标准的废水),吨水运行费用元/吨,单位制水成本约元/吨(包括设备折旧费、材料消耗费、大修基金等),目前工业用水综合水价~元/吨,不久将来可达6元/吨,通过采用电吸附技术不仅可减少新鲜水的取用量和污水排放量,而且可创造价值2-4元/吨水。分析表明,尽管电吸附工艺需要一定的初期投资费用,但可以在保证良好除盐效果的前提下,为客户带来长期的经济效益,如果按可创造价值为4元/吨水,可在2-3年内收回投资。

电吸附技术的应用前景

时间:2011-08-02 来源:作者:

由于电吸附除盐技术具有对进水水质要求不高、运行可靠、能耗低、操作方便、产水率较高、综合运行成本较低等特点,适合进一步加大市政、工业污(废)水除盐领域的推广应用,特别是在化工、石化、冶金、电力、造纸等高耗水行业乃至核工业废水的治理等方面有着很大的应用潜力。

工业用水中的用水大项为循环冷却水,在石油化工、电力、钢铁、冶金等行业中占企业用水总量的80%-90%。长期循环使用的冷却水由于含盐量增加,会产生水垢附着、设备腐蚀以及微生物滋生与粘泥的问题,因此,循环冷却水浓缩到一定倍数必须排出一定的浓水,并补充新鲜水。对部分浓水进行除盐回用,或将污水经深度处理(除盐)后用于循环冷却水的补给水,可以使新鲜水用量和排污水量不断减少,对于提高水的重复利用率、节约水资源、实现“趋零”排放具有重要意义。

电吸附技术的发展趋势

时间:2011-08-02 来源:作者:

一、与其他除盐技术进行组合,优势互补

由于本技术对原水前处理要求较低,在市场应用方面,除了作为独立的操作单元进行除盐处理,也可以与现有其他除盐技术进行合作,满足更高的水质要求。

1.在污(废)水除盐处理方面,.电吸附预处理可以和超滤相结合,对复杂的原水进行深度处理,可进一步提高去除效果,降低模块清洗工作量。

2. 锅炉的补给水根据不同压力、温度等级水质标准不同,有一定的除盐要求;有的工艺用水必须是含金属离子或含硅量、含氯量、含碳酸根离子量极低的水,电吸附水处理技术可以与传统的除盐处理技术相结合以运行成本很低的方式来实现这些目的。

以高污染地表水做水源制备深度除盐水,采用电吸附做预脱盐,后接混床脱盐系统,出水可达到锅炉补给水的要求。可减少90-95%混床再生用酸碱消耗量。

3.考虑到一级反渗透浓水的复用价值,可以对某些浓度较低的反渗透浓水进行电吸附除盐回收处理,以减少浓水水量,提高整个除盐系统的得水率,实现工业废水趋零排放。

二、开拓电吸附水除盐技术的深度和广度

沿海大陆岛屿、中国内地尤其是西北、华北的淡水甚为缺乏,不得不采用海水淡化和地下苦咸井水淡化来解决生活用水,电吸附技术具有耐钙、镁、硫酸盐等物质的特点,在苦咸水淡化方面有着独特的优势,特别是对矿坑水等含盐量和有机物含量都较高的情况下,采用电吸附技术进行苦

咸水淡化将使其优势得以充分展示。随着电吸附水处理技术淡化苦咸水的成本逐步降低,该技术将具有更强的市场竞争力。

在市场运作的同时,使电吸附除盐技术不断地创新、完善,在较低成本的条件下,满足更高的水质处理要求,从而实现低成本高效率淡化海水的梦想。

电吸附除盐

一种电吸附除盐电极模块的设计 电吸附模块由导电的平板材料制成,长宽高400×200×2mm,电极板间距6mm,外加水箱,水泵,流量计,进出口电导率仪器,压力计及管道制成。 电源电压应低于1.6v,在1.3-1.6v之间可调,电压太高会造成水的电解,会出现气泡,应该绝对避免,电源正负极可自动对换,电极可自动短接。 电极设计以增加水通过时间为目的。 生产时间360分钟,预排和再生时间共100分钟,为了连续生产,应该有两套相同的设备交替作业。大流量对水质有影响,应该尽量采用小流量长流程,但过度的长流程没有必要,也不会对水质有好的影响。 出水电导率升高超过设定上限时,应停止这路设备的作业,转换到另一路设备进行作业,同时将该路设备电极短接,用原水将其冲洗排除浓水,然后根据出入口电导率停止反冲作业,并将电极极性互换。 电吸附技术电极的制备 吸附剂材料的选择和电极的制备成型过程是电吸附技术实际应用的关键。为了能吸附大量带电粒子,吸附剂必须拥有足够大

的比表面积,因此采用的吸附剂往往是多孔碳材料,如活性炭、活性碳纤维、碳气凝胶、碳纳米管等。 1活性炭电极 活性炭是水处理中应用最为广泛的吸附剂,有活性炭粉末和活性炭颗粒两种产品形态,具有生产简单、成本低等优点。Zou 等将活性炭颗粒用环氧胶黏在一起,只露出颗粒的一面,作为工作电极。实验中用KOH溶液和TiO2纳米粒子对活性炭颗粒做了改性处理,结果都提高了吸附容量。Zou 等还用有序中孔活性炭做电极,研究表明:有序中孔活性炭和普通活性炭的比电容分别为133 F/g 和107 F/g;在1.2 V电压条件下,对质量浓度为20 mg/L的NaCI 溶液的吸附容量分别为11.6 μmol/g和4.3 μmol/g。 Park等将活性炭粉末与聚四氟乙烯、碳黑以不同比例混合,用去离子水和无水乙醇作溶剂,将混合物搅拌l h使其均匀,然后滚压数次成为片状,加压放置后制成电极。当活性炭粉末与聚四氟乙烯、碳黑的质量比为84:4:12时,通过循环伏安测试得到的电容和电吸附除盐率最高,均为市售碳布的2倍。 2碳气凝胶电极

电吸附技术最新进展

电吸附技术·认识篇 电吸附除盐技术(Electrosorb Technology),简称(EST),又称电容性除盐技术,是20世纪90年代末开始兴起的一项新型水处理技术。该技术利用通电电极表面带电的特性对水中离子进行静电吸附,从而实现水质的净化目的。

