分数阶微积分的定义

分数阶微积分的定义
分数阶微积分的定义

分数阶微积分的定义

分数阶微积分的研究对象是分数阶微分和分数阶积分,分数阶微积分定义是整合和统一分数阶微分和分数阶积分得到的。首先介绍常用的三种分数阶微分定义,具体为:

(1)Grünwald -Letnikov 分数阶微分定义

若()f t 函数在区间[,]a t 存在1m +阶连续导数,当0α>时,

m 至少取到[]α,则其次数为(1)m m αα≤<+的分数阶微分定义为:

[()/]

()lim ()t a h a

t i h i D f t h

f t ih αα

αω--→==-∑

(2.1)

其中,α表示阶次,h 为采样步长,a 表示初始时间,[]表示取整,

= (-1)i i i ααω?? ???

是多项式系数,(1)(2)(1)

=

!

i i i ααααα??---+ ???

,我们可以用以下

递推公式直接求出该系数:

01+11,1,1,2,...,i i i n i α

αααωωω-??==-= ???

(2.2)

进一步对式(2.1)求极限,可得到其详细定义:

0,0

()lim ()()()1

()()(1)(1)a t h nh t a

i i m t m a i D f t h f t ih i f a t a t f d i i α

α

αααξξξαα-→=--+-=??

=- ???

-=+-Γ-++Γ-+∑? (2.3)

其中,()Γ?为欧拉gamma 函数,10

()t z z e t dt ∞--Γ=?,当R α∈,上述定义也称为Grünwald -Letnikov 分数阶微积分定义。

若:()=0i f t ,,q p R ∈,则微分算子D 满足式(2.4):

(2.4)

(2)Riemann -Liouville 分数阶微分定义 对于1,m m m N α-<<∈,有

11()

()()()m t

a t m

m a d f D f t d m dt t α

αττατ-+=

Γ--?

(2.5)

其中,当R α∈,上述定义也称为Riemann -Liouville 分数阶微积分定义。 通常情况下,为了方便使用Riemann -Liouville 分数阶微积分定义,要对其取拉普拉斯变换,假设()F s 表示()f s 的原函数,则式(2.5)经过拉普拉斯变换

+(())()q p q p a

t a t a t D D f t D f t =

后的结果如下:

{}1

100

()()()|m k a t

a t t k L D f t s F s D f t αα

α+---===-∑

(2.6)

在零初始条件下,上式的结果变为:

{}0()()t L D f t s F s αα=

(2.7)

进一步由式(2.7)得到α阶微积分算子的传递函数表示为:

(2.8)

(3)Caputo 分数阶微分定义

在工程实际中,不能用物理含义诠释的数学概念是不能应用于实际的,所以,在针对实际问题研究分数阶微积分时,我们需要着重关注它能与实际应用相接轨的部分,这正是分数阶Riemann -Liouville 微分定义的不足。如式(2.5)尽管在初始条件下具备数学理论层面的可解释性,但不具备实际工程上的物理意义可解释性[65],正因为如此,于是就有了Caputo 分数阶微分定义,其形式为:

11()

(),(1)()()m t a t m

a f D f t d m m m t α

ατταατ+-=

-<<Γ--? (2.9)

同理,当R α∈,上述定义也称为Caputo 分数阶微积分定义,该定义也有对应的拉普拉斯变换,其形式为:

{}1

1

00()()()[]k m k a t k

t k d f t L D f t s F s s

dt

α

α

α+---===-∑ (3.1)

其次,分数阶积分定义为:

1

1==

()()()a t t

a t a

I D t f d ααατττα---Γ?R α+∈() (3.2)

其中,I 定义为积分符号。

1()H s s α

=

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

微积分在实际中的应用

微积分在实际中的应用 一、微积分的发明历程 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。微积分是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。微分学包括求导的运算,是一套关于变化的理论。它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。 二、微积分的思想 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述, 与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。公元3世纪,刘徽在《九章算术》中

