激光散斑成像的研究进展

激光散斑成像的研究进展
激光散斑成像的研究进展

激光散斑成像的研究进展

摘要:事实上激光散斑成像在我们的生活中早就得到了广泛的应用、只是我们平常没有注意而已。例如在医学方面:利用激光散斑成像仪监测肠系膜上微循环血流时空响应特性,此发明一种利用激光散斑成像仪监测肠系膜上微循环血流时空响应特性的方法,包括光路和成像系统。光路由氦氖激光器发出的光束耦合到光纤束形成均匀扩散光束构成;成像系统由带CCD相机的立体显微镜、图像采集卡与图像采集控制软件、信号分析软件构成(1)。利用激光散斑成像监测光动力治疗的血管损伤效应,研究表明,通过对血管管径和血流速度的监测,激光散斑衬比成像技术可以用于评估光动力治疗过程中的肿瘤周围血管损伤效应(2)。在与环境相关的方面:近几年,研究出了一种先进的方法检测环境污染浓度的方法,提出了一种利用激光散斑和散斑照相技术的污染扩散非定常瞬时全场浓度测量的新方法。根据污染烟雾粒子成像、粒子散射、统计光学以及数字图像处理技术,从理论上详细论证了浓度场全场测量的原理和此方法测量的局限性,为进一步设计浓度场测量系统提供了参考依据(3)。当然激光散斑成像,主要是用在成像方面。特别是现代、随着照相技术的快速发展,激光散斑成像占据了越来越重要的地位。

关键词:激光散斑成像技术成像监测时空散斑效应外差探测信号引言:激光散斑技术由来已久,在牛顿的那个时代就已经开始被人们认识,那时牛顿就已经认识到“恒星闪烁”而“行星不闪烁”。随科学技术的快速发展,激光散斑得到了越来越重要的应用。是在成像方面,可以利用激光成像技术研究坐骨神经刺激时大老鼠躯体的感觉;在军事方面,有了合成孔径激光雷达监测激光散斑时空效应。

激光散斑的基础知识

对于激光散斑在很久以前人类就已经开始了研究。1730年牛顿已经注意到"恒星闪烁"而行星不闪烁,光源发出的光被随机介质散射在空间形成的一种斑纹。1960年世界出现了激光器,高度相干性的激光照在粗糙表面很容易看到这种图样,散斑携带大量有用信息。散斑在工程技术方面等各方面有广泛的应用。散斑的理论是统计光学的一部分,与光的相干理论在很多地方相似和相通。最初人们主要研究如何减弱散斑的影响,在研究的过程中人们发现散斑携带了大量的光束和光束所通过的物体大量信息。于是产生了许多的应用。例如用散光的对比度测量物体的粗糙度,利用散斑的动态情况测量物体的运动速度,利用散斑进行光学处理,甚至利用散斑验光等。

最初的激光散斑抓药用于防伪标识。激光防伪技术包括激光全息图像防伪标识、加密激光全息图像防伪标识和激光全息光刻防伪技术三方面。一、第一代激光防伪技术第一代激光防伪技术是激光模压全息图像防伪标识。全息照相是由美国科学(M · J· Buerger)在利用X射线拍摄晶体的原子结构照片时发现的,并与伽柏(D· Gaber)一起建立了全息照相理论:利用双光束干涉原理,令物光和另一个与物光相干的光束(参考光束)产生干涉图样即可把位相"合并"上去,从而用感光底片能同时记录下位相和振幅,就可以获得全息图像。但是,全息照相是根据干涉法原理拍摄的,须用高密度(分辨率)感光底片记录。由于普通光源单色性不好,相干性差,因而全息技术发展缓慢,很难拍出像样的全息图。(4)可惜激光散斑防伪在其一开始就有其先天的缺陷。.仅仅依靠制作技术的保密和控制来防,属于简单观察类防伪技术,其观察点主要是看是否是全息图象,其次是看图案是否符合公布的图案,但普通消费者只有在仔细对比时才可以分辨出两种不同版本的全息标识。没有防止防伪标识本身被再次利用的技术方法。没有防止附有防伪标识的包装被再次利用的技术方法。没有防止造假者利用收买、行贿等手段获得防伪标识的技术方法。

随着科学技术的发展,人类的进步。激光散斑成像在越来越多的领域的到广泛的应用,例如医学、环境、摄像等。

激光散斑成像的研究进展

医学方面的进展

(一)、在医学方面我们可以利用激光散斑成像技术监测脊髓血流。

脊髓血流动力学的变化一直是脊髓损伤研究中的热点。目前,常用的研究动物脊髓流动力学的方法存在着空间分辨率不够高或需加入外源性标记物、对脊髓组织有损伤等各种各样的缺陷。激光散斑成像技术自20 世纪80 年代Brier s 等人提出后逐渐被用于监测人的皮肤、眼底的血流分布等。最近,Dunn 等[1 ] 利用该技术成功地监测了脑局部缺血和皮层扩展性抑制模型中大鼠脑皮层的血流动态变化。激光散斑成像作为一种新的区域性流速监测技术,能够实现在无需扫描的条件下,以较高的空间分辨率(13 μm) 和时间分辨率(25 ms) 活体、动态、非接触地监测血流速度、血管管径和血流量的变化,获得血流动力学的多个指标[2 ] 。本实验探讨采用激光散斑成像技术监测大鼠脊髓正常状态和压迫刺激后脊髓背部表面血管内的血流速度和血流量以及血管管径的变化,为脊髓血流动力学的研究提供一种新方法。(4)利用激光散斑成像系统(由华中科技大学生命科学与技术学院生物医学光子学教育部重点实验室提供) 监测大鼠脊髓血流动力学的变化。

激光散斑成像系统该系统包括光路和成像系统两部分(图1) 。光路由氦氖( He2Ne) (λ=632. 8 nm ,3 mW) 激光器发出的光束耦合到直径为8 mm 的光纤束形成;成像系统由带电子耦合器件(CCD) (Pixelfly ,PCO COMPU TER OPTICS) 相机的变焦体视显微镜( SZ6045 TR ,OL YMPUS) 、图像采集卡与图像采集控制软件、信号分析软件构成。激光散斑成像技术能到达的探测深度大约在500μm~1 mm。图1 激光散斑成像系统示意图1. 2. 2 图像采集与处理将制作好的大鼠脊髓模型放在体视显微镜的正下方,调焦,以能够清楚地观察到大鼠脊髓背部为准。先用白光照射大鼠脊髓背部,利用激光散斑成像系统透过硬脊膜获得正常大鼠脊髓背部表面血管的白光图,再改用激光,透过硬脊膜,由计算机控制在动物模型制作成功后即刻(0min) 和10 min 分别连续采集20 帧正常脊髓背部表面血管的原始散斑图像,然后保持大鼠位置不动,施行压迫刺激,10 min 后再采集20 帧原始散斑图像。每帧原始散斑图像大小为640 象素×480 象素,体视显微镜的放大倍数为1.5 倍,激光照射区域面积为4. 2 mm ×3. 2 mm ,CCD 曝光时间为20 ms。(5)用Matlab 6. 1 软件对原始的散斑图像进行处理,获得散斑衬比图和各时间点的伪彩色血流图,颜色越红代表相应的流速越快。以0 min 时的伪彩色血流图为基准,各时间点上的伪彩色血流图与它相比较,通过Matlab 6. 1 软件计算,得出正常状态下10 min 时和压迫刺激后10 min 时脊髓血流动力学指标变化的百分数。(6)

研究显示,激光散斑成像技术可以准确、动态、活体、非接触地监测脊髓血流动力学的变化,直观地观察血管形态和血流速度的改变,为研究实性脊髓压迫刺激或损伤前后以及药物干预等条件下血流动力学的变化提供了一种确实、可靠的监测手

(二)超深低温作用下大鼠脑血流变化的激光散斑成像监测。

这是由华中科技大学生物医学光子学教育部重点实验室- 武汉光电国家实验室(筹)的

张丽、李鹏程、倪松林、曾绍群、骆清铭等几人共同完成。急性严重脑缺血性疾病发病急、病情重,严重威胁人类健康,目前国内外对急性严重脑缺血性疾病的治疗手段仍欠完善。低温脑保护对脑缺血损伤的显著保护作用已被大量的实验研究和临床应用所证实[1,2]。(9)低温治疗能够改善脑血循环,稳定血管功能,降低脑细胞能量代谢。研究发现大脑温度下降得越低,神经细胞能量代谢和耗氧量越少,脑细胞保护效果越好,可以有效地阻断严重脑缺血性疾病时脑神经细胞的病理损害过程[3]。采用将脑组织温度快速降至超深低温(≤16℃)水平、而将全身体温仍维持在正常体温的方法,不但可以取得良好的脑保护作用,而且可避免全身超深低温治疗后在复温过程中所造成的心肺损害[3]。但超深低温脑保护的机制尚不清楚,且需要明确超深低温脑保护的时间窗。临床中既要保证正常生物组织不受超深低温损伤,又需要尽量发挥超深低温的最佳治疗效果,因而超深低温作用时间的选取就显得尤为重要。血流为生物组织供应氧和营养,其动力学变化反映了生物组织代谢与生理功能的状态。血流动力学监测为临床疾病的诊断和治疗提供了重要的信息,已成为临床中必不可少的监测手段。(8)目前在血流的在体检测中,激光多普勒技术[4]已获得广泛应用,但此技术只适合对单根血管的流速进行监测,如要对大面积区域血管的流速进行监测则需加扫描装置,从而限制了成像的时间或空间分辨率;并且这种方法采用透射方式测量血管流速,对待测组织的透明程度要求较高。近年来Briers 等[5]提出了一种激光散斑成像技术,也称为激光散斑衬比分析技术,无需扫描即可获得区域的血流分布,而且该方法采用反射成像方式测量血流,对血管的透明程度没有要求,因此比已有的方法具有更广泛的用途。目前这种技术已被用于监测皮肤[6]、视网膜眼底的血流变化[7]以及药物作用下大鼠肠系膜上的血流动态变化[8]和刺激坐骨神经下大鼠脑皮层血流动态变化[9]。(7)

本文的主要发现是大鼠脑皮层在局部超深低温作用持续时间未超过5 min 时,恒温复温后脑血流可恢复至基线水平;而对超深低温持续作用超过7 min 的情况,恒温复温后脑血流仅恢复至基线值的75%左右。以上结果提示,超深低温持续时间较短时,低温作用对脑血流调节功能的影响为可逆的,而长时间的超深低温作用则可能对脑血管调节造成不可逆的损伤。(11)实验结果为确立超深低温脑保护时间窗,进一步研究超深低温脑保护机制打下了良好的基础。激光散斑成像技术作为一种非接触式的技术,因具有高的时间和空间分辨率,为监测超深低温作用时间对脑血流的变化特性提供了有力手段。(10)

(三)、激光散斑用于非正常人眼的检查与校正。

这个研究式由安徽大学物理系的叶柳、石市委共同研究完成的。他们通过推导毛玻璃以恒定速度的面内运动在成像系统中所产生的激光散斑的统计特性,提出激光散斑运动与近视眼和

远视眼的对应关系,并给出激光散斑在视力校正中的应用。一束准直的激光透过毛玻璃后,在其后表面上各点的相位是随机的,根据惠更斯原理,在毛玻璃的后表面上各点可看作是子波源,各子波源在空间中任一点相互叠加,将产生相长或者相消干涉。由于子波源的相位是随机的,所以在空间各点位置上的强度也是随机的。结果就形成颗粒状结构随机分布的光斑,称为散斑。如果毛玻璃在其平面内运动,观察面上的散斑也随之运动,这种散斑称之为动态散斑,动态散斑有两种运动模式。(12)

他们通过推导平行光束在成像系统中的空间- 时间互相关函数,得出观察面上的散斑运动速度公式,进而得出对于近视眼、远视眼等非正常人眼散斑运动的特性,提出校正非正常人眼的方法。

人眼屈光不正的检查和校正人眼是很好的成像系统,晶体相当于成像透镜,视网膜相当于接收平面。对于正常眼,焦平面与人眼的视网膜重合,即L2 = F , →V s = 0。所以正常眼观察散斑为静止状态(严格地说为“纯沸腾态”) 。由于近视眼无法把焦平面调节到视网膜上,而是在视网膜之前L2 > F ,所以观察到散斑在运动。其运动方向与毛玻璃的运动方向相同。近视度数越大,则焦平面与视网膜的距离越大,散斑运动的速度就越大。我们可以配戴一定镜片,使得观察的散斑处于静止状态。远视眼的焦平面位于视网膜之后,L2 < F ,所以观察到的散斑运动与毛玻璃运动方向相反,且随着远视眼度数越大,即远视眼的焦平面与视网膜距离越大,散斑平移速度越大。同样配戴一定度数的凸透镜镜片,可以使得观察的散斑为静止产状态。(13)

(四)、随着科学的发展。研究发现可以利用激光散斑成像监测光动力治疗血管损伤。

光动力治疗(PDT) 是损伤最小的早期恶性肿瘤治疗方法,也是晚期恶性肿瘤的一种姑息治疗方法。光动力治疗能够选择性地消灭局部浅表肿瘤而不危及正常组织,并可以与化疗和放疗协同进行。目前,光动力治疗消灭肿瘤有三种机制[1 ] :直接消灭肿瘤细胞;破坏肿瘤细胞周围的血管;治疗后激活免疫反应阻止肿瘤细胞生长。肿瘤细胞的生存和生长主要依靠肿瘤周围血管提供丰富的营养成分。在过去的15年里,研究光动力治疗如何破坏肿瘤周围血管和抑制新生血管的机制一直受到关注,但是并没有完全被人们掌握[2 ] 。目前对血管损伤的评估只将血管的管径和损伤程度关联起来[3 ] ,没有考虑血液流速或灌注率的影响。利用激光成像技术可以研究血液的流速分布[4 ] 、灌注率[5 ] 等血液动力学[6 ] 变化,这将为理解光动力治疗与血管的作用机制提供新的研究方法。使用激光散斑衬比成像(LSCI) 技术,对鸡胚尿囊膜(CAM) 上血管管径和血流速度进行实时监测,并以此评估光动力治疗过程中的肿瘤周围血管损伤效果。(14)

在光动力治疗过程中,由于光敏化反应可造成微血管破坏,炎性因子的释放引起血管收缩、血细胞滞留凝集、血流停滞造成组织水肿、缺血、缺氧,从而杀伤肿瘤。实验结果表明,激光散斑成像技术可以实时地监测光动力治疗过程中血管结构、血流流速和血液灌注量的变化,并以此来评估光动力治疗过程中的肿瘤周围血管损伤效应。(15)

在污染扩散浓度方面的进展

近几年来,人们提出了一种利用激光散斑和散斑照相技术的污染扩散非定常瞬时全场浓度测量的新方法。根据污染烟雾粒子成像、粒子散射、统计光学以及数字图像处理技术,从理论上详细论证了浓度场全场测量的原理和此方法测量的局限性,为进一步设计浓度场测量系统提供了参考依据。

激光散斑测量是近年来发展的新技术,当激光照射漫反射面或充满粒子的流场时,由于散射光的相互干涉,其强度在空间各点随机起伏,结果会在暗的空间背景上形成散斑。散斑广泛应用于固体力学测量,诸如位移、应变、速度、振动、表面粗糙度等。在流体力学中,散斑测速也是比较成熟的测量方法,但至今尚未见到散斑成像测量污染扩散浓度场的文献报道。

测量方法的局限污染扩散浓度场的散斑测量,由于光电记录介质的最低灵敏度的限制,流场中并不是所有粒子的像(或散斑像) 都能被光电介质记录,只有像的强度超过光电记录介质的最低灵敏度才能被成像。不同的入射片光强度、不同粒子直径和光电记录介质的最低灵敏度其最低源密度不同,测量误差也不同,提高入射光强、粒子直径和光电成像的最低灵敏度都能提高测量精度,只有系统性能提高到能够拍摄单个粒子的散射图像时,才能测量绝对数量浓度。污染扩散实验很难保证污染源产生均匀尺度的烟雾粒子,而且烟雾粒子也很难保证有同样的几何形状。因此浓度场测量时只测量相对浓度,而不测量绝对浓度,正由于测量的是相对量,测量时由光源强度、光学系统的吸收性、反射性等引起的测量误差自动抵消。也正因为测量的是相对浓度,因此利拍摄的烟雾粒子散射图就可以直接进行浓度场测量,而不考虑污染烟雾粒子的成像、散射以及其它的光学意义,拍摄的图像可以任意进行统一的数学运算而不改变其分布关系(22)。

激光散斑成像技术在雷达方面的进展

雷达、近年来得到了越来越重要的应用。特别是在军事领域,雷达犹如士兵的眼睛,可以让将领知道远在天上的直升飞机、战斗机的动态,以便军人做出正确的决策。而利用激光散斑成像原理技术制成的雷达却明显地比传统的雷达具有更优良的性能。例如近几年兴起的合成孔径激光成像雷达。

微波合成孔径雷达, 是能够在远距离取得厘米量级分辨率的唯一的光学成像观察手段, 美国海军研究所和宇航公司已经给出了实验室小尺度装置的实验验证, 人们也报道了实质

性研究进展。在合成孔径激光成像雷达的成像中, 激光散斑效应对光学外差探测的信噪比产生严重影响, 光学外差探测信噪比是总体设计的重要参数, 将直接影响系统总体结构和工作模式的设讨一, 特别是激光发射功率估算的关键性依据, 因此研究一信噪比具有重要意义。美国海军研究所等口’丁完整地研究了存在激光散斑效应时的光学外差探测的信噪比, 他们首先确定了光学外差探测属于光子受限状态, 即噪音来自于本振恒定信号的散弹效应, 给出了载噪比定义, 然后引人了散斑统计特性,给出了最终的外差探测信噪比。文献‘’以最简单的数学和物理概念处理激光散斑效应, 因此存在两个物理问题第一是没有考虑观察面上

的散斑尺寸及其光学接收天线的口径平滑效应, 第二是在一次激光曝光的时采样过程中使

用了激光散斑是恒定不变的这种隐含假设, 但是事实上由于线性调频的惆啾激光在一次发

射的时间进程中波长是变化的,导致了激光散斑的花样的变化, 因此在一次曝光中(23)改进激光散斑噪音信噪比可以采用以下方法。在一般设计中只考虑了激光线偏振应用, 为改进散斑噪音可以同时利用两个偏振分量, 但是这将增加系统的复杂性。也可以在一个图像中组合多个像素为一个实际像素, 这显然降低了成像分辨率。最为可能的方法是采用多次曝光以对散斑场的不同部分采样, 但是这增加了观察时间也增大了激光发射能量。在上述多次曝光组合的方法下, 对于单次的曝光成像必须满足一个重要的判据。一和刀, 否则为了达到七的最好状态, 需要太多数目的单次曝光。存在时间变化的散斑统计特性。(24)脉冲激光相干雷达的散斑成像模型。在激光雷达、合成孔径雷达等相干成像装置中都是通过接收散射回波信号并在探测器表面相干获得图像的, 因此其图像对散斑噪声高度敏感[ 1 ]。而散斑噪声的存在使图像像素强度(灰度) 剧烈变化, 即在一片均匀的目标表面上, 有的分辨率单元呈亮点, 有的呈暗点, 降低了图像的灰阶和空间分辨率, 隐藏图像的精细结构, 使图像的解释性变差, 降低了图像质量和雷达的探测能力, 因而限制了相干图像(如激光雷达、合成孔径雷达) 的应用。由于散斑噪声统计特性较差因而成了在相干成像装置中最难解决的问题之一。尽管如此, 人们还是提出了一些抑制散斑噪声的方法。这些方法大体上可分为类: 一类是不相干和部分相干的多视图像处理[ 2 ];另一类是图像域滤波等的图像后处理。多视图像处理和图像域滤波的本质都是压缩了散斑噪声但又牺牲了图像的一些细节。(28)

在导出脉冲相干激光雷达散斑成像模型的基础上提出了并行加权均值多方向形态滤波算法。这种算法不仅在选取结构元素中考虑了散斑噪声对图像污染严重的特点,而且在加权

中使用了散斑噪声的统计规律。计算机仿真实验证明它在保持图像的几何结构、灰度差别及图像均匀区的均匀度方面都优于Safa 算法。

总结激光散斑成像技术的研究进展在科学技术越来越发达的今天,激光散斑成像技术得到了越来越重要的地位。在医学方面,我们可以利用激光散斑成像监测脑血流的变化,可以利用激光散斑成像技术监测脊髓血液流动力学,还可以利用激光成像技术监测光动力治疗的血管损伤效应等;在军事方面特别别雷达上,激光散斑成像技术的到了淋淋尽至的发挥,激光成像雷达合成孔径就充分利用了时空散斑效应,还有脉冲相干激光雷达的散斑成像模型及其散斑噪声压缩等。

在不久的将来激光散斑成像技术将在我们的生活中发挥更大的作用。

参考文献:(1)、杨为国.. 利用激光散斑成像仪监测肠系膜上微循环血流时空响应特性的方法.. 2005年2月23日

(2)、刘谦, 周斯博, 张智红, 骆清铭.. 利用激光散斑成像监测光动力治疗的血管损伤效应.. Appl ication of Laser Speckle Imaging : Monitoring Changes of

V essels in Photodynamic Therapy.. 2005 年6 月

(3)、卢曦, 吴文权..

(4)、苏昊、郑启新、骆清铭.. 激光散斑成像技术监测脊髓血流动力学的实验研究.. Monitoring of Spinal Cord Hemodynamics by Laser Speckle Imaging Technique.. 2009 年2 月

(5)、ISHIKAWA M ,SEKIZU KA E ,OSHIO C ,et al . Platelet adhe2sion and arteriolar dilation in t he photot hrombosis : observa2tion wit h t he rat closed cranial and spinal windows[J ] . J Neu2rol Sci ,2002 ,194 (1) :59269

(6)、CARDOZO A K, HEIMBERG H , HEREMANS Y, et al . Acomprehensive analysis of cytokine2induced and nuclear fac2

tor2κB2dependent genes in primary rat pancreaticβ2cells[J ] . JBiol Chem , 2001 , 276 (52) : 48879248886.

(7)、张丽,李鹏程,倪松林,曾绍群,骆清铭.. 超深低温作用下大鼠脑血流变化的激光散斑成像监测.. Aug. 2006

(8)、江基尧, 徐蔚, 杨朋范. 选择性脑超深低温技术对猴颈动脉血流阻断时限的研究. 中

华神经外科杂志, 2003,19:304~306

(9)、Ohrara K, Usvi A, Muse M. Regional cerebral tissue bloodflow measured by the colored microphere method duringretrograde cerebral perfusion. J Thorac Cardiovasc Surg, 1995,109:772~779

(10)、Liu Q, Wang Z, Luo QM. Temporal clustering analysis ofcerebral blood flow activation maps measured by laserspeckle contrast imaging. J Biomed Opt, 2005,10(2):193~197

(11)Ohrara K, Usvi A, Muse M. Regional cerebral tissue bloodflow measured by the colored microphere method duringretrograde cerebral perfusion. J Thorac Cardiovasc Surg, 1995,109:772~779

(12)、叶柳、石市委.. 激光散斑用于非正常人眼的检查与校正.. Laser speckle for determining ametropia and correction.. 《激光杂志》2001年第22卷第2期

(13)、T. Y oshimura , Statistical properties of dynamic speckles. J .Opt . Soc. Am. 1986 ,A3(7) :1033

(14)、刘谦, 周斯博, 张智红, 骆清铭.. 利用激光散斑成像监测光动力治疗的血管损伤效应.. Appl ication of Laser Speckle Imaging : Monitoring Changes of V essels in Photodynamic Therapy.. 2005 年6 月

(15)Cheng Haiying , Luo Qingming , Wang Zheng et al . . Dynamicchange of lymph flow monitored by laser speckle interferenceand spect roscopy met hods [ J ] . Chinese J . Lasers , 2003 , 30

(Suppl . ) : 221~223

(16)、程海英,骆清铭,王征等. 利用激光散斑干涉法与光谱技术实时监测淋巴流的动态特征[J ] . 中国激光, 2003 , 30 (增刊) :

221~223

(17)、J . D. Briers , S. Webster . Laser speckle cont rast analysis(LASCA) : a non2scanning , full2field technique for monitoringcapillary blood flow [ J ] . J . Biomed. Opt . , 1996 , 1 ( 2 ) :174~179

(18)、V. Got tf ried , E. S. