高二物理电场磁场总结(超全)

电磁场总结

知识要点:

1.电荷 电荷守恒定律 点电荷

⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。

基本电荷e =⨯-161019.C

。带电体电荷量等于元电荷的整数倍(Q=ne )

⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。

带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。

2.库仑定律

(1)公式 F K Q Q r

=122 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表

达式为F K Q Q r

=122,其中比例常数K 叫静电力常量,K =⨯90109.N m C

22·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引)

(2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。

3.静电场 电场线

为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。

电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。

电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。

4.电场强度 点电荷的电场

⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q

F E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C))

电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。

点电荷场强的计算式E KQ r =

2( r :源电荷到该位置的距离(m ),Q :源电荷的电量(C))

要区别场强的定义式E F q =与点电荷场强的计算式E KQ r

=2,前者适用于任何电场,后者只适用于真空(或空气)中点电荷形成的电场。

5.电势能 电势 等势面

电势能由电荷在电场中的相对位置决定的能量叫电势能。

电势能具有相对性,通常取无穷远处或大地为电势能和零点。 由于电势能具有相对性,所以实际的应用意义并不大。而经常应用的是电势能的变化。电场力对电荷做功,电荷的电势能减速少,电荷克服电场力做功,电荷的电势能增加,电势能变化的数值等于电场力对电荷做功的数值,这常是判断电荷电势能如何变化的依据。电场力对电荷做功的计算公式:W q U

=,此公式适用于任何电场。电场力做功与路径无关,由起始和终了位置的电势差决定。

电势是描述电场的能的性质的物理量

在电场中某位置放一个检验电荷q ,若它具有的电势能为ε,则比值εq 叫做该位置的电势。 电势也具有相对性,通常取离电场无穷远处或大地的电势为零电势(对同一电场,电势能及电势的零点选取是一致的)这样选取零电势点之后,可以得出正电荷形成的电场中各点的电势均为正值,负电荷形成的电场中各点的电势均为负值。

电势相等的点组成的面叫等势面。等势面的特点:

(1)等势面上各点的电势相等,在等势面上移动电荷电场力不做功。 (2)等势面一定跟电场线垂直,而且电场线总是由电势较高的等势面指向电势较低的等势面。

(3)规定:画等势面(或线)时,相邻的两等势面(或线)间的电势差相等。这样,在等势面(线)密处场强较大,等势面(线)疏处场强小。

6.电势差Ⅱ

电场中两点的电势之差叫电势差,依教材要求,电势差都取绝对值,知道了电势差的绝对值,要比较哪个点的电势高,需根据电场力对电荷做功的正负判断,或者是由这两点在电场线上的位置判断。

7.匀强电场中电势差和电场强度的关系

场强方向处处相同,场强大小处处相等的区域称为匀强电场,匀强电场中的电场线是等距的平行线,平行正对的两金属板带等量异种电荷后,在两极之间除边缘外就是匀强电场。

在匀强电场中电势差与场强之间的关系是U E d

=,公式中的d是沿场强方向上的距离(m)。

在匀强电场中平行线段上的电势差与线段长度成正比

8.带电粒子在匀强电场中的运动

(1)带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动过程,然后选用恰当的规律解题。

(2)在对带电粒子进行受力分析时,要注意两点:

A1要掌握电场力的特点。如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电量和电性有关;在匀强电场中,带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同。

A2是否考虑重力要依据具体情况而定:基本粒子:如电子、质子、α粒子、离子等除有要说明或明确的暗示以外,一般都不考虑重力(但并不忽略质量)。带电颗粒:如液滴、油滴、尘埃、小球等,

除有说明或明确的暗示以外,一般都不能忽略重力。

(3)带电粒子的加速(含偏转过程中速度大小的变化)过程是其他形式的能和功能之间的转化过程。解决这类问题,可以用动能定理,也可以用能量守恒定律。

如选用动能定理,则要分清哪些力做功?做正功还是负功?是恒力功还是变力功?若电场力是变力,则电场力的功必须表达成

W q U a b a b

=,还要确定初态动能和末态动能(或初、末态间的动能增量)

如选用能量守恒定律,则要分清有哪些形式的能在变化?怎样变化(是增加还是减少)?能量守恒的表达形式有:

a 初态和末态的总能量(代数和)相等,即E E 初末=;

b 某种形式的能量减少一定等于其它形式能量的增加,即∆∆E E 减增

= c 各种形式的能量的增量的代数和∆∆EE 12

0++=……; (4)、带电粒子在匀强电场中类平抛的偏转问题。

如果带电粒子以初速度v 0垂直于场强方向射入匀强电场,不计重力,电场力使带电粒子产生加速度,作类平抛运动,分析时,仍采用力学中分析平抛运动的方法:把运动分解为垂直于电场方向上的一个分运动——匀速直线运动:v v x =0,x vt =0;另一个是平行于

场强方向上的分运动——匀加速运动,v a t a q U m d y =

=,,y q U m d x v =120

2(),粒子的偏转角为t g v v q U m v d y x ϕ==002。 经一定加速电压(U 1)加速后的带电粒子,垂直于场强方向射入确定的平行板偏转电场中,粒子对入射方向的偏移

y q U L m d v U L d U ==1242202221

,它只跟加在偏转电极上的电压U 2有关。当偏转电压的大小极性发生变化时,粒子的偏移也随之变化。如果偏转电

压的变化周期远远大于粒子穿越电场的时间(T >>L v 0),则在粒子

穿越电场的过程中,仍可当作匀强电场处理。 应注意的问题:

1、电场强度E 和电势U 仅仅由场本身决定,

与是否在场中放入电荷 ,以及放入什么样的

检验电荷无关。

而电场力F 和电势能ε两个量,不仅与电场

有关,还与放入场中的检验电荷有关。

所以E 和U 属于电场,而F 电和ε属于场和场中

的电荷。

2、一般情况下,带电粒子在电场中的运动轨迹和电场线并不重合,运动轨迹上的一点的切线方向表示速度方向,电场线上一点的切线方向反映正电荷的受力方向。物体的受力方向和运动方向是有区别的。

只有在电场线为直线的电场中,且电荷由静止开始或初速度方向和电场方向一致并只受电场力作用下运动,在这种特殊情况下粒子的运动轨迹才是沿电力线的。如图所示:

9.电容器 电容

(1)两个彼此绝缘,而又互相靠近的导体,就组成了一个电容器。

(2)电容:表示电容器容纳电荷的本领。 a 定义式:C Q U Q U ==()∆∆,即电容C 等于Q 与U 的比值,不能理解为电容C 与Q 成正比,与U 成反比。一个电容器电容的大小是由电容器本身的因素决定的,与电容器是否带电及带电多少无关。 b 决定因素式:如平行板电容器C S k d

=επ4(不要求应用此式计算)