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

高等数学在实际生活中的应用

高等数学在实际生活中的应用 在学习高数之前,总是听学长、学姐提起,高数十分难学,我对高数的印象一直都是:高数是一门特别难、特别高深的学科。但在学习了高等数学之后,我发现了数学的美,同时我发现在实际生活中也时常可以看高数的身影。 高等数学在实际生活中的应用十分广泛,而且也特别有趣。我就简单的举几个生活中常见的,我所发现的高等数学在生活中的运用的例子分析一下。 首先,我发现在支付宝当中,有一个小功能,叫做蚂蚁森林,这个功能是模拟出了一颗树苗,当人们在生活中做出了一些绿色、低碳的行为时,对用户发放绿色能量进行奖励,当用户的绿色能量积累到一定的值时,支付宝模拟出的小树苗就会长成一颗大树,用户可以通过兑换,将这颗模拟出来的小树(电子数据)兑换成为一颗真实的、种植在沙漠里的树木,现在可以兑换的树木类型越来越丰富了,有梭梭树、沙柳、樟子松、胡杨树等一些树苗。 这个时候我就发现,不同的地区的树苗不尽相同,而且,肯定不同的树木类型各自的水土保持能力也不尽相同,因此,在什么地区选择什么样的树木类型、分别种植在哪里,可以起到最好的水土保持功能以及,每平方米需要种植几颗树苗,我相信,这些问题都离不开高等数学进行周密的计算。 首先,我们需要认真计算防护林需要种植多大面积、到底种植在哪里可以起到最佳的水土保持作用,我们需要了解到风沙的源地与我

们需要保护的地区的距离,同时量化考虑风沙的强度,将不同的树苗类型的水土保持力以及他们的防风沙能力量化考虑。我们所了解到的资料很少,因此只能做一下简单的模型的建立,以及一些较为简单的分析。当然,这只是我的个人想法,很不成熟,也很可能有错误。我是这样考虑的,比如:我们设距离风沙源地越远,风沙程度越弱,当风沙强度吹到我们所居住的地区时即为0,风沙的总强度为F,风沙源地与我们所居住地区的距离为f。因此可以得出结论,距离风沙源地越远,所需要的防护林面积就越小,设防护林种植地与风沙源地之间的距离为x,设所需要的防护林面积为y,同时将不同的树苗类型的水土保持能力量化:当种植了梭梭树之后,其每平米的水土保持力即可以阻挡的风沙的程度为a,沙柳为b,樟子松为c,胡杨树则为d。这时我们可以相应的依据量化关系列出一个方程式来:y=(F - F/f*x)/a(其中的a是指当所种的防护林是梭梭树时的方程式,相应的,当我们分析的是其他的树木,沙柳、樟子松以及胡杨树等,我们则可以将a替换为b、c以及d)。 根据上述所列的方程式,当我们了解了各种类型的树木的水土保持能力以及他们的防风沙的能力时,我们可以代入上述的方程式中进行计算,计算当距离风沙源地的距离不同时,所需要种植的防护林的面积也不尽相同。同时,我们可以分析得出,当x趋于无限小或者无穷大时,即防护林的种植地距离风沙源地极近或者极远时,这个方程式就转换为了一个极限问题的研究。 如果我们可以再多收集一些资料,具体了解到风沙强度与距离远

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

分数阶微积分发展现状及展望教学文稿

分数阶微积分发展现状及展望 在数学领域中,大体分为五种研究方向:基础数学,应用数学,计 算数学,概率论与数理统计,统计学与控制论。这五个方向对数学在当 代的发展都有不可或缺的作用。从研究内容来讲,方程、算子、群论、 图论、代数、几何等等都是数学领域重要的研究对象。作为基础数学专 业分数阶微分方程方向的博士生,本文将从分数阶微分方程的发展的历 史及现状、本人对分数阶微分方程未来发展的看法来介绍分数阶微分的 基本知识。 (一)、发展历史及现状 牛顿和莱布尼兹发明的微积分是现代数学与古典数学的分水岭。分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有了比较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到一些问题,如:需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;因材料或外界条件的微小改变就需要构造新的模型等等。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 对大多数研究人员和工程师而言,分数阶微积分也许还是比较陌生的,但它实际上早在300多年前就被提出。1695年9月,洛必达 (L’Hospital)在给莱布尼兹的著名信件中就写到“对于简单的线性函数 f(x)=x,如果函数导数次数为分数而不是整数那会怎样”。这是公认的第一次提及分数阶微分。1832年,刘维尔(Liouville)成功的应用了自己提出的分数阶导数的定义,解决了势理论问题。之后刘维尔发表的一系列文 章使他成为分数阶微积分理论的实际级创始人。1974年,Oldham与Spanier出版了第一本关于分数阶微积分理论的专著。 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,但是从近几十年,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内