电吸附技术原理 时间:2011-08-02 来源: 作者: 水处理中的盐类大多是以离子(带正电或负电)的状态存在。电吸附除盐技术的基本思想就是通过施加外加电压形成静电场,强制离子向带有相反电荷的电极处移动,使离子在双电层内富集,大大降低溶液本体浓度,从而实现对水溶液的除盐。 电吸附原理见图,原水从一端进入由两电极板相隔而成的空间,从另一端流出。原水在阴、阳极之间流动时受到电场的作用,水中离子分别向带相反电荷的电极迁移,被该电极吸附并储存在双电层内。随着电极吸附离子的增多,离子在电极表面富集浓缩,最终实现与水的分离,获得净化/淡化的产品水。 工作过程示意图 在电吸附过程中,电量的储存/释放是通过离子的吸/脱附而不是化学反应来实现的,故而能快速充放电,而且由于在充放电时仅产生离子的吸/脱附,电极结构不会发生变化,所以其充放电次数在原理上没有限制。 当含有一定量盐类的原水经过由高功能电极材料组成的电吸附模块时,离子在直流电场的作用下被储存在电极表面的双电层中,直至电极达到饱和。此时,将直流电源去掉,并将正负电极短接,由于直流电场的消失,储存在双电层中的离子又重新回到通道中,随水流排出,电极也由此

得到再生。 由于电吸附过程主要利用电场力的作用将阴、阳离子分别吸附到不同的电极表面形成双电层,这会使同一极面上的难溶盐离子浓度积相对低得 再生过程示意图 多,可有效防止难溶盐结垢现象的发生。其次,电吸附极板间水径流与极板呈切线方向,不利于水中析出难溶盐结晶在极板上的生长。电吸附可以在浓水难溶盐过饱和状态下运行。另外,在电吸附模块中,由于电吸附过程中阴、阳离子吸附不平衡,导致产生氢离子含量较多的出水,通过倒极的方式,略偏酸性的出水同样会使有微量结垢现象的垢体溶解掉。 电吸附模块处理效果的好坏主要取决于电极的吸附性能。 电吸附技术特性 时间:2011-08-02 来源: 作者: 科技创新点 一、原理创新:电吸附除盐技术利用带电电极表面吸附水中离子,使水中溶解的盐类在电极表面富集浓缩而实现水的净化/淡化。独特的除盐原理是将水中溶质从溶液中提取出来,而不是将水中溶剂从溶液中提取出来。 二、工艺创新:电吸附模块的电极采用惰性材料加工而成,具有化学性能稳定、使用寿命长(10年以上)的优点。以电吸附模块为核心元件的

混床和EDI比较

传统工艺和先进工艺的比较 -----EDI、混床(离子交换)和反渗透一:离子交换与反渗透比较 离子交换法处理有以下特点 优点 1.预处理要求简单、设备初期投入低; 由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。缺点 2.由于离子交换床阀门众多,操作复杂烦琐; 3.离子交换法自动化操作难度大,投资高; 4.需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患; 5.细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物; 在含盐量高的区域,运行成本高。 从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。

反渗透法处理有以下特点 优点 反渗透技术是当今较先进、稳定、有效的除盐技术; 与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等; 1.原水含盐量较高或是水质起伏变化时对运行成本影响不大 2.连续运行,产品水水质稳定 3.无须用酸碱再生 4.不会因再生而停机 5.节省了反冲和清洗用水 6.以高产率产生超纯水(产率可以高达95%) 7.无再生污水,无须污水处理设施 8.无须酸碱储备和酸碱稀释运送设施 9.减小车间建筑面积 10.使用安全可靠,避免工人接触酸碱 11.减低运行及维修成本 12.安装简单、安装费用低廉 缺点 预处理要求较高、初期投资较大

二:混床(离子交换)和EDI系统比较 1.运行对比 混床 混床在有效的交换周期内,出水水质稳定,其电阻率可达14MΩ,一旦到达失效终点,则电导率会急剧上升,出水水质也随之不稳定。由于其交换周期受操作工的操作水平、再生剂质量、预处理水质以及树脂本身的质量等因素的影响,故存在有效周期时间长短不确定的因素。所以,在反渗透+混床的系统中至少存在两个混床,一用一备,以减小混床突然失效带来的风险。 EDI EDI又称连续电除盐(EDI,Electro deionization,continuous electrode ionization),是将两种已经成熟的水净化技术--电渗析和离子交换相结合,溶解的盐在低能耗的条件下被去除,在运行过程中不需要化学再生,并且其出水电阻率较混床出水还要高,可达10-15MΩ.CM,满足国家电子级水I级标准 EDI对一级反渗透出水电导率没有太高的要求,进水电导率在4-12us∕cm其都能够合格产水。可能需增加软化装置,或增加RO膜阻垢剂去除水中的钙、镁离子。 若电导率较高时只需调节运行电流的大小 EDI属于环保型技术,离子交换树脂不需酸、碱化学再生,节约大量酸、碱和清洗用水,大大降低了劳动强度。更重要的是无废酸、废碱液排放,属于非化学式的水处理系统,它无需酸、碱的贮存、处理及无废水的排放。

电吸附技术去除再生水中氯离子的静态吸附实验

电吸附技术去除再生水中氯离子的静态吸附实验 【摘要】本文通过实验室静态吸附研究了电吸附技术对氯离子的去除效率,以及影响去除率的各种因素,结合进水水质和处理要求,确定了在电压5V,极板间距1.0cm,吸附时间为15min为最佳的吸附工况;考察流量对氯离子去除率的影响;最后将实验结果应用到工程研究中,提出解决氯离子浓度高的方法。电吸附技术应用于污水回用工程体现出较好的经济、环境和社会效益,有一定的推广应用价值。 【关键词】电吸附;氯离子;去除率 1.实验概况 本实验研究的是电吸附技术去除水中氯离子的可行性,实验用水主要采用河北省某处理厂再生回用生物处理后的出水,其主要水质指标如下: 2.静态实验步骤与实验分析 2.1实验装置 首先进行静态吸附实验。实验装置如图2-1所示。反应容器为1000ml的烧杯,正负电极分别由两块石墨电极(100mm*50mm*5mm)组成,正负极上所施加电压通过一直流电源来控制。吸附在恒温磁力搅拌下进行,并维持反应温度为(20土0.5)℃。 2.2实验流程 将含氯废水放在电吸附实验装置里,将电极置于反应器中,开启电源,使用搅拌器匀速缓慢搅拌含氯废水,整个实验过程是在恒温下进行,电场作用下,水中带正电荷的离子会向阴极迁移,被电极吸附,水中带负电荷的离子会向阳极迁移,被该电极吸附,都储存于电极表面形成的双电层中;随着离子的富集,水中的氯离子浓度会逐渐降低。 实验每隔5min取水样测氯离子的浓度。随着时间的延长,反复测定氯离子浓度,直到浓度不变化,吸附达到饱和状态。关掉电源进行脱附。实验结果都是在平行实验下得到。 2.3 时间对吸附与脱附效果的影响 实验时,将浓度为412mg/l的原水注入电吸附反应器,然后开启电源,不断改变吸附时间,按图2-1重复进行吸附,观察出水氯离子浓度变化,结果可以看出,出水氯离子浓度在吸附过程随时间的变化规律。当接通电源,电极两端加上电压后,随着反应时间的延长,溶液中氯离子浓度逐渐降低,出水浓度开始下降,

电厂建筑工程除盐间施工方案.doc

一、工程概况天津北疆发电厂二期扩建工程2×1000MW机组,除盐间①-④轴轴线间距22.5m,D-L轴轴线间距52.45m。其中①-②轴楼板顶标高为7.800m;②-④轴楼板顶标高为10.500m。±0.000m标高相当于绝对标高4.450m,抗震设防烈度为8度,设计基本地震加速度为0.2g,地下水位对绝对标高低于1.80~2.00m的建(构)筑物部分,按长期浸水状态考虑,地下水对混凝土具有强腐蚀性,对钢筋混凝土结构中的钢筋具有弱腐蚀性,对钢结构具有中等腐蚀性;对绝对标高高于1.80~2.00m的建(构)筑物部分,土、水对混凝土具有强腐蚀性,对钢筋混凝土结构中的钢筋具有强腐蚀性,对钢结构具有中等腐蚀性。基础承台、拉梁、地梁、柱混凝土强度等级C40,垫层为C20耐硫酸盐腐蚀混凝土,设备基础C40;构造柱、圈梁采用C25。基础钢筋混凝土保护层厚度:承台底面100mm,承台顶、侧面50mm,基础拉梁50mm,柱40mm;上部结构钢筋混凝土保护层厚度:梁、柱为20mm;板为15mm。 主要工程量:1、土方开挖量: 5500m3 2、水泥粉煤灰碎石砼: C20:9 m3 C40:500m3 3、土方回填量: 4000m3 二、编制依据及工程质量目标 1、《化学水处理站建筑图》F451ⅡS-T0601 2、《除盐水泵间基础施工图》F451ⅡS-T0634 3、《除盐水泵间上部结构施工图》F451ⅡS-T0635

4、《电力建设安全生产工作规程》DL500-2014版 5、《建筑地基基础工程施工质量验收规范》GB50202-2002 6、《中华人民共和国工程建设标准强制性条文:电力工程部分》(2011年版) 7、《建筑边坡工程技术规范》(GB50330-2013版) 8、《建筑基坑支护技术规范》(JGJ120-99版) 9、《中国电力优质工程奖评选办法(2013版)》 10、《混凝土结构耐久性设计与施工指南》(CCES01-2004)(2005年修订版) 11、《混凝土结构工程施工质量验收规定》(GB50204-2002(2011年版)) 12、《混凝土外加剂》(GB8076-2008) 13、《混凝土外加剂中释放氨的限量》(GB18588-2001) 14、《混凝土外加剂匀质性试验方法》(GB/T8077-2012) 15、《普通混凝土力学性能试验方法》(GB/T50081-2002) 16、《普通混凝土长期性能和耐久性能试验方法》(GB/T50082-2009) 17、《工业建筑防腐蚀设计规范》(GB50046-2008) 18、《钢筋阻锈剂应用技术规程》(YB/T9231-2009) 19、《水泥抗硫酸盐侵蚀试验方法》(GB/T 749-2008) 20、《建筑防腐蚀工程施工规范》(GB50212-2014) 21、《混凝土质量控制标准》(GB50164-2011) 12、设计变更单、图纸会审纪要 23、其余相关国家及行业现行规范、规程及标准 24、质量目标:一次验收合格率100%

电吸附技术

电吸附技术(Electrosorb Technology,简称EST),又称电容性除盐技术,是20世纪90年代末开始兴起的一项新型水处理技术。 电吸附技术基本原理是基于电化学中的双电层理论,利用带电电极表面的电化学特性来实现水中带电粒子的去除、有机物的分解等目的。电吸附除盐原理见图,原水从一端进入阴阳极组成的空间,从另一端流出。原水在阴、阳极之间流动时受到电场的作用,水中带电粒子分别向带相反电荷的电极迁移,被该电极吸附并储存在双电层内。随着电极吸附带电粒子的增多,带电粒子在电极表面富集浓缩,最终实现与水的分离,使水中的溶解盐类滞留在电极表面,获得净化/淡化的出水。

工艺流程 工艺流程分为二个步骤:工作流程,反洗流程 工作流程:原水通过提升泵进入保安过滤器,水再被送入电吸附(EST)模块。水中溶解性的无机盐类被吸附,有机物被降解,水质被净化。

反洗流程:就是模块的反冲洗过程,冲洗经过短接静置的模块,使电极再生,反洗流程可根据进水条件以及产水率要求选择一级反洗、二级反洗、三级反洗或四级反洗。 电吸附技术主要应用在工业废水除盐过程中。国内最早在崔玉川老师的<水的除盐方法与工程应用>中提到! 该技术在是20世纪60代才开始被提及,是20世纪90年代末开始兴起的一项新型水处理技术。2000年,爱思特净化设备有限公司在江苏常州报告了我国第一

台工业化电吸附(EST)装置,并在饮用水、工业用水深度处理方面应用。2006年,世界首例千吨级EST工业废水再生工程在齐鲁石化建成。 目前国际上了解该项技术的人不是很多,该技术的特点有点象电容冲/放电的过程. 上面两张图就是电吸附(EST)技术的工作示意图,从图不难看出该项技术的原理, 电吸附模块为整个电吸附系统的核心,可根据原水水质和用户要求选择适当的模块及模块组合。 电吸附(EST)特有的工作性质该技术工艺优点: 1 耐受性好 核心部件使用寿命长,避免了因更换核心部件而带来的运行成本的提高。 2 特殊离子去除效果显著 电吸附技术对氟、氯、钙、镁离子去除率效果尤佳。 3 无二次污染