根据C Q U Q U ==

()∆∆和kd S C πε4=导出S kQ C επ4=

(3)对于平行板电容器有关的Q 、E 、U 、C 的讨论时要注意两种情况:

a 保持两板与电源相连,则电容器两极板间的电压U 不变

b 充电后断开电源,则带电量Q 不变

(4)电容的定义式:C Q U = (定义式)

(5)C 由电容器本身决定。对平行板电容器来说C 取决于:C S Kd

=επ4(决定式)

(6)电容器所带电量和两极板上电压的变化常见的有两种基本情况:

第一种情况:若电容器充电后再将电源断开,则表示电容器的电量Q 为一定,此时电容器两极的电势差将随电容的变化而变化。 第二种情况:若电容器始终和电源接通,则表示电容器两极板的电压V 为一定,此时电容器的电量将随电容的变化而变化。

10.电流 电动势Ⅰ

(1)形成电流的条件:一是要有自由电荷,二是导体内部存在电场,即导体两端存在电压。

(2)电流强度:通过导体横截面的电量q 跟通过这些电量所用时间t 的比值,叫电流强度:I q t =

。 (3)电动势:电动势是描述电源把其他形式的能转化为电能本领的物理量。定义式为:ε=W q

。要注意理解:○1ε是由电源本身所决定的,跟外电路的情况无关。○

2ε的物理意义:电动势在数值上等于电路中通过1库仑电量时电源所提供的电能或理解为在把1 库仑正电荷从负极(经电源内部)搬送到正极的过程中,非静电力所做的功。○3注意区别电动势和电压的概念。电动势是描述其他形式的能转化成

电能的物理量,是反映非静电力做功的特性。电压是描述电能转化为其他形式的能的物理量,是反映电场力做功的特性。 11.欧姆定律 闭合电路欧姆定律Ⅱ

1、欧姆定律:通过导体的电流强度,跟导体两端的电压成正比,跟导体的电阻成反比,即I U R =

,要注意: a :公式中的I 、U 、R 三个量必须是属于同一段电路的具有瞬时对应关系。 b :适用范围:适用于金属导体和电解质的溶液,不适用于气体。在电动机中,导电的物质虽然也是金属,但由于电动机转动时产生了电磁感应现象,这时通过电动机的电流,也不能简单地由加在电动机两端的电压和电动机电枢的电阻来决定。

2、闭合电路的欧姆定律:

(1)意义:描述了包括电源在内的全电路中,电流强度与电动势及电路总电阻之间的关系。(2)公式:I R r =

+ε;常用表达式还有:εε=+=+'

=-I R I r U U U I r ;。 3、路端电压U ,内电压U ’随外电阻R 变化的讨论: 外电阻R

总电流I R r =+ε 内电压'=U I r 路端电压U I R U ==-'ε 增大

减小 减小 增大 ∞(断路) O O

等于ε 减小 增大 增大

减小 −→−O (短路) −→−εr

(短路电流) −→−ε −→−O 闭合电路中的总电流是由电源和电路电阻决定,对

一定的电源,ε,r 视为不变,因此,I U U 、、'的变

化总是由外电路的电阻变化引起的。根据U r R =+ε

1,

画出U ——R 图像,能清楚看出路端电压随外电阻变化的情形。 还可将路端电压表达为

U I r =-ε,以ε,r 为参量,画出U ——I 图像。

这是一条直线,纵坐标上的截距对应于电源电 动势,横坐标上的截距为电源短路时的短路电流,

直线的斜率大小等于电源的内电阻,即

t g βεε

ε===I r r m a x

。 4、在电源负载为纯电阻时,电源的输出功率与外电路电阻的关系是:

()()[]P I U I R R r R R r R r R ===+=-+2222

24εε。由此式可以看出:当外电阻等于内电阻,即R = r 时,电源的输出功率最大,最大输出功率为P r m ax =ε2

4,电源输出功率与外电阻的关系

可用P ——R 图像表示。

电源输出功率与电路总电流的关系是:

()P IU I Ir I I r r r I r ==-=-=--⎛⎝ ⎫⎭⎪εεεε222

42。显然,当I r =ε2时, 电源输出功率最大,且最大输出功率为:P r m ax =

ε24。

P ——I 图像如图所示。 选择路端电压为自变量,电源输出功率与路端电压

的关系是: P I U U r U r U r U r r U ==-⎛⎝ ⎫⎭⎪=-=--⎛⎝ ⎫⎭⎪εεεε1412222

显然,当U =ε2

时,P r m ax =ε24。P ——U 图像如图所示。 综上所述,恒定电源输出最大功率的三个等效条件是:(1)外电阻等于内电阻,即R r

=。(2)路端电压等于电源电动势的一半,即U =ε2。(3)输出电流等于短路电流的一半,即I I r

m ==22ε。除去最大输出功率外,同一个输出功率值对应着两种负载的情况。一种情况是负载电阻大于内电阻,另一种情况是负载电阻小于内电阻。显然,负载电阻小于内电阻时,电路中的能量主要消耗在内电阻上,输出的能量小于内电阻上消耗的能量,电源的电能利用效率低,电源因发热容易烧坏,实际应用中应该避免。

同种电池的串联:

n 个相同的电池同向串联时,设每个电池的电动势为ε,内电阻

为r ,则串联电池组的总电动势εε总=n ,总内电阻r n

r 总=,这样闭合电路欧姆定律可表示为I n R n r

=+ε 12.电阻定律Ⅰ

导体的电阻反映了导体阻碍电流的性质,定义式R U I

=;在温度不变时,导体的电阻与其长度成正比,与导体的长度成正比,与导体的横截面S 成反比,跟导体的材料有关,即由导体本身的因素决定,决定式R L S =ρ;公式中L 、S 是导体的几何特征量,ρ叫材料的电阻率,反映了材料的导电性能。按电阻率的大小将材料分成导体和绝缘体。

对于金属导体,它们的电阻率一般都与温度有关,温度升高对电阻率增大,导体的电阻也随之增大,电阻定律是在温度不变的条件下总结出的物理规律,因此也只有在温度不变的条件下才能使用。 将公式R U I

=错误地认为R 与U 成正比或R 与I 成反比。对这一错误推论,可以从两个方面来分析:第一,电阻是导体的自身结构特性决定的,与导体两端是否加电压,加多大的电压,导体中是否有电流通过,有多大电流通过没有直接关系;加在导体上的电压大,通过的电流也大,导体的温度会升高,导体的电阻会有所变化,但这只是间接影响,而没有直接关系。第二,伏安法测电阻是根据电阻的定义式R U I

=,用伏特表测出电阻两端的电压,用安培表测出通过电阻的电流,从而计算出电阻值,这是测量电

阻的一种方法。

13.决定导线电阻的因素(实验、探究)Ⅱ

电阻的测量:

(1)伏安法:伏安法测电阻的原理是部分电路的欧姆定律R U I =,测量电路有安培表内接或外接两种接法,如图甲、乙:

两种接法都有系统误差,测量值与真实值的关系为:当采用安培表内接电路(甲)时,由于安培表内阻的分压作用,电阻的测量值

R U I U U I

R R R x A x A x 内==+=+>;当采用安培表外接电路(乙)时,由于伏特表的内阻有分流作用,电阻的测量值

R U I U U R U R R R R R R x V

x V x V x 外==+=+<,可以看出:当R R x A >>和R R V x >>时,电阻的测量值认为是真实值,即系统误差可以忽略不计。所以为了确定实验电路,一般有两种方法:一是比值法,若R R R R x A V x

>时,通常认为待测电阻的阻值较大,安培表的分压作用可忽略,应采用安培表内接电路;若R R R R x A V x

<时,通常认为待测电阻的阻值较小,伏特表

的分流作用可忽略,应采用安培表外接电路。若R R R R A V 00

=时,两种电路可任意选择,这种情况下的电阻R 0叫临界电阻,R RR A V 0=,待测电阻R x 和R 0比较:若R x >R 0时,则待测电阻阻值较大;若R x

二是试接法:在R A 、R V 未知时,若要确定实验电路,可以采用

试接法,如图所示:如先采用安培表外接电路,然后将接头P 由a 点改接到b 点,同时观察安培表与伏特表的变化情况。若安培表示数变化比较显著,表明伏特表分流作用较大,安培表

分压作用较小,待测电阻阻值较大,应采用安培表内

接电路。若伏特表示数变化比较显著,表明安培表分

压作用较大,伏特表分流作用较小,待测电阻阻值较

小,应采用安培表外接电路。

(2)欧姆表:欧姆表是根据闭合电路的欧姆定律制成的。

a .欧姆表的三个基准点。 如图,虚线框内为欧姆表原理图。欧姆表的总电阻R RR r z g =

++, 待测电阻为R x ,则

I R R r R R R x g x z x =+++=+εε

,可以看出,I x 随R x 按双曲线规律变化,因此欧姆表的刻度不均匀。当

R x = 0时,I R I x z g ==ε

——指针满偏,停在0刻

度;当R x =∞时,I x =0——指针不动,停在电阻∞刻度;当R R x z =时,

I R I x z

g ==ε212——指针半偏,停在R z 刻度,因此R z 又叫欧姆表的中值电阻。如图所示。

b .中值电阻R z 的计算方法:当用R ⨯1档时,R z =εI g

,即表盘中心的刻度值,当用R n ⨯档时,R n R z z '=。

c .欧姆表的刻度不均匀,在“∞”附近,刻度线太密,在“0”附近,刻度线太稀,在“R z ”附近,刻度线疏密道中,所以为了减少读数误差,可以通过换欧姆倍率档,尽可能使指针停在中值电阻两次附近13

3R R z z —范围内。由于待测电阻虽未知,但为定值,故让指针偏转太小变到指在中值电阻两侧附近,就得调至欧姆低倍率档。反之指针偏角由太大变到指在中值电阻两侧附近,就得调至欧姆高倍率档。

14.电阻的串联与并联Ⅰ

(1)串联电路及分压作用

a :串联电路的基本特点:电路中各处的电流都相等;电路两端的总电压等于电路各部分电压之和。

b :串联电路重要性质:总电阻等于各串联电阻之和,即R 总 = R 1 + R 2 + …+ R n ;串联电路中电压与电功率的分配规律:串联电路中各个电阻两端的电压与各个电阻消耗的电功率跟各个电阻的阻值成正

比,即:U U R R U U R R P P R R P P R R n n n 121212121====或;或总总总总; c :给电流表串联一个分压电阻,就可以扩大它的电压量程,从而将电流表改装成一个伏特表。如果电流表的内阻为R g ,允许通过的最大电流为I g ,用这样的电流表测量的最大电压只能是I g R g ;如果给这个电流表串联一个分压电阻,该电阻可由

U I R R I g g g -=串或 R n R g 串=-()1计算,其中n U I R g g

=为电压量程扩大的倍数。 (2)并联电路及分流作用

a :并联电路的基本特点:各并联支路的电压相等,且等于并联支路的总电压;并联电路的总电流等于各支路的电流之和。

b :并联电路的重要性质:并联总电阻的倒数等于各并联电阻的

倒数之和,即R R R R n 并

…=+++-()11

1121;并联电路各支路的电流与电功率的分配规律:并联电路中通过各个支路电阻的电流、各个支路电阻上消耗的电功率跟各支路电阻的阻值成反比,即,

I I R R I I R R P P R R P P R R

n n n n 12211221====或;或总总总总; c :给电流表并联一个分流电阻,就可以扩大它的电流量程,从而将电流表改装成一个安培表。如果电流表的内阻是R g ,允许通过的最大电流是I g 。用这样的电流表可以测量的最大电流

显然只能是I g 。将电流表改装成安培表,需要给电流表并联一个分流电阻,该电阻可由g g g g R n R R I I R I 1

1)(-=

-=并并或计算,其中 n I I g =为电流量程扩大的倍数。

15.测量电源的电动势和内电阻(实验、探究)Ⅱ

用安培表和伏特表测定电池的电动势和内电阻。

如图所示电路,用伏特表测出路端电压U 1,同时用安培表测出路端电压U 1时流过电流的电流I 1;改变电路中的可变电

阻,测出第二组数据U I 22、

;根据闭合电路欧姆定律,列方程组:

εε=+=+⎧⎨⎩U I r U I r 1122解之,求得ε=--=--⎧⎨⎪⎪⎩

⎪⎪I U I U I I r U U I I 2112211

221 上述通过两组实验数据求解电动势和内电阻的方法,由于偶然误差的原因,误差往往比较大,为了减小偶然因素造成的偶然误差,比较好的方法是通过调节变阻器的阻值,测量5组~8组对应的U 、I 值并列成表格,然后根据测得的数据在U ——I 坐标系中标出各组数据的坐标点,作一条直线,使它通过尽可能多的坐标点,而不在直线上的坐标点能均等分布在直线两侧,如图所示:这条直线就是闭

合电路的U ——I 图像,根据U I r =-ε,U 是I 的一次函数,图像与

纵轴的交点即电动势,图像斜率t g θ=

=∆∆U I

r 。 16.电功 电功率 焦耳定律Ⅰ 电功和电功率:电流做功的实质是电场力对电荷做功,电场力对电荷做功电荷的电势能减少,电势能转化为其他形式的能,因此电功W = qU = UIt ,这是计算电功普遍适用的公式。单位时间内电流做的功叫电功率P W t

U I ==,这是计算电功率普遍适用的公式。 电热和焦耳定律:电流通过电阻时产生的热叫电热。Q = I 2 R t 这是普遍适用的电热的计算公式。

电热和电功的区别:

a :纯电阻用电器:电流通过用电器以发热为目的,例如电炉、电熨斗、白炽灯等。

b :非纯电阻用电器:电流通过用电器以转化为热能以外的形式的能为目的,发热是不可避免的热能损失,例如电动机、电解槽、给蓄电池充电等。

在纯电阻电路中,电能全部转化为热能,电功等于电热,即W =

UIt = I 2Rt =U R t 2是通用的,没有区别。同理P U I I R U R

===22也无区别。在非纯电阻电路中,电路消耗的电能,即W = UIt 分为两部分:一大部分转化为热能以外的其他形式的能(例如电流通过电动机,电动机转动将电能转化为机械能);另一小部分不可避免地转化为电

热Q = I2R t。这里W = UIt不再等于Q = I2Rt,而是W > Q,应该是W = E其他+ Q,电功只能用W = UIt,电热只能用Q = I2Rt计算。17.简单的逻辑电路Ⅰ

与门、或门、非门三种基本逻辑电路:

符号:

真值表:

18.磁场磁感应强度磁感线磁通量Ⅰ

(1)、磁场

磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质。

(1)磁场的基本特性——磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。

(2)磁现象的电本质——磁体、电流和运动电荷的磁场都产生于电荷的运动,并通过磁场而相互作用。

(3)最早揭示磁现象的电本质的假说和实验——安培分子环流假说和罗兰实验。

(2)、磁感应强度

为了定量描述磁场的大小和方向,引入磁感应强度的概念,在磁场中垂直于磁场方向的通电导线,受到磁场力F跟电流强度I和导线长度L的乘积IL的比值,叫通电导线所在处的磁感应强度。用公

式表示是

B

F IL =

磁感应强度是矢量。它的方向就是小磁针N极在该点所受磁场力的方向。

公式是定义式,磁场中某点的磁感应强度与产生磁场的磁极或电流有关,和该点在磁场中的位置有关。与该点是否存在通电导线无关。

(3)、磁感线

磁感线是为了形象描绘磁场中各点磁感应强度情况而假想出来的曲线,在磁场中画出一组有方向的曲线。在这些曲线上每一点的切线方向,都和该点的磁场方向相同,这组曲线就叫磁感线。磁感线的特点是:

磁感线上每点的切线方向,都表示该点磁感应强度的方向。

磁感线密的地方磁场强,疏的地方磁场弱。

在磁体外部,磁感线由N极到S极,在磁体内部磁感线从S极到N极,形成闭合曲线。

磁感线不能相交。

对于条形、蹄形磁铁、直线电流、环形电流和通电螺线管的磁感线画法必须掌握。

(4)、磁通量(φ)和磁通密度(B)

○1磁通量(φ)——穿过某一面积(S)的磁感线的条数。

○2磁通密度——垂直穿过单位面积的磁感线条数,也即磁感应强

度的大小。

B S =φ ○

3φ与B 的关系 φ = BS cos θ式中S cos θ为面积S 在中性面上投影的大小。

4公式φ = BS cos θ及其应用 磁通量的定义式φ = BS cos θ,是一个重要的公式。它不仅定义了φ的物理意义,而且还表明改变磁通量有三种基本方法,即改变B 、S 或θ。在使用此公式时,应注意以下几点:

(1)公式的适用条件——一般只适用于计算平面在

匀强磁场中的磁通量。

(2)θ角的物理意义——表示平面法线(n )方向与

磁场(B )的夹角或平面(S )与磁场中性面(OO ')的夹

角(图1),而不是平面(S )与磁场(B )的夹角(α)。

因为θ +α = 90°,所以磁通量公式还可表示为φ = BS sin α (3)φ是双向标量,其正负表示与规定的正方向(如平面法线的方向)是相同还是相反,当磁感线沿相反向穿过同一平面时,磁通量等于穿过平面的磁感线的净条数——磁通量的代数和,即 φ = φ1-φ2

19.通电直导线和通电线圈周围磁场的方向Ⅰ

用安培定则判定

通电直导线周围:右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。

通电线圈周围磁场:让右手弯曲的四指与环形电流的方向一致,伸直的拇指所指的方向就是环形导线轴线上磁感线的方向

20.安培力安培力的方向Ⅰ

磁场对电流的作用力,叫做安培力。

安培力的方向用左手定则判定:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内。让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。

21.匀强磁场中的安培力Ⅱ

如图所示,一根长为L的直导线,处于磁感应强度为B的匀强磁场中,且与B的夹角为θ。当通以电流I时,安培力的大小可以表示为F = BIl sinθ式中F的单位为牛顿(N),I的单位为安培(A),B的单位为特斯拉(T),L的单位为米(m)θ为B与I(或l)的夹角

当θ=90º时,即电流与磁场垂直时,安培力最大,为F=BIL;

当θ=0º时,即电流与磁场平行时,安培力最小,为F=0;

(完整版)高二物理磁场知识点(经典)

一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感应强度 1、 表示磁场强弱的物理量.是矢量. 2、 大小:B=F/Il (电流方向与磁感线垂直时的公式). 3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. 4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T . 5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. 6、 匀强磁场的磁感应强度处处相等. 7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强 度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则. 三、几种常见的磁场 (一)、 磁感线 ⒈磁感线是徦想的,用来对磁场进行直观描述的曲线,它并不是客观存在的。 ⒉磁感线是闭合曲线???→→极极磁体的内部极 极磁体的外部N S S N ⒊磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向表示该点的磁场方向。 ⒋任何两条磁感线都不会相交,也不能相切。 5.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 6.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向· 7、 *熟记常用的几种磁场的磁感线: (二)、匀强磁场 1、 磁感线的方向反映了磁感强度的方向,磁感线的疏密反映了磁感强度的大小。 2、 磁感应强度的大小和方向处处相同的区域,叫匀强磁场。其磁感线平行且等距。 例:长的通电螺线管内部的磁场、两个靠得很近的异名磁极间的磁场都是匀强磁场。 3、 如用B=F/(I ·L)测定非匀强磁场的磁感应强度时,所取导线应足够短,以能反映该位 置的磁场为匀强。 (三)、磁通量(Φ) 1.磁通量Φ:穿过某一面积磁力线条数,是标量.

(完整版)高二物理电场磁场总结(超全)

电磁场总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。 基本电荷e =?-161019.C 。带电体电荷量等于元电荷的整数倍(Q=ne ) ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷。 2.库仑定律 (1)公式 F K Q Q r =122 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表

达式为F K Q Q r =122,其中比例常数K 叫静电力常量,K =?90109.N m C 22·。(F:点电荷间的作用力(N), Q 1、Q 2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。 电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E =,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。

高中物理知识点总结:电场 磁场

一. 教学内容:电场、磁场

二. 具体过程 (一)电场的性质 1. 电场力的性质 (1)库仑定律的应用 ①真空中两点电荷间库仑力的大小由公式 计算,方向由 同种电荷相斥,异种电荷相吸判断。 在介质中,公式为: 。 ②两个带电体间的库仑力 均匀分布的绝缘带电球体间的库仑力仍用公式< style='height:30pt' > 计算,公式中r 为两球心之间的距离。

两导体球间库仑力可定性比较:用r表示两球球心间距离,则当两球带同种 电荷时,;反之当两球带异种电荷时,。 ③两带电体间的库仑力是一对作用力与反作用力。 (2)对电场强度的三个公式的理解 ①是电场强度的定义式,适用于任何电场,电场中某点的场强是确定值,其大小和方向与试探电荷q无关。试探电荷q充当“测量工具”的作用。 ②是真空点电荷所形成的电场的决定式。E由场源电荷Q和场源电荷到某点的距离r决定。 ③ 2. 电场能的性质 (1)电场力做功与电势能改变的关系 电场力对电荷做正功,电势能减少,电场力对电荷做负功,电势能增加,且 电势能的改变量等于电场力做功的多少,即,正电荷沿电场线移动或负电荷逆电场线移动,电场力均做正功,故电势能减少,而正电荷逆电场线移动或负电荷沿电场线移动,电势能均增大。 (2)等势面与电场线的关系 ①电场线总是与等势面垂直,且从高电势等势面指向低电势等势面。 ②电场线越密的地方,等差等势面也越密。 ③沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。 ④电场线和等势面都是人们虚拟出来的描述电场的工具。 ⑤实际中测量等电势点较容易,所以往往通过描绘等势线来确定电场线。 (3)等势面(线)的特点 ①等势面上各点电势相等,在等势面上移动电荷电场力不做功。

高二物理电磁场知识点

高二物理电磁场知识点 导读:我根据大家的需要整理了一份关于《高二物理电磁场知识点》的内容,具体内容:电磁学是物理学习里的重要内容。下面是我收集整理的高二物理电磁学知识点以供大家学习。高二物理电磁学知识点(一)电场1.库仑定律:F=kQ1Q2/r2... 电磁学是物理学习里的重要内容。下面是我收集整理的高二物理电磁学知识点以供大家学习。 高二物理电磁学知识点(一) 电场 1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 2.两种电荷、电荷守恒定律、元电荷:(e=1.60×10-19C);带电体电荷量等于元电荷的整数倍 3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 7.电势与电势差:UAB=A-B,UAB=WAB/q=-EAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)} 9.电场力做功与电势能变化EAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值) 10.电势能:EA=qA{EA:带电体在A点的电势能(J),q:电量(C),A:A 点的电势(V)} 11.电势能的变化EAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值} 12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=S/4kd(S:两极板正对面积,d:两极板间的垂直距离,:介电常数) 常见电容器〔见第二册P111〕 14.带电粒子在电场中的加速(Vo=0):W=EK或qU=mVt2/2,Vt=(2qU/m)1/2高二物理电磁学知识点(二) 电磁感应 1.[感应电动势的大小计算公式] (1)E=n/t(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感

高二物理电磁学知识点总结大全

高二物理电磁学知识点总结大全电磁学是物理学中重要的分支之一,它研究电荷和磁荷之间相互作用的规律,涉及到许多重要的概念和定律。下面是对高二物理电磁学知识点的总结,希望能够对同学们的学习有所帮助。 一、静电场 1. 电荷和电场 电荷:原子中的负电子和正电子之间存在着相互作用力,当电子和质子数目相等时,物质是电中性的,否则就带有电荷。电荷有正负之分,同性相斥,异性相吸。 电场:电荷周围存在着电场,电场是指电荷感受到的力的作用范围。 2. 电场强度 电场强度E是指单位正电荷所受到的电场力F与正电荷之间的比率,用公式E=F/q表示,单位是N/C。

3. 受力与受力分析 带电粒子在电场中受到电场力的影响,当电荷体系中存在多个电荷时,合力等于各个电荷的叠加。 二、恒定磁场 1. 磁场与磁感线 磁场:指物体周围存在的磁力作用范围。磁场包括磁场强度B 和磁感应强度。 磁感线:是描述磁场的一种图示方法,磁感线的方向是磁力线的方向,磁感线的密度表示磁场的强弱。 2. 洛伦兹力 当一个带电粒子以速度v进入磁场时,将受到垂直于速度和磁感应强度方向的洛伦兹力F。 洛伦兹力公式为F=qvBsinθ,其中q是电荷量,v是粒子速度,B是磁感应强度,θ是v和B夹角。

3. 荷质比的测定 荷质比是指带电粒子的电荷量和质量之比,可以通过在磁场中 测定带电粒子的运动轨迹来进行测定。 三、电磁感应和电动势 1. 法拉第电磁感应定律 法拉第电磁感应定律是描述电磁感应现象的定律,它表明当一 个导体中的磁通量发生变化时,该导体两端会产生感应电动势。 法拉第电磁感应定律的数学表示为ε=-dΦ/dt,其中ε是感应电 动势,Φ是磁通量,t是时间。 2. 楞次定律和自感现象 楞次定律:当电路中的电流发生变化时,由于电路的自感作用,电路中会产生感应电动势,其方向与变化前的电流方向相反。

高二物理公式大总结

高二物理公式总结 一、电场 1.库仑定律: 22 1r q q k F = 方向:沿两电荷连线方向,同性相斥,异性相吸 2.电场强度:E =F/q (定义式、适用于任何电场),方向:正电荷所受电场力方向 2r Q k E = (决定式,适用于真空中点电荷) E =U AB /d (适用于匀强电场,d 为AB 两点沿场强方向上的距离) 3.电势与电势差:U AB =φA -φB , U AB =W AB /q 电势能:E p =q φ 电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关 4.电场力做功:W AB =qU AB =-ΔE p AB =E p A -E p B (电场力做功与路径无关,电场力做正 功,电势能减小,电场力做负功,电势能增加), 5.电容:C =Q/U(定义式) C =εS/4πkd ((决定式) 6.带电粒子在电场中的加速:qU =mV t 2/2- mV 02/2 7.带电粒子沿垂直电场方向以速度Vo 进入匀强电场时的偏转(不考虑重力作用) 水平:匀速运动,v x =v 0 ,l =v 0t 竖直:a =F/m =qE/m , E =U/d ,v y =at ,y=at 2/2, 可求出d mv U ql y 2022= d mv qlU v v x y 20tan ==φ 220y v v v += 二、恒定电流 1.电流强度:I =q/t I =nqvs 欧姆定律:I =U/R 2.电阻定律:R =ρL/S 金属电阻率随温度升高而增大,半导体电阻率随温度升高而减小 3.闭合电路欧姆定律:I =E/(r+R) 或E =Ir+IR , Ir U E += ,E =U 内+U 外 闭合电路的动态分析可采用“串反并同”的规律 4.短路:R=0,I=E/r ,可以认为U=0,路端电压等于零 断路:当R→∞,也就是当电路断开时,I→0则U=E 5.电功:W =UIt , 电功率:P =UI 6.焦耳定律:Q =2I Rt 热功率:P 热=2 I R