多元函数微分学及其应用

第8章 多元函数微分学及其应用 参考解答 1、设22 , y f x y x y x ??+=- ??? ,求(),f x y ,(),f x y xy -。 解:()()()()2 21, 1y y x y x f x y x y x y x y x y y x x y x - -??+=+-=+=+ ?+? ? + ,故得 ()2 1,1y f x y x y -=+,()()21,1xy f x y xy x y xy --=-+ 2、求下列各极限: 2242222 2220000 cos sin 1(1) lim lim lim sin 204x r r y x y r r x y r θθθ→→→→===+ 注意:在利用极坐标变换cos , sin x r y r θθ==来求极限时,θ也是变量。本题中,0r →时,2r 为无穷小量,而2 sin 2θ为有界变量,故所求极限为零。 ()00sin sin (2) lim lim 1x t y a xy t xy t →→→== 3、证明极限2 2400 lim x y xy x y →→+不存在。 证明:当2 y kx =时,()2242,1xy k f x y x y k ==++,故2 22420 lim 1y kx x xy k x y k =→=++与k 有关。可见,(),x y 沿不同的路径趋于()0,0时,函数极限不同,故极限不存在。(两路径判别法) 4、讨论下列函数在()0,0点处的连续性: (1)()()()222222 22 ln , 0 ,0, 0 x y x y x y f x y x y ?+++≠?=?+=?? 解: ()() ()()() ()()()2 222,0,0,0,0 lim ,lim ln lim ln 00,0x y x y t f x y x y x y t t f →→→= ++=== 故原函数在()0,0点处连续。

分数阶微分方程_课件

分数阶微分方程 一、 预备知识 1、 分数阶微积分经典定义回顾 作为分数阶微积分方程的基础,本书在第二章中对分数阶微积分的定义及性质做了系统的介绍,为了接下来讨论的需要,我们首先对其进行一个简要的回顾。 (1)分数阶微积分的主要思想 如上图所示,分数阶微积分的主要思想是推广经典的整数阶微积分,从而将微积分的概念延拓到整个实数轴,甚至是整个复平面。但由于延拓的方法多种多样,因而根据不同的需求人们给出了分数阶微积分的不同定义方式。然而这些定义方式不仅只能针对某些特定条件下的函数给出,而且只能满足人们的某些特定需求,迄今为止,人们仍然没能给出分数阶微积分的一个统一的定义, 这对分数阶微积分的研究与应用造成了一定的困难。 1、分数阶微分的定义 为了满足实际需要,下面我们试图从形式上对分数阶微积分给出一种统一的表达式。 分数阶微积分的主要思想是推广经典的累次微积分,所有推广方法的共同目标是以非整数参数p 取代经典微积分符号中的整数参数n ,实际上,任意的n 阶微分都可以看成是一列一阶微分的叠加: ()()n n n d f t d d d f t dt dt dt dt = (1) 由此,我们可以给出一种在很多实际应用中十分重要的分数阶微积分的推广方 式。首先,我们假设已有一种合适的推广方式来将一阶微分推广为α(01α≤≤) 阶微分,即d D dt α→是可实现的。那么类似地可得到(1)的推广式为: ()()n n D f t D D D f t αααα= (2) 这种推广方式最初是由..K S Miller 和.B Ross 提出来的,其中D α采用的是R L -分数阶微分定义,他们称之为序列分数阶微分。序列分数阶微分的其他形式可以通过将D α替换为G L -分数阶微分、Caputo 分数阶微分或其他任意形式

