若干q-差分方程的形式解及其应用

若干q-差分方程的形式解及其应用
若干q-差分方程的形式解及其应用

有限差分法及其应用

有限差分法及其应用 1有限差分法简介 有限差分法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方程将解域划分为差分网格,用有限个网络节点代替连续的求解域。有限差分法通过泰勒级数展开等方法,把控制方程中的导数用网格节点上的函数值得差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 2有限差分法的数学基础 有限差分法的数学基础是用差分代替微分,用差商代替微商而用差商代替微商的意义是用函数在某区域内的平均变化率来代替函数的真是变化率。而根据泰勒级数展开可以看出,用差商代替微商必然会带来阶段误差,相应的用差分方程代替微分方程也会带来误差,因此,在应用有限差分法进行计算的时候,必须注意差分方程的形式,建立方法及由此产生的误差。 3有限差分解题基本步骤 有限差分法的主要解题步骤如下: 1)建立微分方程 根据问题的性质选择计算区域,建立微分方程式,写出初始条件和边界条件。 2)构建差分格式 首先对求解域进行离散化,确定计算节点,选择网格布局,差分形式和步长;然后以有限差分代替无线微分,以差商代替微商,以差分方程代替微分方程及边界条件。 3)求解差分方程 差分方程通常是一组数量较多的线性代数方程,其求解方法主要包括两种:精确法和近似法。其中精确法又称直接发,主要包括矩阵法,高斯消元法及主元素消元法等;近似法又称间接法,以迭代法为主,主要包括直接迭代法,间接迭代法以及超松弛迭代法。4)精度分析和检验 对所得到的数值进行精度与收敛性分析和检验。 4商用有限差分软件简介 商用有限差分软件主要包括FLAC、UDEC/3DEC和PFC程序,其中,FLAC是一个基于显式有限差分法的连续介质程序,主要用来进行土质、岩石和其他材料的三维结构受力特性模拟和塑性流动分析;UDEC/3DEC是针对岩体不连续问题开发,用于模拟非连续介质在静,动态载荷作用下的反应;PFC是利用显式差分算法和离散元理论开发的微、细观力学程序,它是从介质的基本粒子结构的角度考虑介质的基本力学特性,并认为给定介质在不同应力条件下的基本特征主要取决于粒子之间接粗状态的变化,适用于研究粒状集合体的破裂和破裂发展问题,以及颗粒的流动(大位移)问题。

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

微分方程与差分方程详细讲解与例题

第七章 常微分方程与差分方程 常微分方程是高等数学中理论性和应用性都较强的一部分,是描述客观规律的一种重要方法,是处理物理、力学、几何等应用问题的一个重要工具,微分和积分的知识是研究微分方程的基础。微分方程作为考试的重点容,每年研究生考试均会考到。特别是微分方程的应用问题,既是重点,也是难点,在复习时必须有所突破。 【数学一大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性方程;伯努利(Bernoulli )方程;全微分方程;可用简单的变量代换求解的某些微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;欧拉(Euler )方程;微分方程的简单应用。 【数学二大纲容】常微分方程的基本概念;变量可分离的方程;齐次方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的一些简单应用。 【大纲要求】要理解微分方程的有关概念,如阶、解、通解、特解、定解条件等,掌握几类方程的解法:如变量可分离方程,齐次方程,一阶线性微分方程,伯努利方程,可降阶方程等。理解线性微分方程解的性质和解的结构,掌握求解常系数齐次线性方程的方法,掌握求解某些自由项的常系数非齐次线性方程的待定系数法。了解欧拉方程的概念,会求简单的欧拉方程。会用微分方程处理物理、力学、几何中的简单问题。 【考点分析】本章包括三个重点容: 1.常见的一阶、二阶微分方程求通解或特解。求解常微分方程重要的是判断方程为哪种类型,并记住解法的推导过程。 2.微分方程的应用问题,这是一个难点,也是重点。利用微分方程解决实际问题时,若是几何问题,要根据问题的几何特性建立微分方程。若是物理问题,要根据某些物理定律建立微分方程,也有些问题要利用微元法建立微分方程。 3.数学三要求掌握一阶常系数线性差分方程的求解方法,了解差分与差分方程及其通解与特解等概念,会用差分方程求解简单的经济应用问题。 【考点八十三】形如()()y f x g y '=的一阶微分方程称为变量可分离微分方程。可分离变量的微分方程的解题程序: 当()0,()()()() dy g y y f x g y f x dx g y '≠=? =时,然后左、右两端积分 (),()dy f x dx C g y =+?? 上式即为变量可分离微分方程的通解。其中,C 为任意常数,1 ()() dy g y g y ? 表示函数的一个原函数,()f x dx ?表示函数()f x 的一个原函数. 【例7.1】微分方程1+++='y x xy y 的通解为____________。

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

差分方程求解

例题:已知差分方程51 (2)(1)()(+1)+0.5()66 x k x k x k r k r k +-++=,其中r (k )=1,k ≥0,x (0)=1, x (1)=2。 (1) 试由迭代法求其全解的前5项; (2) 分别由古典法求其零输入解、零状态解,以及全解; (3) 用Z 变换法求解差分方程。 解:注:解题过程中出现的下标“zi ”和“zs ”分别表示零输入条件和零状态条件。 1. 迭代法 题目中给出的条件仅仅是零输入初始条件,进行迭代求解时的初始条件应该是全解初始条件。 (1) 零输入初始条件 本题已给出零输入时的两个初始条件x zi (0)=1,x zi (1)=2。 (2) 零状态初始条件 取k =-2时,则51 (0)(1)(2)(1)0.5(2)66x x x r r --+-=-+-,得x zs (0)=0; 取k =-1 时,则51 (1)(0)(1)(0)0.5(1)66 x x x r r -+-=+-,求得x zs (1)=1。 (3) 全解初始条件 x (0)= x zi (0)+ x zs (0)=1; x (1)= x zi (1)+ x zs (1)=3。 (4) 根据求出的全解x (0)和x (1),利用迭代法求解 取k =0时,则51(2)(1)(0)(1)0.5(0)66x x x r r -+=+,求得23(2)6x =; 取k =1时,则51(3)(2)(1)(2)0.5(1)66x x x r r -+=+,求得151 (3)36x =; 取k =2时,则51(4)(3)(2)(3)0.5(2)66x x x r r -+=+,求得941 (4)216 x =。 2. 古典法 (1) 零输入解 令输入为零,则得齐次方程 51 (2)(1)()066 x k x k x k +-++= (a) 根据差分方程定义的算子()()n d x k x k n =+,可得它的特征方程251 066 d d -+= 求得特征根为: 112d = ,21 3 d =

分歧理论及其应用

现代电路理论 -------分歧理论及其应用

分歧理论及其应用 引言:近二、三十年来,分歧现象(bifurcation phenomena)及理论(bifurcation theory)在数学及自然科学上受到格外的重视及研究。随着科学技术的迅速发展,非线性问题大量出现于自然科学、工程技术乃至社会科学的许多领域,成为当前科学研究的热点。分歧现象是普遍存在的,是非线性系统的重要特点之一,它普遍地存在于数学、物理学、化学、经济学、社会学、生态学等各个领域,像数学中的解不唯一、物理学中的相变、工程中的静力与动力失稳、经济学中的马太效应、电子学中的周期振荡等等,都可以从分歧的角度去研究[1]。 1.分歧理论概述 分歧理论是近半个世纪以来逐步形成的有重要应用价值的数学分支,它反映的是流的拓扑结构随参数的变化而引起的质的变异,不论在数学理论上还是在现实应用中都具有极为重要的意义。近半个世纪以来,分歧理论的研究一直受到人们的广泛关注,也得到了很大的发展。国际电力界从20世纪80年代开始研究和应用分歧理论,在电压稳定、轴系扭振以及低频振荡的研究中均取得了新的突破。在上个世纪七十年代初,Crandall和Rabinowitz的两个基本分歧定理是由隐函数定理证明的,至今在数学,生物,工程上广为应用[2]。 分歧的含义是:对于含参数的系统,当参数发生变动并经过某些临界值时,系统的定性性态(即其拓扑结构,例如平衡状态、解的数目、周期运动的数目以及稳定性等)发生突然变化的现象。从数学角度而言,分歧理论主要是研究非线性代数方程(微分方程、积分方程、差分方程等)中参数对解的定性性质的影响,其中参数与解的稳定性、周期性、平衡位置等基本性质的关系是研究重点。 2. 分歧的定义 首先我们来看看一个经常可见到的现象。拿一根细长的金属棒。在棒的两头向内稍稍用力,此时棒不会弯曲。当力量够大时,则棒会弯起来。再继续加大压力,棒可能会弯了两弯。其变化如下图:

差分方程及其应用

差分方程及其应用 在经济与管理及其它实际问题中,许多数据都是以等间隔时间周期统计的。例如,银行中的定期存款是按所设定的时间等间隔计息,外贸出口额按月统计,国民收入按年统计,产品的产量按月统计等等。这些量是变量,通常称这类变量为离散型变量。描述离散型变量之间的关系的数学模型成为离散型模型。对取值是离散化的经济变量,差分方程是研究他们之间变化规律的有效方法。 本章介绍差分方程的基本概念、解的基本定理及其解法,与微分方程的基本概念、解的基本定理及其解法非常类似,可对照微分方程的知识学习本章内容。 §1 基本概念 线性差分方程解的基本定理 一、 基本概念 1、函数的差分 对离散型变量,差分是一个重要概念。下面给出差分的定义。 设自变量t 取离散的等间隔整数值:,,,, 210±±=t t y 是t 的函数,记作)(t f y t =。显然,t y 的取值是一个序列。当自变量由t 改变到1+t 时,相应的函值之差称为函数 )(t f y t =在t 的一阶差分,记作t y ?,即 )()1(1t f t f y y y t t t -+=-=+?。 由于函数)(t f y t =的函数值是一个序列,按一阶差分的定义,差分就是序列的相邻值之差。当函数)(t f y t =的一阶差分为正值时,表明序列是增加的,而且其值越大,表明序列增加得越快;当一阶差分为负值时,表明序列是减少的。 例如:设某公司经营一种商品,第t 月初的库存量是)(t R ,第t 月调进和销出这种商品的数量分别是)(t P 和)(t Q ,则下月月初,即第1+t 月月初的库存量)1(+t R 应是 )()()()1(t Q t P t R t R -+=+, 若将上式写作 )()()()1(t Q t P t R t R -=-+, 则等式两端就是相邻两月库存量的改变量。若记 ))()1()(t R t R t R -+=?, 并将理解为库存量)(t R 是时间t 的函数,则称上式为库存量函数)(t R 在t 时刻(此处t 以月为单位)的差分。 按一阶差分的定义方式,我们可以定义函数的高阶差分。函数)(t f y t =在t 的一阶差

差分方程方法

第四章 差分方程方法 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。 4.1常系数线性差分方程 4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=+?+++---k n k n n n x a x a x a x (4.1) 其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。对应的代数方程 02 211=++++--k k k k a a a λ λλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根 设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为 n k k n n n c c c x λλλ+++= 2211, 其中k c c c ,,,21 为任意常数,且当给定初始条件 () 0 i i x λ= ()k i ,,2,1 = (4.3) 时,可以唯一确定一个特解。 2. 特征根为重根 设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ 重数分别为 l m m m ,,,21 且k m l i i =∑=1 则差分方程(4.1)的通解为

差分方程方法

第三章 差分方程方法 3.1 差分方程的平衡点及其稳定性 设有未知序列{}n x ,称 0),,,;(1=++k n n n x x x n F (3.1) 为k 阶差分方程。若有)(n x x n =,满足 0))(,),1(),(;(=++k n x n x n x n F 则称)(n x x n =是差分方程(3.1)的解,包含k 个任意常数的解称为(3.1)的通解, 110,,,-k x x x 为已知时,称其为(3.1)的初始条件,通解中的任意常数都由初始条件确定后 的解称为(3.1)的特解。 形如 )()()(11n f x n a x n a x n k k n k n =+++-++ (3.2) 的差分方程,称为k 阶线性差分方程。)(n a i 为已知系数,且0)(≠n a k 。 若差分方程(3.2)中的0)(=n f ,则称差分方程(3.2)为k 阶齐次线性差分方程,否则称为k 阶非齐次线性差分方程。 若有常数α是差分方程(3.1)的解,即0),,,;(=ααα n F ,则称α是差分方程(3.1)的平衡点,又对差分方程(3.1)的任意由初始条件确定的解)(n x x n =,都有 )(∞→→n x n α,则称这个平衡点α是稳定的。 若110,,,-k x x x 已知,则形如),,,;(11-+++=k n n n k n x x x n g x 的差分方程的解可以在计算机上实现。下面给出理论上需要的一些特殊差分方程的解。 一阶常系数线性差分方程 b x x n n =++α1, (3.3) (其中b ,α为常数,且0,1-≠α)的通解为 )1()(++-=a b C x n n α (3.4) 易知)1(+αb 是方程(3.3)的平衡点,由(3.4)式知,当且仅当1<α时,)1(+αb 是稳定的平衡点。

差分方程模型的理论和方法

第九章 差分方程模型的理论和方法 引言 1、差分方程: 差分方程反映的是关于离散变量的取值与变化规律。通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。 差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。通过求出和分析方程的解,或者分析得到方程解的 特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。 2、应用:差分方程模型有着广泛的应用。实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。差分方程模型有着非常广泛的实际背景。在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。 3、差分方程建模: 在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而 建立起差分方程。或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。在后面我们所举的实际例子中,这方面的内容应当重点体会。 差分方程模型作为一种重要的数学模型,对它的应用也应当遵从一般的数学建模的理论与方法原则。同时注意与其它数学模型方法结合起来使用,因为一方面建立差分方程模型所用的数量、等式关系的建立都需要其他的数学分析方式来进行;另一方面,由差分方程获得的结果有可以进一步进行优化分析、满意度分析、分类分析、相关分析等等。 第一节 差分方程的基本知识 一、 基本概念 1、 差分算子 设数列{}n x ,定义差分算子n n n x x x -=??+1:为n x 在n 处的向前差分。 而1--=?n n n x x x 为n x 在n 处的向后差分。 以后我们都是指向前差分。 可见n x ?是n 的函数。从而可以进一步定义n x ?的差分: n n x x 2)(?=?? 称之为在n 处的二阶差分,它反映的是的增量的增量。 类似可定义在n 处的k 阶差分为:

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ )...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

差分方程在经济学中的应用应用数学

本科毕业论文(设计) 论文题目:差分方程在经济学中的应用 学生姓名:雷晶 学号: 1004970226 专业:数学与应用数学 班级:数学1002班 指导老师:舒蕊艳 完成日期:2014年5月20日

差分方程在经济学中的应用 内容摘要 本文叙述了研究差分方程的意义和背景、差分方程的定义、常见的解法以及差分方程相关模型,重点介绍差分方程经济学中的应用模型—筹措教育经费模型,包括问题的提出、模型举例和分析、提出假设、模型建立、模型求解、结果分析等等步骤对模型进行了更深层次的分析,做了进一步的推广. 本文所介绍的筹措教育经费模型主要研究的是子女的教育费用,假定某家庭从孩子m岁起,每月拿出一部分钱存进银行,用于投资子女的大学教育,并计划n年后支出一些,直到孩子大学毕业,全部用完账户中的资金. 差分方程的理论研究近十年来发展十分迅速,尤其是在经济领域,帮助人们解决了很多实际问题,筹措教育经费模型的建立为广大中国家庭子女教育的费用问题提供了明确的解决方法,是差分方程理论最贴近实际的模型之一. 关键词:差分方程存款模型经济增长模型筹措教育经费模型

, . . , , , , . a . ’s . , ’s ’s m n , . , . a . a ’s . 目录 一、绪论 (1) (一)研究差分方程在经济学中的应用的目的意义 (1) (二)研究背景 (2) 二、研究的理论基础 (2) (一)差分 (2) (二)差分方程 (3) (三)差分方程的解 (4) (四)特征根法 (4)

三、差分方程的经济应用模型简介 (5) (一)贷款模型 (5) (二)存款模型 (6) (三)乘数-加速数模型 (7) (四)哈罗德-多马经济增长模型 (10) (五)投入产出模型 (11) (六)筹措教育经费模型 (12) 四、总结 (14) 参考文献 (16)

差分方程基本概念和方法

差分方程基本概念和方法 考察定义在整数集上的函数,(),,2,1,0,1,2, n x f n n ==-- 函数()n x f n =在n 时刻的一阶差分定义为: 1(1)()n n n x x x f n f n ?+=-=+- 函数()n x f n =在n 时刻的二阶差分定义为一阶差分的差分: 21212n n n n n n x x x x x x ???+++=-=-+ 同理可依次定义k 阶差分 k n x ? 定义1.含有自变量n ,未知函数n x 以及n x 的差分2,, n n x x ??的函数方程, 称为常 差分方程,简称为差分方程。出现在差分方程中的差分的最高阶数,称为差分方 程的阶。 k 阶差分方程的一般形式为 (,,, ,)0k n n n F n x x x ??= 其中(,,,,)k n n n F n x x x ??为,,, k n n n n x x x ??的已知函数,且至少k n x ?要在式中出 现。 定义2.含有自变量n 和两个或两个以上函数值1,, n n x x +的函数方程,称为(常) 差分方程,出现在差分方程中的未知函数下标的最大差,称为差分方程的阶。 k 阶差分方程的一般形式为 1(,,, ,)0n n n k F n x x x ++= 其中1(,,,,)n n n k F n x x x ++为1,,, n n n k n x x x ++的已知函数,且n x 和n k x +要在式中一定 要出现。 定义3.如果将已知函数()n x n ?=代入上述差分方程,使其对0,1,2, n =成为恒 等式,则称()n x n ?=为差分方程的解。如果差分方程的解中含有k 个独立的任意

差分方程模型在交通流计算中的应用研究_周林华

收稿日期:2013-11-05 基金项目:国家自然科学基金(51278221,51378076) 作者简介:周林华(1981-),男,博士,E-mail :zhoulh@https://www.360docs.net/doc/873860166.html, 长春理工大学学报(自然科学版) Journal of Changchun University of Science and Technology (Natural Science Edition ) Vol.37No.2Apr.2014 第37卷第2期2014年4月 差分方程模型在交通流计算中的应用研究 周林华,胡宏华,梁辰,刘琪,李军,李延忠 (长春理工大学 理学院,长春130022) 摘 要:针对交通流计算中车道被占对道路通行能力的影响以及所导致的车辆排队长度等问题,本文给出了一种能快速计 算车辆排队长度的数学模型,且以此可以分析不同车道被占对道路实际通行能力的影响。首先明确道路实际通行能力的定义,并将车道被占后的时间离散化,然后根据车辆流动数量关系建立车辆排队长度的差分方程计算模型。通过实际视频资料的验证,利用差分方程模型计算的结果能很好地与实际情况相吻合。该研究结果能用于车道被占后,为上游路口车辆放行数量与放行方向等交通信号控制提供预判依据。关键词:交通流;差分方程;道路通行能力中图分类号: U491.1+12 文献标识码:A 文章编号:1672-9870(2014)02-0117-07 Research on Difference Equation Model in Traffic Flow Calculation ZHOU Linhua ,HU Honghua ,LIANG Chen ,LIU Qi ,LI Jun ,LI Yanzhong (School of Science ,Changchun University of Science and Technology ,Changchun 130022) Abstract :In order to analyze the influence of an accident on the road capacity and calculate the vehicle queue length ,a mathematic model was provided ,which could quickly obtain the vehicle queue length.Firstly ,the definition of the actual road capacity is made sure ,and after the lane being occupied the time discretization is got ,then a difference equation model was proposed based on the quantitative relation of the vehicle.The feasibility of the difference equation model is verified by actual video data.The results could be used to provide basis of predictions of the vehicles release quantity and orientation in the upstream intersection when the lanes are occupied.Key words :traffic flow ;difference equation ;road capacity 由于城市化进程的加快,交通问题日趋严重,因 此对于交通流问题的正确了解与分析成为解决交通问题的关键。交通流问题理论是分析研究道路上行人和机动车辆(主要为汽车)在个别或成列行动中的规律,探讨车流流量、流速和密度之间的关系,以求减少交通时间的延误,事故的发生和提高道路交通设施使用效率的理论。目前对此研究的方法主要有概率论方法,流体力学方法和动力学方法等,其中动力学方法[1],即跟车理论,就是在交通流中追随前车的后车,假设其向前移动有某种规律性,据此可求得各车辆动力学状态的微分方程式。后两种方法使用较多,主要应用于道路服务水平与通行能力的评价,交通量与交通事故预测,交通信号控制和估算、消除 汽车排队长度等方面。 对道路实际通行能力给出了定义,然后利用差 分方程[2, 3] 建立了车辆排队长度的计算模型,进而可以讨论交通流问题中车道被占用对车辆排队长度的影响,为上游车辆放行数量与方向等交通信号控制提供预判依据;利用两个具体的视频材料对模型进行了验证分析,结果表明差分方程模型能很好的与实际情况吻合。 1 道路实际交通能力及车辆排队长度计算的数学建模 1.1道路实际通行能力 为了研究车道被占对道路实际通行能力的影

差分方程

1 设一阶采样离散控制系统的差分方程为 ()()()1c k bc k r k +-= 已知输入信号()k r k a =,初始条件为()00c =,求系统的输出响应()c k 。 解:对差分方程两边进行Z 变换,得 ()()()()0zC z zc bC z R z --= ()k z R z Z a z a ??==??- 代入初始条件()00c =,得: ()()() z C z z a z b = --= 1 z z a b z a z b ??-??---?? 查表得 ()()1 k k c k a b a b = -- 2. 求解差分方程 ()()()()2413x k x k x k k δ+-++= 已知()0x k =,0k ≤, ()1,000k k k δ=?=? ≠?, 解:对差分方程两端作z 变换,得 ()()()()()()2 2 014031z X z z x zx zX z zx X z ----+=???? 已知x (0)=0,将k =-1代入差分方程得 x (1) = 0 将x (0)=0,x (1) = 0代入z 变换式,得: ()()() 2 11 43 31X z z z z z = = -+-- ()() () 1 1 2 2 1 3 lim 1lim 343 43 k k z z z z x k z z z z z z --→→=-+--+-+ =1 0.50.53k --+? 3. 求差分方程 ()()()2 1.510.50f k f k f k -+-+=的解。已知初始条件为()0.5f T -=-, ()20.75f T -=。

差分方程模型的稳定性分析及其应用毕业设计论文

差分方程模型的稳定性分析及其应用The Stability Analysis and Application of the Differential Equation Model

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

全概率公式及其应用范文

全概率公式及其应用 (清华大学数学科学系 叶俊) 命题趋势: 即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求大家能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。 1. 全概率公式和Bayes 公式 概率论的一个重要内容是研究怎样从一些较简单事件概率的计算来推算较复杂事件的概率,全概率公式和Bayes 公式正好起到了这样的作用。对一个较复杂的事件A ,如果能找到一伴随A 发生的完备事件组 ,,21B B ,而计算各个i B 的概率与条件概率)| (i B A P 相对又要容易些,这时为了计算与事件A 有关的概率,可能需要 使用全概率公式和Bayes 公式。 背景:例如,在医疗诊断中, 中的哪一种,可用Bayes 完备事件组的理解:所有病因都知道,且没有并发症。 定义 称事件族 ,,21B B 为样本空间Ω的一个划分(也称 ,,21B B 为一个完备的事件组),如果满足)(j i B B j i ≠=φ 且Ω=∞ =i i B 1 。进而,如还有 ,,2,1,0)( =>i B P i 则称 ,,21B B 为样本空间Ω的一个正划分。 一般地,划分可用来表示按某种信息分成的不同情况的总和,若划分越细,则相应的信息更详尽。 定理1 (全概率公式) 设事件...,21B B 为样本空间Ω的一个正划分,则对任 有 )()()(1 i i i B A P B P A P ∑∞ == 定理 2 (Bayes 公式) 设 ,,21B B 为样本空间Ω的一个正划分,事件A 满足 则

差分方程xn+1 = xn ( p + xn

Advances in Applied Mathematics 应用数学进展, 2018, 7(11), 1402-1404 Published Online November 2018 in Hans. https://www.360docs.net/doc/873860166.html,/journal/aam https://https://www.360docs.net/doc/873860166.html,/10.12677/aam.2018.711163 Dynamics of the Difference Equation ()11n n n x =x p +x +? Shaogao Deng 1, Lijun Zhu 2* 1School of Mathematics, Southwest Jiaotong University, Chengdu Sichuan 2 School of Mathematics and Information Science, North Minzu University, Yinchuan Ningxia Received: Oct. 23rd , 2018; accepted: Nov. 13th , 2018; published: Nov. 20th , 2018 Abstract This paper considers the difference equation ()(),+1102n n n x =x p +x p n ?≥≥ with the initial values ,120>0x x >. The asymptotic stability of the positive solutions is proved under some assumptions. Keywords Difference Equation, Equilibrium Point, Asymptotic Stability 差分方程()11n+n n x =x p +x ?的动力学性质 邓绍高1,朱立军2* 1西南交通大学数学学院,四川 成都 2 北方民族大学数学与信息科学学院,宁夏 银川 收稿日期:2018年10月23日;录用日期:2018年11月13日;发布日期:2018年11月20日 摘 要 本文讨论了差分方程)(),+1102n n n x =x p +x p n ?≥≥的动力学性质,其中参数p 是非负数,初始值 ,120>0x x >。在一定的条件下,方程的正解的渐近稳定性得到了证明。 * 通讯作者。

相关文档
最新文档