高中物理电场公式大全_电场磁场公式

高中物理电场公式大全_电场磁场公式 高中物理电场公式 1.两种电荷、电荷守恒定律、元电荷: (e=1.60×10-19C);带电体电荷量等于元电荷的整数 倍 2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E=F/q(定义式、计算式){E:电场强度 (N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量} 5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)} 6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:UAB=φA-φB, UAB=WAB/q=-ΔEAB/q 8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点

间的电势差(V)(电场力做功与路径无关),E:匀强电场强 度,d:两点沿场强方向的距离(m)} 9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)} 10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值} 11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值) 12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量 (C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容C=εS/4πkd(S:两 极板正对面积,d:两极板间的垂直距离,ω:介电常数) 14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2 15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) 类平垂直电场方向:匀速直线运动L=Vot(在带等量异 种电荷的平行极板中:E=U/d) 抛运动平行电场方向:初速度为零的匀加速直线运动 d=at2/2,a=F/m=qE/m 注: (1)两个完全相同的带电金属小球接触时,电量分配

高中物理磁场和电场的知识点

高中物理磁场和电场的知识点 高中物理磁场知识点1.磁场(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.(3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用.(4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体.(5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.2.磁感线(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.(3)几种典型磁场的磁感线的分布:①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.3.磁感应强度(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F 跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应

强度,定义式B=F/IL.单位T,1T=1N/(A?m).(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:(1)地磁场的N极在地球南极附近,S极在地球北极附近.(2)地磁场B的水平分量(Bx)总是从地球南极指向北极,而竖直分量(By)则南北相反,在南半球垂直地面向上,在北半球垂直地面向下.(3)在赤道平面上,距离地球表面相等的各点,磁感强度相等,且方向水平向北.5.安培力(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.若载流导体是弯曲导线,且导线所在平面与磁感强度方向垂直,则L指弯曲导线中始端指向末端的直线长度.(2)安培力的方向由左手定则判定.(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,而不像重力和电场力那样做功总为零.6.洛伦兹力(1)洛伦兹力的大小f=qvB,条件:v⊥B.当v⊥B时,f=0.(2)洛伦兹力的特性:洛伦兹力始终垂直于v的方向,所以洛伦兹力一定不做功.(3)洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方

高中物理电磁场知识点

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s. 下面为大家介绍的是2012年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义 式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量. ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少. (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感). 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt . ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt . 5.自感现象

高考物理知识点总结电场与磁场

高考物理知识点总结电场与磁场为了让同学们在高考中取得更好的成绩,下面为大家整理了高考物理知识点总结:电场与磁场,希望对同学们有所帮助。 一、电场和磁场相关概念 1.电场、磁场都是特殊的物质。电场对放入期中的电荷有电场力的作用,磁场对其中的磁体或电流有磁力作用。 2.丹麦物质学家奥斯特的奥斯特实验证明了电流周围存在着磁场。 3.磁感线是磁场中人为描绘的一些有方向的曲线,曲线每一点的切线方向都表示该点的磁场方向(静止的小磁针北极所指的方向、磁感强度的方向) 4.磁感线的密度表示磁场的强弱,越密的地方,磁感应强度越大。在磁体周围,离磁极越近,磁感应强度越大,离磁极越远,磁感应强度越小。 5.磁感线是闭合的曲线,没有开始点和结束点,任何两条都不相交。磁感线在磁体外部,总是由磁体北极(N极)指向磁体的南极(S极),在磁体内部,总是由磁体南极指向磁体的北极。 6.磁现象的电本质:所有磁现象都可以归结为运动电荷(电流)之间通过磁场而发生的相互作用。 7.磁体吸引铁的实质:磁体在吸引铁时,先把铁磁化,然

后相吸引,所以相接触部分为异名磁极,磁化后铁的另一侧与磁化它的磁极相同。 8.B=F/(Il )是磁感应强度的定义式,但磁感应强度与F、 I、l 无关,其大小决定于磁场本身。它是矢量,其方向指向磁感线(磁场)方向的切线方向。推导公式 F=BIl 9.当电流方向与磁感线方向平行或磁感强度为零时,磁场对电流没有作用力。 二、电场和磁场考点分析 二、高考预测 从近两年高考试题看,本专题包括的考查点:一是库仑定律,电场强度、电势;二是电容和带电粒子在电场中的运动;三是安培力和洛伦兹力。电磁场知识是历年高考试题中考点分布重点区域,尤其是在力电综合试题中常巧妙地把电场、磁场的概念与牛顿定律、动能定理等力学、电学有关知识有机地联系在一起,还能侧重于应用数学工具解决物理问题方面的考查。对07年、08年全国理综Ⅰ、Ⅱ两“场”试题(不包括电磁感应)统计来看平均约占总分23%,其他卷也都在23到36分之间.预计2009年高考本专题占分比例仍在26%左右,选择题和计算题各一道的组合形式不会有多大变化,实验题有可能出现在“用描迹法画出电场中平面上的等势线”,选择题单独命题考基础,难度系数约0.60,如全国理综Ⅰ第20题,考查匀强电场中电势分布规律及电势差与场

高考物理电场与磁场知识点公式总结范文(3篇)

高考物理电场与磁场知识点公式总结范文 1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/Am 2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)} 3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)} 4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种): (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0 (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T) 2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关, 洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。 高考物理电场与磁场知识点公式总结范文(二) 1.两种电荷(1)自然界中存在两种电荷:正电荷与负电荷.(2)电荷守恒定律 2.库仑定律

(1)内容:在真空中两个点电荷间的作用力跟它们的电荷量的乘积成正比,跟它们之间的距离的平方成反比,作用力的方向在它们的连线上. (2)适用条件:真空中的点电荷. 点电荷是一种理想化的模型.如果带电体本身的线度比相互作用的带电体之间的距离小得多,以致带电体的体积和形状对相互作用力的影响可以忽略不计时,这种带电体就可以看成点电荷,但点电荷自身不一定很小,所带电荷量也不一定很少. 3.电场强度、电场线 (1)电场:带电体周围存在的一种物质,是电荷间相互作用的媒体.电场是客观存在的,电场具有力的特性和能的特性. (2)电场强度:放入电场中某一点的电荷受到的电场力跟它的电荷量的比值,叫做这一点的电场强度.定义式: E=F/q方向:正电荷在该点受力方向. (3)电场线:在电场中画出一系列的从正电荷出发到负电荷终止的曲线,使曲线上每一点的切线方向都跟该点的场强方向一致,这些曲线叫做电场线.电场线的性质:①电场线是起始于正电荷(或无穷远处),终止于负电荷(或无穷远处);②电场线的疏密反映电场的强弱;③电场线不相交;④电场线不是真实存在的;⑤电场线不一定是电荷运动轨迹. (4)匀强电场:在电场中,如果各点的场强的大小和方向都相同,这样的电场叫匀强电场.匀强电场中的电场线是间距相等且互相平行的直线.

高二物理电学知识点总结

高二物理电学知识点总结 学习物理需要讲究〔方法〕和技巧,更要学会对学问点进行归纳整理。〔高二物理〕电学学问点有哪些呢?高二物理电学有关学问,请仔细复习! 高二物理电学学问点〔总结〕 1、基础学问 对于电学综合问题, 状态分析往往是解题的第一步, 如对带电粒子在电场、磁场中的运动和导线切割磁感线运动, 应分析其受力状态和运动状态; 对于直流电路的计算, 应首先分析其电路的连接状态; 对于电磁振荡, 通常需要分析振荡过程中的一些典型状态。 2、电场学问点: 电荷在其四周空间激发电场,静止电荷激发的电场是静电场。电场对处在场中的〔其它〕电荷有力的作用;电荷在电场中移动时,一般说来电场力对电荷要做功,在静电场中,电场力对电荷所做的功与路径无关,所以在静电场中电荷具有电势能。在静电场中引入场强和电势这两个物理量,来分别描写静电场有关力的性质和能的性质。只有深入地理解场强和电势的概念,才能加深对电场这一概念的理解。 静电场是不随时间改变的场,在空间各点描写电场的物理量场强和电势,均不随时间改变。但是,在场中的不同点,场强和电势的数值一般来说是不同的,它是随着空间点的位置的改变而

改变的。关于这一点在中学物理中要特别留意,因为我们常常讨论匀强电场,在这一特别的匀强电场中,各点的场强的大小和方向是相同的,而一般的电场却不是这样,必需考虑场强和电势在场中不同点的分布状况。 电力线和等势面是分别用来形象地描写场强和电势在空间中的分布的工具。对于它们的性质及描写电场的方法的理解和把握,不仅对于深入理解电场的概念、形象的建立电场的模型和图象特别重要,而且对于解决许多电学中的问题也是特别有用的。 值得留意的是,对于电场中一些概念的学习,如:电场力对电荷的功、电势能,应对比力学中的重力对物体做的功,重力势能来学习和理解。带电粒子在电场中的平衡和运动的问题,事实上,就是力学问题。所以静电场的学习是对力学问题的一次很好的复习和提高的机会。 3、稳恒电流学问点: 这部分学问内容要留意以下几点: (1)树立等效思想,学会画等效电路图 课本中,在讲串、并联电路的特点时,所说的"串联电路的总电阻'、"并联电路的总电阻'都是指等效电阻。在讲电池组时,所说的"电池组的电动势' "电池组的内阻'也是分别指与所说的电池组等效的电源的电动势和内阻。所谓甲与乙等效,是指在所讨论的问题上,甲与乙的效果相同。在电路计算中,常常把一个电路,用另一个与

高二物理知识点总结大全

高二物理知识点总结大全 (经典版) 编制人:__________________ 审核人:__________________ 审批人:__________________ 编制单位:__________________ 编制时间:____年____月____日 序言 下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢! 并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注! Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!

高二物理磁场与电场知识

磁场 一、磁场: 1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用; 2、磁铁、电流都能能产生磁场; 3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生 相互作用; 4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向; 二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是 该点的磁场方向; 1、磁感线是人们为了描述磁场而人为假设的线; 2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极; 3、磁感线 是封闭曲线; 三、安培定则: 1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方 向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向; 2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的 大拇指所。 通电导线在安培力作用下运动方向的判定方法: 要判定通电导线在安培力作用下的运动,首先必须清楚导线所在位置磁场的分布情况,然后才能结合左手定则准确判定导线的受力情况,进而确定导线的运动方向。常用的方法如下: 1.电流元法 (1)同一磁场中的弯曲导线 把整段弯曲导线分为多段直线电流元,先用左手定则判定每段电流元受力的方向,然后判定整段导线所受合力的方向,从而确定导线的运动方向,如在图中,要判定导线框abcd的受力可将其分为四段来判定,若将导线框换作导线环时,可将其分为多段直线电流元。

(2)不同磁场区域中的直线电流当直导线处于不同的磁场区域中时,可根据导线本身所处的物理情景,将导线适当分段处理,如图甲中,要判定可自由运动的通电直导线AB在蹄形磁铁作用下的运动情况时,以蹄形磁铁的中轴线OO’为界,直导线在OO’两侧所处的磁场截然不同,则可将AB以OO’为分界点分为左右两段来判定。 2.特殊位置法因电流所受安培力的方向是垂直于电流和磁场所决定的平面的,虽然电流与磁场之间夹角不同时电流所受安培力大小不同,但所受安培力的方向是不变的 (要求电流从平行于磁场的位置转过的角度不超过 180。)。故可通过转动通电导线到某个便于分析的特殊位置,然后判定其所受安培力的方向,从而确定其运动方向。如在上图甲中,初始位置磁场在平行于电流方向上的分量对电流无作用力,但一旦离开初始位置,此磁场分量就会对电流产生作用力,如上图乙所示。但此分量对电流在转动过程中作用力的方向不方便判定.可将此导线转过90。,此时电流方向与该磁场分量方向垂直,用左手定则很容易判定出受力方向,如上图丙所示, 3.等效法 (1)从磁体或电流角度等效 环形电流可以等效成小磁针,通电螺线管可以等效成条形磁铁或多个环形电流,反过来等效也成立。将环形电流与小磁针相互等效时,它们的位置关系可以认为是小磁针位于环形电流的中心处,N、S极连线与环面垂直,且N、S极与电流方向遵从安培定则。如在图中,两通电圆环同心,所在平面垂直,要判定可自南转动的圆环,I2的运动情况,可将其等效为一小磁针。

高二物理电场知识点整理

高二物理电场知识点整理 一、电荷、电荷守恒定律 1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。 2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。 说明:任何带电体的带电量皆为元电荷电量的整数倍。 荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷 3、起电方式有三种 ①摩擦起电, ②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。 ③感应起电——切割B,或磁通量发生变化。 ④光电效应——在光的照射下使物体发射出电子 4、电荷守恒定律: 电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的. 二、库仑定律 1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。方向由电性决定(同性相斥、异性相吸) 2.公式:k=9.0×109N·m2/C2 极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F最大值。 3.适用条件:(1)真空中;(2)点电荷. 点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略

不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。点电荷很相似于我们力学中的质点. 注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律 ②使用库仑定律计算时,电量用绝对值代入,作用力的方向根据“同性相排斥,异性相吸引”的规律定性判定。 计算方法:①带正负计算,为正表示斥力;为负表示引力。 ②一般电荷用绝对值计算,方向由电性异、同判断。 三个自由点电荷平衡问题,静电场的典型问题,它们均处于平衡状态时的规律。 ① “三点共线,两同夹异,两大夹小” ②中间电荷靠近另两个中电量较小的。 ③中间点电荷的平衡求间距,两边之一平衡求中间点电荷的电量,关系式为或 ④ q1、q3固定时,q2的平衡位置具有唯一性,且与q2的电量多少,电性正负无关。 三、电场: 1、存在于带电体周围的传递电荷之间相互作用的特殊媒介物质.电荷间的作用总是通过电场进行的。 电场:只要电荷存在它周围就存在电场,电场是客观存在的,它具有力和能的特性。力(电场强度);能(磁通量) 若电荷不动周围的是静电场,若电荷运动周围不单有电场而且产生磁场, 2、电场的基本性质-------①是对放入其中的电荷有力的作用。②能使放入电场中的导体产生静电感应现象 3、电场可以由存在的电荷产生,也可以由变化的磁场产生。 四、电场强度(E)——描述电场力特性的物理量。(矢量) 1.定义:放入电场中某一点的电荷受到的电场力F跟它的电量q的比值叫做该点的电场强度,表示该处电场的强弱

高考物理电磁场归纳总结(经典)

电场知识点总结 电荷 库仑定律 一、库仑定律:2212112==r Q Q K F F ①适用于真空中点电荷间相互作用的电力 ②K 为静电力常量229/10×9=C m N K ③计算过程中电荷量取绝对值 ④无论两电荷是否相等:2112=F F . 电场 电场强度 二、电场强度:q F E =(单位:N/C ,V/m ) ①电场力qE F =; 点电荷产生的电场2r Q k E =(Q 为产生电场的电荷); 对于匀强电场:d U E =; ②电场强度的方向: 与正电荷在该点所受电场力方向相同 (试探电荷用正电荷)与负电荷在该点所受电场力方向相反 ③电场强度是电场本身的性质,与试探电荷无关 ④电场的叠加原理:按平行四边形定则 ⑤等量同种(异种)电荷连线的中垂线上的电场分布 三、电场线 1.电场线的作用: ①.电场线上各点的切线方向表示该点的场强方向 ②.对于匀强电场和单个电荷产生的电场,电场线的方向就是场强的方向 ③电场线的疏密程度表示场强的大小 2.电场线的特点:起始于正电荷(或无穷远处),终止于负电荷(或无穷远处),不相交,不闭合. 电势差 电势 知识点: 1.电势差B A AB AB q W U ϕϕ-== 2.电场力做功:)(B A AB AB q qU W ϕϕ-== 3.电势:q W U AO AO A ==ϕ

4. 电势能:ϕεq = (1)对于正电荷,电势越高,电势能越大 (2)对于负电荷,电势越低,电势能越大 5.电场力做功与电势能变化的关系:ε∆-=电W (1)电场力做正功时,电势能减小 (2)电场力做负功时,电势能增加 静电平衡 等势面 知识点: 1.等势面 (1)同一等势面上移动电荷的时候,电场力不做功. (2)等势面跟电场线(电场强度方向)垂直 (3)电场线由电势高的等势面指向电势低的等势面 (4)等差等势面越密的地方,场强越大 2.处于静电平衡的导体的特点: (1)内部场强处处为零 (2)净电荷只分布在导体外表面 (3)电场线跟导体表面垂直 电场强度与电势差的关系 知识点: 1. 公式:d U E = 说明:(1)只适用于匀强电场 (2)d 为电场中两点沿电场线方向的距离 (3)电场线(电场强度)的方向是电势降低最快的方向 2.在匀强电场中:如果CD AB //且CD AB =则有CD AB U U = 3.由于电场线与等势面垂直,而在匀强电场中,电场线相互平行,所以等势面也相互平行 一、磁现象和磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感应强度 1、 表示磁场强弱的物理量.是矢量. 2、 大小:B=F/Il (电流方向与磁感线垂直时的公式). 3、 方向:左手定则:是磁感线的切线方向;是小磁针N 极受力方向;是小磁针静止时N 极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向. 4、 单位:牛/安米,也叫特斯拉,国际单位制单位符号T . 5、 点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值. 6、 匀强磁场的磁感应强度处处相等. 7、 磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强 度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则. 三、几种常见的磁场

(完整版)高二物理电场磁场总结(超全)

电磁场总结 知识要点: 1.电荷 电荷守恒定律 点电荷 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间的相 互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷e =⨯-161019 .C .带电体电荷量等于元电荷的整数倍(Q=ne) ⑵使物体带电也叫起电.使物体带电的方法有三种:①摩擦起电 ②接触带电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律. 带电体的形状、大小及电荷分布状况对它们之间相互作用力的影响可以忽略不计时,这样的带电体就可以看做带电的点,叫做点电荷. 2.库仑定律 (1)公式 F K Q Q r =12 2 (真空中静止的两个点电荷) 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =12 2 ,其中比例常数K 叫静电力常量,K =⨯90109.N m C 22 ·。(F:点电荷间的作用力(N ), Q 1、Q 2:两点电荷 的电量(C),r :两点电荷间的距离(m ),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引) (2)库仑定律的适用条件是(1)真空,(2)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时,可以使用库仑定律,否则不能使用。 3.静电场 电场线 为了直观形象地描述电场中各点的强弱及方向,在电场中画出一系列曲线,曲线上各点的切线方向表示该点的场强方向,曲线的疏密表示电场的弱度。

电场线的特点:(1)始于正电荷 (或无穷远),终止负电荷(或无穷远);(2)任意两条电场线都不相交。 电场线只能描述电场的方向及定性地描述电场的强弱,并不是带电粒子在电场中的运动轨迹。带电粒子的运动轨迹是由带电粒子受到的合外力情况和初速度共同决定。 4.电场强度 点电荷的电场 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述.在电场中放入一个检验电荷q ,它所受到的电场力F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是q F E = ,E 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。(E:电场强度(N/C),是矢量,q :检验电荷的电量(C)) 电场强度E 的大小,方向是由电场本身决定的,是客观存在的,与检验电荷无关。与放入检验电荷的正、负,及带电量的多少均无关,不能认为E 与F 成正比,也不能认为E 与q 成反比。 点电荷场强的计算式E KQ r =2 ( r:源电荷到该位置的距离(m ),Q:源电荷的电量(C)) 要区别场强的定义式E F q =与点电荷场强的计算式E KQ r = 2 ,前者适用于任何电场,后者只适用于真空(或空气)中点电荷形成的电场。 5.电势能 电势 等势面 电势能由电荷在电场中的相对位置决定的能量叫电势能。 电势能具有相对性,通常取无穷远处或大地为电势能和零点。 由于电势能具有相对性,所以实际的应用意义并不大.而经常应用的是电势能的变化.电场力对电荷做功,电荷的电势能减速少,电荷克服电场力做功,电荷的电势能增加,电势能变化的数值等于电场力对电荷做功的数值,这常是判断电荷电势能如何变化的依据。电场力对电荷做功的计算公式:W q U =,此公式适用于任何电场。电场力做功与路径无关,由起始和终了位置的电势差决定. 电势是描述电场的能的性质的物理量 在电场中某位置放一个检验电荷q ,若它具有的电势能为ε,则比值εq 叫做该位置的电势. 电势也具有相对性,通常取离电场无穷远处或大地的电势为零电势(对同一电场,电势能及电势的零点选取是一致的)这样选取零电势点之后,可以得出正电荷形成

相关文档
最新文档