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

分数阶微积分发展现状及展望讲课讲稿

精品文档 分数阶微积分发展现状及展望 在数学领域中,大体分为五种研究方向:基础数学,应用数学,计算数学,概率论与数理统计,统计学与控制论。这五个方向对数学在当代的发展都有不可或缺的作用。从研究内容来讲,方程、算子、群论、图论、代数、几何等等都是数学领域重要的研究对象。作为基础数学专业分数阶微分方程方向的博士生,本文将从分数阶微分方程的发展的历史及现状、本人对分数阶微分方程未来发展的看法来介绍分数阶微分的基本知识。 (一)、发展历史及现状 牛顿和莱布尼兹发明的微积分是现代数学与古典数学的分水岭。分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有了比较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到一些问题,如:需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件;因材料或外界条件的微小改变就需要构造新的模型等等。基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 对大多数研究人员和工程师而言,分数阶微积分也许还是比较陌生的,但它实际上早在300多年前就被提出。1695年9月,洛必达(L’Hospital)在给莱布尼兹的著名信件中就写到“对于简单的线性函数f(x)=x,如果函数导数次数为分数而不是整数那会怎样”。这是公认的第一次提及分数阶微分。1832年,刘维尔(Liouville)成功的应用了自己提出的分数阶导数的定义,解决了势理论问题。之后刘维尔发表的一系列文章使他成为分数阶微积分 精品文档

《数学分析》多元函数微分学

第四章多元函数微分学一、本章知识脉络框图

二、本章重点及难点 本章需要重点掌握以下几个方面容: ● 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数 与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor 公式. ● 隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换. ● 几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线. ● 极值问题(必要条件与充分条件),条件极值与Lagrange 乘数法. 三、本章的基本知识要点 (一)平面点集与多元函数 1.任意一点A 与任意点集E 的关系. 1) 点. 若存在点A 的某邻域()U A ,使得()U A E ?,则称点A 是点集E 的点。 2) 外点. 若存在点A 的某邻域()U A ,使得()U A E ?=?,则称点A 是点集E 的外点。 3) 界点(边界点). 若在点A 的任何邻域既含有属于E 得的点,又含有不属于E 的点,则称点A 是点集E 的界点。 4) 聚点. 若在点A 的任何空心邻域()o U A 部都含有E 中的点,则称点A 是点集E 的 聚点。 5) 孤立点. 若点A E ∈,但不是E 的聚点,则称点A 是点集E 的孤立点。 2. 几种特殊的平面点集. 1) 开集. 若平面点集E 所属的每一点都是E 的点,则称E 为开集。 2)闭集. 若平面点集E 的所有聚点都属于E ,则称E 为闭集。 3) 开域. 若非空开集E 具有连通性,即E 中任意两点之间都可用一条完全含于E 得有限折线相连接,则称E 为开域。 4)闭域. 开域连同其边界所成的点集称为闭域。 5)区域. 开域、闭域或者开域连同某一部分界点所成的点集,统称为区域。 3.2 R 上的完备性定理. 1) 点列收敛定义:设{}2 n P R ?为平面点列,2 0P R ∈为一固定点。若对任给的正数ε,存在正整数N ,使得当n N >时,有()0,n P U P ε∈,则称点列{}n P 收敛于点0P ,记作 0lim n n P P →∞ = 或 ()0,n P P n →→∞.

分数阶微积分的性质

分数阶微积分的性质 根据上述三种分数阶微积分的定义,可以得到分数阶微积分一些性质如下 [66] : (1) 记忆属性。当t 在时刻时,函数()f t 的分数阶微分值由初始时刻到t 时 刻的所有时刻的函数值取值。 (2) 当1a t D β算子的1β是整数时,整数阶微积分和分数阶微积分二者为等 同关系,1β为任意阶时,整数阶微积分被包含在分数阶微积分内。 (3) 分数阶微积分算子1a t D β是线性的,符合线性系统中的齐次特性和迭 加特性,即对任意常数,a b 均满足: 1110 00[()()]()()t t t D af t bg t a D f t b D g t βββ+=+ (4) 解析函数()f t 分数阶导数10()t D f t β对t 和a 都是可以解析的。 2.4 分数阶系统的模型描述 实际生活中,大多数的对象的内在特性都能通过整数阶微分方程的形式来表征,比如物理特性、化学特性等。但往往存在一些特别的对象其特性无法靠整数阶微分方程精确表征,但分数阶次的微分方程刚好能考虑到整数阶次微分方程所忽略的特性,所以,用分数阶微分方程描述的系统,其内在特性反应更真实、更全面。 一个典型的单输入单输出分数阶线性系统的微分方程可用如下形式来表示: 3123 1 2 123122()()()()=()()()() m n m n a D y t a D y t a D y t a D y t b D u t b D u t b D u t b D u t ααααββββ+++++++ + (2.10) 其中,(1,2, ,),(1,2, ,)i j a i m b j n ==分别表示输出和输入相应的系数, 12m ααα<<<,12n βββ<<<分别表示输出和输入分数阶的阶次,()() u t y t 、分别表示系统的输入和输出。 结合前面的式(2.6)和式(2.10)对系统进行拉普拉斯变换,得到系统的传递函数模型为: 121 2 1212()n m n m b s b s b s G s a s a s a s βββααα++=+++ (2.11) 若(1,2, ,)i i i m αα==,(1,2, ,)i i i n ββ==,该系统可称为“同源次”分 数阶系统,则上式进一步可表示为: 11 ()n j j j m i i i b s G s a s β α === ∑∑ (2.12)

关于高等数学在实际生活中的应用

高等数学知识在实际生活中的应用 一、数学建模的应用 数学建模的一般方法是理论分析的方法,即根据客观事物本身的性质,分析因果关系,在适当的假设下用数学工具去描述其数量特征。 (一)数学建模的一般方法和步骤 (1)了解问题,明确目的。在建模前要对实际问题的背景有深刻的了解,进行全面的、深入细致的观察。明确所要解决问题的目的和要求,并按要求收集必要的数据。 (2)对问题进行简化和假设。一般地,一个问题是复杂的,涉及的方面较多,不可能考虑到所有的因素,这就要求我们在明确目的、掌握资料的基础上抓住主要矛盾,舍去一些次要因素,对问题进行适当的简化,提出几条合理的假设。不同的简化和假设,有可能得出不同的模型和结果。 (3)建立模型。在所作简化和假设的基础上,选择适当的数学理论和方法建立数学模型。在保证精度的前提下应尽量用简单的数学方法,以便推广使用。 (4)对模型进行分析、检验和修改。建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性。一般地,一个模型要经过反复地修改才能成功。 (5)模型的应用。用已建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。 归纳起来,数学建模的主要步骤可以用下面的框图来说明: 问题假设建模分析应用 检验、修改 图1 (二)数学建模的范例

例 教室的墙壁上挂着一块黑板,学生距离墙壁多远,能够看得最清楚 这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得越近越好呢 先建立一个非常简单的模型: 模型1: 先对问题进行如下假设: 1.假设这是一个普通的教室(不是阶梯教室),黑板的上、下边缘在学生水平视线的上方a 米和b 处。 2.看黑板的清楚程度只与视角的大小有关。 设学生D 距黑板x 米,视黑板上、下边缘的的仰角分别为βα,。 由假设知: 所以,当且仅当ab x = 时,)tan(βα-最大,从而视角βα-最大。从结果我们可以 看出,最佳的座位既不在最前面,也不在最后面。坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况。 下面我们在原有模型的基础上,将问题复杂一 些。 模型2:设教室是一间阶梯教室,如图所示。为了简化计算我们将阶梯面看成一个斜面,与水平线为 x 面成γ角,以黑板所在直线为y 轴,以水平轴,建立坐标系(见图)。则直线O E 的方程(除原 点)为: 若学生D 距黑板的水平距离为x ,则D 在坐标系中的坐标为)tan ,(γx x ,

多元函数微分学复习(精简版)