电吸附除盐技术的研究

东北电力学院学报 第25卷第4期 Journal Of Northeast China Vol.25,No.4 2005年8月Institute Of Electric Power Engineering Aug.,2005 文章编号:1005-2992(2005)04-0072-03 电吸附除盐技术的研究 张海平1,吴丽明2,杨 震1,关晓辉1 (1.东北电力学院,化学工程学院,吉林吉林132012;2.吉林化学工业公司研究院,吉林吉林132021) 摘 要:采用表面喷塑的铝板为电极材料,自制了一组电容去离子(EST)模块,并且通过实验确定 厂EST模块运行的最佳条件。结果表明:当电压V=2.5V、流速 =50mL/min时,串联EST模块对自 来水除盐效果较好。此装置因除盐效果好且耗能低,在除盐工艺中将有很好的应用价值。 关 键 词:EST模块;电吸附;除盐;淡化 中图分类号:T P18 文献标识码:A 人类进入21世纪后,所面临的严重挑战就是水资源紧缺和水环境污染问题。由于我国水资源匮乏,污水的大量排放将进一步加剧用水矛盾,水资源污染的问题已经迫在眉睫,人与水的关系可谓是唇亡齿寒。在我国工业蓬勃发展的过程中,水更是工业生产的血液。工业生产过程中所需要的水,很大部分是由除盐系统提供的除盐水或纯水。目前在国内应用的除盐工艺主要有:化学除盐(离子交换法)、膜分离技术除盐(电渗析和反渗透法)和热力除盐(蒸馏法)。 目前,去除水中阴阳离子(包括重金属和放射性同位素)的主要手段为离子交换法。但此法需要大量的离子交换树脂和再生用的酸碱等工业原料,因此不仅运行费用很高,而且酸碱废液的排放还会造成污染。膜分离法对膜和进水水质的要求很高,此外运行和维护的操作也比较麻烦。热力除盐因耗能高使得制水成本相当高,不能满足大量工业生产用水,因此该法难以实现工业化[1,2]。 电吸附除盐又称电容去离子(Electro Sorb Technology,简称EST),因其具有运行能耗低、水利用率高、无二次污染和操作、维护简便等优点,可以应用在饮用水净化、海水、苦咸水淡化(净化)、废水处理领域和工业用水处理等领域,所以已引起众多学者的广泛关注[3~5]。本文中作者自行设计了EST模块,并采用串联组合EST模块形式对自来水进行电吸附处理,除盐效果显著且处理成本低。 1 EST模块制作 1.1 电极材质的选择 EST模块处理效果主要取决于电极的吸附能力,电极直接影响正常运行和除盐效果。它必须具有:(1)良好的化学和电化学稳定性,最好既能耐阳极氧化,又能耐阴极还原;(2)导电性好,电阻小;(3)机械性好,易于加工;(4)原材料便宜[5,6]。实验过程中,选择符合上述要求的铝合金片板为电极材质。 1.2 电极的加工 首先,将铝片加工成长10cm、宽5cm、厚2mm的80片铝电极;然后采用镀膜喷涂工艺,在铝极板表面喷涂上一层防腐膜,能有效的防止铝离子的析出。 收稿日期:2005-04-18 作者简介:张海平(1962-),男,东北电力学院化学工程学院副教授.

EDI技术电去离子法

EDI技术-电去离子法? 一、EDI技术概况 电去离子法(Electro deio nization),简称EDI,是一种将电渗析与离子交换有机地结合在一起的膜分离脱盐工艺,属高科技绿色环保技术。它利用电渗析过程中的极化现象对离子交换填充床进行电化学再生,集中了电渗析和离子交换法的优点,克服了两者的弊端。EDI技术结合了两种成熟的水处理技术-电渗析技术和离子交换技术,我国称此为填充床电渗析或电去离子技术。它主要替代传统的离子交换混床来生产高纯水,环保特性好,操作使用简便,愈来愈多地被人们所认可,也愈来愈多广泛地在医药、电子、电力、化工等行业得到推广,至今,国际上已有3千多套EDI装置在运行,总容量已超过3万m3/h。佳木斯EDI 超纯水设备哈尔滨实验室超纯水机,哈尔滨电子超纯水设备 连续电除盐(EDI,Electro deio nization或CDI,continuous electrode ionization),是利用混和离子交换树脂吸附给水中的阴阳离子,同时这些被吸附的离子又在直流电压的作用下,分别透过阴阳离子交换膜而被除去的过程。这一过程离子交换树脂是电连续再生的,因此不需要使用酸和碱对之再生。这种新技术可以替代传统的离子交换装置,生产出高达18.2MΩ .cm(25℃)的超纯水。EDI是利用阴、阳离子膜,采用对称堆放的形式,在阴、阳离子膜中间夹着阴、阳离子树脂,分别在直流电压的作用下,进行阴、阳离子交换。而同时在电压梯度的作用下,水会发生电解产生大量H+和OH-,这些H+和OH-对离子膜中间的阴、阳离子不断地进行了再生。由于EDI不停进行交换--再生,使得纯水度越来越高,所以,轻而易举的产生了高纯度的超纯水。 EDI(电除盐系统)工作原理 高纯度水对许多工商业工程非常重要,比如:半导体制造业和制药业。以前这些工业用的纯净水是用离子交换获得的。然而,膜系统和膜处理过程作为预处理过程或离子交换系统的替代品越来越流行。如电除盐过程(EDI)之类的膜系统可以很干净地去除矿物质并可以连续工作。而且,膜处理过程在机械上比离子交换系统简单得多,并不需要酸、碱再生及废水中和。EDI处理过程是膜处理过程中增长最快的业务之一。EDI是带有特殊水槽的非反向电渗析(ED),这个水槽里的液流通道中填充了混床离子交换树脂。EDI主要用于把总固体溶解量(TDS)为1-20mg/L的水源制成8-17兆欧纯净水。 EDI系统装置关于进水的注意事项: 进水必须符合反渗透直接透过水的水质, ·需要避免物理、化学和生物污染; ·物理污染PVC碎片、金属碎屑;污垢,尘土;焊渣;树脂颗粒等, ·化学污染、氧化剂,如氯气;多价阳离子,如铁、锰等;环氧树脂及玻璃钢容器制作过程中所用的硬化剂。 ·污染物的来源:敞开式储罐,脱气塔; 没有在EDI前配过滤器的软化器等。 EDI系统装置出水水质标准 采用RO装置出水作为EDI给水,在一般情况下,EDI装置的出水水质其电阻率都能达到16 MΩ·cm,有的甚至接近18 MΩ·cm。采取一些特殊的措施,还可使EDI装置的出水电阻率接近于18.2 MΩ·cm的理论纯水标准。然而,对EDI装置出水电阻率指标的追求,应根据需要,要有经济观点,要从实际出发,不是愈高愈好。对于电子行业来说,用EDI

去离子水设备工艺原理及应用领域概述

去离子水设备工艺原理及应用领域概述 去离子水设备是通过阴、阳离子交换树脂对水中的各种阴、阳离子进行置换的一种传统水处理工艺,阴、阳离子交换树脂按不同比例进行搭配可组成离子交换阳床系统,离子交换阴床系统及离子交换混床系统,而混床系统又通常是用在反渗透等水处理工艺之后用来制取超纯水,高纯水的终端工艺,他是目前用来制备超纯水、高纯水不可替代的手段之一。其出水电导率可低于1uS/cm以下,出水电阻率达到1MΩ.cm以上,根据不同的水质及使用要求,出水电阻率可控制在1~18MΩ.cm之间。被广泛应用在电子、电力超纯水,化工,电镀超纯水,锅炉补给水及医药用超纯水等工业超纯水,高纯水的制备上。 离子交换设备是传统的去离子水设备,它的产水水质稳定,造价相对较低。在以往的电厂锅炉补给水都是采用阳床+阴床+ 混床处理工艺。 近年来,随着反渗透、EDI等工艺的发展,去离子水设备操作复杂,不容易实现自动化,浪费酸碱,运行成本高等缺点更加突出,目前更多的应用于反渗透的深度处理。

小型的去离子水设备常采用有机玻璃交换柱,有利于观察树脂运行情况。如混合离子交换器再生分层是否充分,阳离子是否“中毒”等,树脂损耗情况等。 大型的去离子水设备则采用碳钢内衬环氧树脂或衬胶,中间预留可视装置,以便于离子再生时在线观测再生液水位状况。 1、工业超纯水处理工艺,是目前工业用超纯水的制备上应用最多的一种工艺之一。 2、食品工业离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。 3、制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。 4、合成化学和石油化学工业在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。 5、电镀废液中的金属离子,回收电影制片废液里的有用物质等。 去离子水设备工作原理

除盐水箱防腐施工方案及报价

股份除盐水箱防腐施工方案及报价 一、施工方案 1、防腐范围:水箱内壁、箱底、箱盖内部、管口及接管内部 2、施工组织依据: 设计图纸施工现场条件和实地勘察资料 SJ2573-85《涂料涂覆通用技术条件》 GB1764-88《漆膜厚度测定法》 HGJ229-91《工业设备、管道防腐蚀工程施工及验收规范》 GB7692-87《涂装作业安全规程涂漆前处理工艺安全》 GB8923《涂装前钢材表面锈蚀等级和除锈等级》 GB/T6463《金属和其他无机覆盖层厚度测量方法评述》 GB1720《漆膜附着力测定法》 B/T9188《高压无气喷涂典型工艺》 GB11374《热喷涂厚度的无损测量方法》 3、施工过程的基本划分及施工工艺 根据要求先进行除锈施工,经验收合格后再进行防腐施工。 脚手架施工T检查合格后T喷砂除锈T检查合格后T涂聚脲底漆第一遍-检查合格后-涂聚脲底漆第二遍-检查合格后-涂聚脲面漆第一遍T检查合格后T 涂聚脲面漆第二遍T检查及最终验收 4、主要施工方法 4.1 脚手架 4.1.1 罐内脚手架用满堂红,搭设应牢固。

4.1.2 脚手架采用钢脚手架搭设。 4.1.3结构脚手架立杆间距不得大于1.5m,大横杆间距不得大于 1.2m,小横杆间距不得大于1m。 4.1.4脚手架必须按结构拉接牢固,挂结点垂直距离不得超过4m,水平距离不得在于6m,拉结所用材料强度不得低于双股8#铁丝强度。外架纵向内外排立杆之间设置剪刀撑,间距控制在15?20m 一个 4.1.5脚手架操作面满铺架板,离墙面不得大于200mm,不得有空隙和探头板、飞跳板,严禁用竹笆做脚手板。脚手架下层设水平网, 操作面外侧设两道护身栏和一道挡脚板,立面挂安全网。 4.1.6脚手架高度在20m以上的脚手板,纵向必须设剪力撑,其宽度不得超过7根立杆,与水平面头角为45?60度,高度在20m以下的必须设置正反斜支撑。 4.1.7 脚手架派专人负责日常管理及检查,拆除时按规定程序进 行。 4.2 喷砂除锈技术要求:基体表面要求清洁,而具有一定的粗糙度,即达 到 GB8923-88《涂装前钢材表面锈蚀等级》的除锈标准、HGJ229-91《工业设备防腐蚀工程施工及验收规范》的Sa2.5级除锈标准,彻底除净表面的油质、氧化皮、锈蚀等一切杂物。并用干燥、洁净的压缩空气清除粉尘。表面无任何 可见的残留物,呈现金属均一本色,并有一定的粗糙度。 喷砂的主要参数应注意以下几点: (1)喷砂距离:指喷砂嘴端面到基材表面的直线距离。随着喷砂距离的增加,

35000电吸附除盐方案

中水回用项目电吸附除盐方案 爱思特净化设备 2010年12月

目录 1 项目概况 (4) 1.1 设计处理水量与水质 (4) 1.1.1 处理水量 (4) 1.1.2 设计处理水质 (4) 1.2 设计技术要求 (4) 1.2.1 产品水水量 (4) 1.2.2 产品水水质 (4) 2 工艺线路 (6) 3 预处理说明 (6) 4 电吸附深度处理 (7) 4.1 除盐原理 (7) 4.2 工艺特点 (8) 4.3 与常规除盐技术的比较分析与技术优势 (9) 4.4 电吸附系统工艺流程 (12) 4.5 电吸附系统主要构成 (12) 4.6 电气 (13) 4.7 自动控制系统 (14) 4.8 投资估算 (18) 4.9 运行成本估算 (19) 4.10 土建估算 (19)

5 爱思特公司简介 (21) 6 经典工程介绍 (22)

1项目概况 1.1设计处理水量与水质 1.1.1处理水量 规模:35000m3/day(1458m3/h) 1.1.2设计处理水质 表1水质指标 1.2设计技术要求 1.2.1产品水水量 产水量:26250m3/day(1093m3/h) 系统产水率:≥75% 1.2.2产品水水质 表2 电吸附系统出水水质

1.2.3待处理原水温度 电吸附进水水温大于0摄氏度。

2工艺线路 待处理原水→纤维球过滤器→提升泵→保安过滤→电吸附→产品水 3预处理说明 为保证电吸附系统的持续稳定运行,本方案选用纤维球过滤器对原水进行过滤。 纤维球过滤器装纤维球滤料,它比其他的多介质过滤器的过滤速度快2-3倍,截污能力是多介质过滤器的2.7倍,出水水质要高出1-2个数量级。纤维球过滤器具有过滤速度快,截污量大,工作周期长,悬浮物去除效果好等特点,其主要性能指标为:滤速15-30m/h,过滤周期8-24h,水头损失3-10m,截污量6-20kg/m3,采用水反冲,反冲强度为10L/ s·m2 根据本工程水量,选用7台QLG-3000纤维球过滤器,单台处理量210 m3/h,功率22KW,直径3000mm。

3600t电厂除盐水设计方案

锅炉补给水除盐装置技术规范书 2014年02月

目录 1. 总则 2. 发标设备 3. 技术要求及供货范围 4. 技术服务及质量保证 5. 其它

1. 总则 1.1 本规范书中对锅炉补给水处理系统提出了最低限度的技术要求,并未对全部 技术细节做出详细规定,也未充分引用有关标准和规范的条文,供方应提供 符合本规范书和工业标准的优质产品,对国家有关安全、环保等强制性标准, 必须满足其要求。 1.2 如果供方没有以书面形式对本规范书的条文提出异议,则意味着供方提供的 设备完全符合本规范书的要求。 1.3 供方在执行本规范书所列标准与其它标准或规范有矛盾时,按较高标准执 行。 1.4 本期工程简介 本期为2×75t/h次高压中温锅炉提供补给水,过热蒸汽采用喷水式减温。本 化水系统产水负责提供合格的除盐水。系统设计产水量150t/h。 1.5 水源及水质 本工程锅炉补给水处理系统用水水源为地表水,详见需方提供附件:水质全 分析报告,请厂商注意水质有变坏的可能,设备技术应有应对措施,并保证 出水水质和运行安全可靠。 1.6 锅炉补给水处理工艺系统 本工程采用一级复床加混床的处理工艺 锅炉补给水处理工艺系统为:地表水→生水池→生水泵→多介质过滤器→活性炭过滤器→阳离子交换器→除二氧化碳器→中间水池→中间水泵→阴离 子交换器→混床→除盐水池→除盐水泵→去主厂房。 本期工程系统出力150t/h,系统母管按出力300t/h吨配置。 1.7 运行环境 本工程多介质过滤器、活性炭过滤器、阳床、阴床、混床等均布置于化水车间水处理室,水泵在一层泵房内。生水箱、中间水箱、反洗水箱、除盐水箱、除二氧化碳器、中和水池及酸碱贮存罐等均布置于室外,除二氧化碳器位于中间水箱之上,酸碱贮存罐位于中。 设备采用手动操作

反渗透、电渗析、电吸附除盐技术比较

反渗透、电渗析、电吸附技术比较 一、原理比较 1、反渗透(RO)除盐原理 当纯水和盐水被理想半透膜隔开,理想半透膜只允许水通过而阻止盐通过,此时膜纯水侧的水会自发地通过半透膜流入盐水一侧,这种现象称为渗透,若在膜的盐水侧施加压力,那么水的自发流动将受到抑制而减慢,当施加的压力达到某一数值时,水通过膜的净流量等于零,这个压力称为渗透压力,当施加在膜盐水侧的压力大于渗透压力时,水的流向就会逆转,此时,盐水中的水将流入纯水侧,上述现象就是水的反渗透处理的基本原理。 2、电渗析除盐原理 电渗析是膜分离技术的一种,是利用离子交换膜对阴、阳离子的选择透过性能,在外加直流电场力的作用下,使阴、阳离子定向迁移透过选择性离子交换膜,从而使电介质离子自溶液中分离出来的过程。 除盐原理如图所示,电渗析器中交替排列着许多阳膜和阴膜,分隔成小水室。当原水进入这些小室时,在直流电场的作用下,溶液中的离子就作定向迁移。阳膜只允许阳离子通过而把阴离子截留下来;阴膜只允许阴离子通过而把阳离子截留下来。结果这些小室的一部分变成含离子很少的淡水室,出水称为淡水。而与淡水室相邻的小室则变成聚集大量离子的浓水室,出水称为浓水。从而使离子得到了分离和浓缩,水便得到了净化。

3、电吸附(EST )除盐原理 电吸附技术,又称电容性除盐技术,其基本原理是基于电化学中的双电层理论,利用带电电极表面的电化学特性来实现水中带电粒子的去除、有机物的分解等目的。 电吸附原理见图,原水从一端进入由两电极板相隔而成的空间,从另一端流出。原水在阴、阳极之间流动时受到电场的作用,水中带电粒子分别向电性相反的电极迁移,被该电极吸附并储存在双电层内。同时,随着电极吸附带电粒子的增多,带电粒子在电极表面富集浓缩,从而使水中的溶解盐类、胶体颗粒及其带电物质滞留在电极表面,最终实现盐与水的分离,获得净化/淡化的出水。 . 图 电吸附除盐原理示意图 二、电吸附与反渗透、电渗析在污水回用领域的技术特点比较 进水 出水

电吸附除盐技术优选稿

电吸附除盐技术 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

电吸附除盐技术 电吸附除盐技术(Electrosorb Technology),简称(EST),又称电容性除盐技术,是20世纪90年代末开始兴起的一项新型水处理技术。该技术利用通电电极表面带电的特性对水中离子进行静电吸附,从而实现水质的净化目的。 电吸附技术原理 时间:2011-08-02 来源:作者: 水处理中的盐类大多是以离子(带正电或负电)的状态存在。电吸附除盐技术的基本思想就是通过施加外加电压形成静电场,强制离子向带有相反电荷的电极处移动,使离子在双电层内富集,大大降低溶液本体浓度,从而实现对水溶液的除盐。 电吸附原理见图,原水从一端进入由两电极板相隔而成的空间,从另一端流出。原水在阴、阳极之间流动时受到电场的作用,水中离子分别向带相反电荷的电极迁移,被该电极吸附并储存在双电层内。随着电极吸附离子的增多,离子在电极表面富集浓缩,最终实现与水的分离,获得净化/淡化的产品水。 工作过程示意图 在电吸附过程中,电量的储存/释放是通过离子的吸/脱附而不是化学反应来实现的,故而能快速充放电,而且由于在充放电时仅产生离子的吸/脱附,电极结构不会发生变化,所以其充放电次数在原理上没有限制。 当含有一定量盐类的原水经过由高功能电极材料组成的电吸附模块时,离子在直流电场的作用下被储存在电极表面的双电层中,直至电极达到饱和。此时,将直流电源去掉,并将正负电极短接,由于直流电场的消失,储存在双电层中的离子又重新回到通道中,随水流排出,电极也由此得到再生。 再生过程示意图 由于电吸附过程主要利用电场力的作用将阴、阳离子分别吸附到不同的电极表面形成双电层,这会使同一极面上的难溶盐离子浓度积相对低得多,可有效防止难溶盐结垢现象的发生。其次,电吸附极板间水径流与极板呈切线方向,不利于水中析出难溶盐结晶在极板上的生长。电吸附可以在浓水难溶盐过饱和状态下运行。另外,在电吸附模块中,由于电吸附过程中阴、阳离子吸附不平衡导致产生氢离子含量较多的出水,通过倒极的方式,略偏酸性的出水同样会使有微量结垢现象的垢体溶解掉。 电吸附模块处理效果的好坏主要取决于电极的吸附性能。 电吸附技术特性 时间:2011-08-02 来源:作者: 科技创新点 一、原理创新:电吸附除盐技术利用带电电极表面吸附水中离子,使水中溶解的盐类在电极表面富集浓缩而实现水的净化/淡化。独特的除盐原理是将水中溶质从溶液中提取出来,而不是将水中溶剂从溶液中提取出来。 二、工艺创新:电吸附模块的电极采用惰性材料加工而成,具有化学性能稳定、使用寿命长(10年以上)的优点。以电吸附模块为核心元件的电吸附除盐系统具有抗污染性强、预处理简单、不需要添加专用药剂、通量稳定、不用频繁清洗、运行成本低、节能环保的特性。 三、应用创新:该项目突破了污(废)水再生回用技术的瓶颈。为污(废)水再生回用领域的发展提供了一项抗污染性强、经济环保、应用范围广的除盐技术。

电吸附技术在电力行业废水处理中的应用

电吸附技术在电力行业废水处理中的应用 摘要:传统的废水处理技术面临着系统繁杂,运行费用高并且容易结垢和腐蚀等问题,因此需要采用一种一体化的多功能耦合系统,兼顾除盐,防垢等功能,用以除去废水中的污染物。电吸附技术就是这样一种可实现水的净化、淡化的新型水处理技术,可以在低能耗的前提下有效去除水中的杂质离子而不结垢。本文综述了电吸附理论的发展沿革,电吸附原理和双电层理论要点,电吸附结构及其工作流程等,同时介绍了几种主要的电吸附材料及优缺点。基于日趋严格的环保要求,电吸附技术以其低能耗,低成本并且无二次污染等技术优势可望在电力行业得到较为广泛的应用及发展。 关键词:电吸附;电力行业;废水处理;应用进展; 虽然我国水资源较为丰富,但由于人口基数大,导致人均淡水资源占有量仅为世界人均淡水资源占有量的1/4,是全国13个水资源紧缺国家之一。电厂是我国一个耗水大户,每年废水的排放量也是相当巨大。如若直接排放未达到标准的废水,势必会造成土壤,地表水和地下水等污染并危害人类健康。2015年,国务院发布了《水污染防治行动计划》(即“水十条”),明确提出全面控制水污染物排放;2018年修编的《发电厂废水治理设计规范》对水收集和贮存等设施的相关设计提出了要求,采取废水零排放处理。 火电厂的废水水质水量差异很大,废水中的污染物以无机物为主,有机污染物只是油,并且间断性排水较多。电厂中的废水种类较多,主要包括脱硫废水、设备冲洗排水、冲灰废水和含油废水等,废水处理方法一般为曝气氧化、酸碱中和与混凝澄清。在正式开始实施的《火电厂污染防治可行技术指南》中,明确针对脱硫废水制订了具体的处理方法,并且在废水近零排放技术中也强调了除脱硫废水外,各类废水经处理后基本能实现“一水多用,梯级利用”、废水不外排,因此,实现废水近零排放的重点是实现脱硫废水零排放。 近年来,废水处理技术的方法多种多样,其中电吸附技术(Electroadsorptiontechnology,EST),又称电容去离子技术

电吸附除盐

一种电吸附除盐电极模块的设计 标签:生活2011-05-24 07:12 星期二 电吸附模块由导电的平板材料制成,长宽高400×200×2mm,电极板间距6mm,外加水箱,水泵,流量计,进出口电导率仪器,压力计及管道制成。 电源电压应低于1.6v,在1.3-1.6v之间可调,电压太高会造成水的电解,会出现气泡,应该绝对避免,电源正负极可自动对换,电极可自动短接。 电极设计以增加水通过时间为目的。 生产时间360分钟,预排和再生时间共100分钟,为了连续生产,应该有两套相同的设备交替作业。大流量对水质有影响,应该尽量采用小流量长流程,但过度的长流程没有必要,也不会对水质有好的影响。 出水电导率升高超过设定上限时,应停止这路设备的作业,转换到另一路设备进行作业,同时将该路设备电极短接,用原水将其冲洗排除浓水,然后根据出入口电导率停止反冲作业,并将电极极性互换。 电吸附技术电极的制备 标签:生活2011-05-22 22:53 星期日 吸附剂材料的选择和电极的制备成型过程是电吸附技术实际应用的关键。为了能吸附大量带电粒子,吸附剂必须拥有足够大的比表面积,因此采用的吸附剂往往是多孔碳材料,如活性炭、活性碳纤维、碳气凝胶、碳纳米管等。 1活性炭电极 活性炭是水处理中应用最为广泛的吸附剂,有活性炭粉末和活性炭颗粒两种产品形态,具有生产简单、成本低等优点。Zou等将活性炭颗粒用环氧胶黏在一起,只露出颗粒的一面,作为工作电极。实验中用KOH溶液和TiO2纳米粒子对活性炭颗粒做了改性处理,结果都提高了吸附容量。Zou 等还用有序中孔活性炭做电极,研究表明:有序中孔活性炭和普通活性炭的比电容分别为133 F/g 和107 F/g;在1.2 V电压条件下,对质量浓度为20 mg/L的NaCI溶液的吸附容量分别为11.6 μmol/g和4.3 μmol/g。 Park等将活性炭粉末与聚四氟乙烯、碳黑以不同比例混合,用去离子水和无水乙醇作溶剂,将混合物搅拌l h使其均匀,然后滚压数次成为片状,加压放置后制成电极。当活性炭粉末与聚四氟乙烯、碳黑的质量比为84:4:12时,通过循环伏安测试得到的电容和电吸附除盐率最高,均为市售碳布的2倍。 2碳气凝胶电极 碳气凝胶具有高比表面积(400~1 100 m2/g)、低电阻、纳米级孔洞、高电容等特点,因为孔洞相连,容易控制孔径和密度,是理想的电极材料。Ying等将市售的两种不同比表面积的碳气凝胶薄片压在钛板上作为工作电极,研究被吸附离子种类、浓度及所加电压对电吸附的影响。王万兵等¨训用糠醛和酚醛树脂为原料,无水盐酸为催化剂,正丙醇

饮用水除砷技术现状及展望

饮用水除砷技术现状及展望 砷(As)是一个广泛存在并且具有准金属特性的元素,呈灰色斜方六面体结晶,有金属光泽,既不溶解于水又不溶解于酸,为非人体必需元素。砷的毒性与它的化学性质和价态有关。单质砷因不溶于水,摄入有机体后几乎不被吸收而完全排出,一般无害;有机砷(除砷化氢的衍生物外),一般毒性较弱;三价砷离子对细胞毒性最强,尤以三氧化二砷(俗称信石,砒霜等)的毒性最为剧烈,三价砷进入人体内,可与蛋白质的巯基结合形成特定的结合物,阻碍细胞的呼吸而显毒性作用,而且三价砷对线粒体呼吸作用也有明显的作用;五价砷离子毒性不强,当吸入五价砷离子时,产生中毒症状较慢,要在体内被还原转化为三价砷离子后,才发挥其毒性作用[1]。砷也是致癌、致突变因子,对动物还有致畸作用。长期饮用高砷水,会引起花皮病或皮肤角质化等皮肤病,黑脚病,神经病,血管损伤,以及增加心脏病发病。天然水中的砷来源于农业和林业使用砷化合物药剂,还来源于冶金、化工、化学制药、制革、纺织、木材加工、玻璃、油漆颜料和陶瓷等工业废水对天然水体的污染。我国的内蒙古、新疆、台湾等地饮水中含砷量高达0.2-2.0mgAs/l,严重超过我国现行饮水卫生标准<0.05mgAs/l,导致地方性砷中毒,饮用水除砷是防治地方性砷中毒的关键措施,所以,安全、有效、经济的饮水除砷方法的研究显得尤为重要。 目前,饮用水除砷措施主要可概括为混凝法、吸附法、离子交换法等。下面将一一做详细介绍: 1 混凝法 混凝法是目前在工业生产和处理生活饮用水中运用得最广泛的除砷方法,并且可以很好的使工业污水达到排放标准,使生活饮用水达到饮用标准。最常见的混凝剂是铁盐,如三氯化铁、硫酸亚铁、氯化铁;铝盐,如硫酸铝、碱氯化铝、聚铝;还有硅酸盐、碳酸钙、煤渣(主要成分是SiO2和Al2O3有骨架结构和微孔)经粉碎及高温培烧活化后做混凝剂,另外还有聚硅酸铁(PFSC)、无机铈铁(稀土基材料)等做混凝剂。研究表明,铁盐的除砷效果好于铝盐,而且对As(Ⅴ)的去除效果明显好于As(Ⅲ),所以在除砷过程中常对所处理的水进行预氧化,把三价As(Ⅲ)氧化为五价As(Ⅴ),再进行混凝[2],为了提高氧化效果,有时还会加入催化剂促进氧化。袁涛等人[3]通过正交试验,观察混凝剂成分变化、助凝剂的添加等因素对除砷效果的影响,发现当混凝剂成分分别为硫酸铁、硫酸铝、硫酸铁与硫酸铝聚合而成的复合物(质量比3:1)、硫酸铁和硅酸钠的聚台物(SiO2含量约2%)时,单纯用硫酸铁的除砷效果是最好的,在待除砷水中添加活性炭或高岭土对上混凝剂的除砷效率无明显增强作用。但采取过滤措施后.砷去除率明显提高,这说明混凝剂水解产物形成的胶体颗粒吸附有砷,同时在pH值较高时铁离子还会产生大量的氢氧化铁胶体,这种胶体具有较大的比表面和较高的吸附能力,能和砷酸根发生吸附共沉淀,使砷的去除率明显提高。一般认为,混凝剂投加后,能够促使溶解状态的砷向不溶的含砷反应产物转变,从而达到将砷从水中去除的目的。该过程可概括整理成以下三个方面:(1)沉淀作用,水解的金属离子与砷酸根形成

电厂建筑工程除盐间施工方案

、工程概况 天津北疆发电厂二期扩建工程2X1000MV机组,除盐间①-④轴轴线间距22.5m, D-L 轴轴线间距52.45m。其中①-②轴楼板顶标高为7.800m;②-④轴楼板顶标高为10.500m ±0.000m标高相当于绝对标高4.450m,抗震设防烈度为8度,设计基本地震 加速度为0.2g,地下水位对绝对标高低于1.80?2.00m的建(构)筑物部分,按长期浸水 状态考虑, 地下水对混凝土具有强腐蚀性, 对钢筋混凝土结构中的钢筋具有弱腐蚀性, 对钢结构具有中等腐蚀性;对绝对标高高于1.80?2.00m的建(构)筑物部分,土、水对混凝土具有强腐蚀性, 对钢筋混凝土结构中的钢筋具有强腐蚀性, 对钢结构具有中等腐蚀性。基础承台、拉梁、地梁、柱混凝土强度等级C40,垫层为C20耐硫酸盐腐蚀混凝土,设备基础C40;构造柱、圈梁采用C25基础钢筋混凝土保护层厚度:承台底面100mm承台顶、侧面50mm基础拉梁50mm柱40mm上部结构钢筋混凝土保护层厚度:梁、柱为20mm 板为15mm。 主要工程量:1、土方开挖量:5500m3 2、水泥粉煤灰碎石砼:C20:9 m3 C40:3 500m 3、土方回填量:4000m3 二、编制依据及工程质量目标 I、《化学水处理站建筑图》F451 HS -T0601 2《除盐水泵间基础施工图》F451 HS -T0634 3、《除盐水泵间上部结构施工图》F451HS-T0635 4《电力建设安全生产工作规程》DL500-2014版 5《建筑地基基础工程施工质量验收规范》GB50202-2002 6《中华人民共和国工程建设标准强制性条文:电力工程部分》(2011年版) 7、《建筑边坡工程技术规范》(GB50330-2013版) 8《建筑基坑支护技术规范》JGJ120-99版) 9《中国电力优质工程奖评选办法(2013版)》 10《混凝土结构耐久性设计与施工指南》(CCES01-2004)(2005 年修订版) II、《混凝土结构工程施工质量验收规定》(GB50204-2002 (2011年版)) 12、《混凝土外加剂》(GB8076-2008) 13、《混凝土外加剂中释放氨的限量》(GB18588-2001)

相关文档
最新文档