高等数学下册复习提纲 第八章 多元函数微分学 本章知识点(按历年考试出现次数从高到低排列): 复合函数求导(☆☆☆☆☆) 条件极值---拉格朗日乘数法(☆☆☆☆) 无条件极值(☆☆☆☆) 曲面切平面、曲线切线(☆☆☆☆) 隐函数(组)求导(☆☆☆) 一阶偏导数、全微分计算(☆☆☆) 方向导数、梯度计算(☆☆) 重极限、累次极限计算(☆☆) 函数定义域求法(☆) 1. 多元复合函数高阶导数 例 设),,cos ,(sin y x e y x f z +=其中f 具有二阶连续偏导数,求x y z x z ?????2及. 解 y x e f x f x z +?'+?'=??31cos , y x y x y x y x e e f y f f e x e f y f y x z x y z ++++?''+-?''+'+?''+-?''=???=???])sin ([cos ])sin ([333231312 22析 1)明确函数的结构(树形图) 这里y x e w y v x u +===,cos ,sin ,那么复合之后z 是关于y x ,的二元函数.根据结构 图,可以知道:对x 的导数,有几条线通到“树梢”上的x ,结果中就应该有几项,而每一 项都是一条线上的函数对变量的导数或偏导数的乘积.简单的说就是,“按线相乘,分线相加”. 2)31,f f ''是),cos ,(sin ),,cos ,(sin 31y x y x e y x f e y x f ++''的简写形式,它们与z 的结构 相同,仍然是y x e y x +,cos ,sin 的函数.所以1f '对y 求导数为 z u v w x x y y

多元函数微积分学

第六章 多元函数微积分学 §6.1空间解析几何 习题 6-1 1.在空间直角坐标系中,指出下列各点所在的卦限: (2,2,3);(6,2,4);(1,5,3);(3,2,4);A B C D ------ (4,3,2); (2,3,1); (3,3,5); (1,2,3).E F G H ------ 2.写出坐标面上和坐标轴上的点的坐标的特征,并指出下列各点的位置: (2,0,3);(0,2,4);(0,0,3);(0,2,0);A B C D --- 3.求点(,,)M a b c 关于(1)各坐标面;(2)各坐标轴;(3)坐标原点的对称点的坐标. 4.求以点(1,3,2)O -为球心,且通过坐标原点的球面方程. 5.求与原点和0(2,3,4)M 的距离之比为1:2的点的全体所构成的曲面的方程,它表示怎样的曲面? 6. 指出下列方程组所表示的曲面 222(1)4x y z ++=; 7.指出下列方程组所表示的曲线: 22225(1)3 x y z x ?++=?=?; 22(2)20x y z +-=; 22(3)0x y -=; 22(4)0x y +=; 2 2(5)1916x y +=; 2 2 (6)125 y x -=; (7)0y -=;

2 (8)430y y -+=; 2(9)4x y =; 222(10)0z x y --=. §6.2 多元函数的基本概念 习题 6-2 1.设22,y f x y x y x ? ?+=- ?? ?,求(,)f x y . 2.已知函数(,,)w u v f u v w u w +=+,试求(,,)f x y x y xy -+. 3.求下列各函数的定义域: 2 (1)ln(21)z y x =-+ ; (2)z = 22(3)z = ; (4)z = ; (5)ln()z y x =- ; (6)u =4.求下列各极限 : 10 (1)y x y →→ (,)(0,0)(2) lim x y →; 22() (3)lim ()x y x y x y e -+→+∞→+∞ +; 222200 (4)lim x y x y x y →→+ ; 00(5)x y →→;22222200 1cos() (6)lim ()x y x y x y x y e →→-++. 5.证明下列极限不存在: 2222(,)(0,0)2(1)lim 32x y x y x y →-+; 1 00 (2)lim(1)x y x y xy +→→+ ; (,)(0,0)(3)lim x y →6.研究下列函数的连续性: 222(1)(,)2y x f x y y x +=-; 22(2)(,)ln()f x y xy x y =+.

我看微积分方程在实际生活中的应用

我看微积分方程在实际生活中的应用 冯天昊 (华中科技大学文华学院环境工程100205021112) 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分在实际生活中无处不在,可以说和我们的生活密切相关。微积分的应用可以体现在生活中很多不同的方面。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 首先,先介绍一下微积分。微积分是研究函数的微分、积分以及有关概念和应用的数学分支,是建立在实数、函数和极限的基础上的。极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用,特别是计算机的发明更有助于这些应用的不断发展。微积分学是微分学和积分学的总称。牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。微积分是为了解决变量的瞬时变化率而存在的。从数学的角度讲,是研究变量在函数中的作用。从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。“变”这个字是微积分最大的奥义。因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。 微积分的基本内容研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。微分学的主要内容包括:极限理论、导数、微分等。积分学的主要内容包括:定积分、不定积分等。微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。 数学的价值不仅在于掌握知识,而且数字是解决生活中世纪问题的重要工具,并能促使人类智慧的进步。通过数学不断发展,改变了人们的观察能力,思维能力,分析能力以及个人素质等,以更好的思维方式知道行动,能适应当前发展迅速的新社会,新形势。本文将介个微积分在生活中的多方面应用,对微积分只是进行深入探索。 在现实生活中,我们身边的一切事物都能为数学研究提供服务,实际上,微积分本身就存在于生活中的各项事物中,只有不断深入挖掘,才能透过现象看本质,将抽象的数学付诸于具体事物中,也就是实现“具体——抽象——具体”的思维方式,以求不断进步,不断完善。 在物理中的应用: 究变力做功问题时;对于恒力做功,我们可以利用公式直接求出;但对于变力,我们不能利用公式;这种情况下,我们要借助于微积分,我们可以把位移无限细分,在每一个小位

多元函数微分学总结

`第八章多元函数微分学 8.1基本知识点要求 1.理解多元函数的概念,理解二元函数的几何意义. 2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4.理解方向导数与梯度的概念,并掌握其计算方法. 5.熟练掌握多元复合函数一阶、二阶偏导数的求法. 6.了解隐函数存在定理,熟练掌握多元隐函数偏导数的求法. 7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,熟练掌握它们的方程的求法。 8.了解二元函数的二阶泰勒公式. 9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,掌握二元函数极值存在的充分条件,并会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 8.2基本题型及解题思路分析 题型1 与多元函数极限、连续、偏导数和可微的概念及其之间的关系有关的题 1.二元函数的极限与连续的概念及二元函数极限的计算。

(1)基本概念 ①二元函数极限的定义:设()(,)f P f x y =的定义域为D ,000(,)P x y 是D 的聚点.若?常数A ,对于?0ε>,总?0δ>,使得当0(,)(,)P x y D U P δ∈时,都有 ()(,)f P A f x y A ε-=-<成立,则称A 为函数(,)f x y 当00(,)(,)x y x y →时的极限,记作 000 (,)(,) lim (,)lim ()x y x y P P f x y A f P A →→==或。 ②二元函数的连续:设()(,)f P f x y =的定义域为D ,000(,)P x y 为D 的聚点,且0P D ∈.若 0000(,)(,) lim (,)(,)x y x y f x y f x y →=,则称(,)f x y 在点000(,)P x y 连续。 (2)关于二元函数极限的解题思路 注意:在二元函数0 lim ()P P f P A →=存在的定义中,0P P →方式任意,正是由于 这一点致使二元函数有与一元函数不一样的性态,在学习过程中注意比较、总结和体会二者之间的不同。 ① 证明二元函数的极限不存在:若0P P 以两种不同的方式趋于时,()f P 的极 限不同,则0 lim ()P P f P →一定不存在(见例1)。 ②求二元函数的极限:可以应用一元函数求极限方法中的适用部分求二元函数的极限,比如:极限的局部有界性、局部保号性、四则运算法则、夹逼准则、两个重要的极限、变量代换法则、等价无穷小代换、分子分母有理化、无穷小量与有界变量的乘积仍为无穷小量、连续性等(见例2) 例1证明:2 24 (,)xy f x y x y =+在原点0,0()的极限不存在。 【分析】观察分子、分母中变量,x y 的各次幂的特点,可考虑选择路径 2x ky =。 证明: 22 24242442000lim (,)lim lim 1y y y x ky x ky xy ky k f x y x y k y y k →→→=====+++,

相关文档
最新文档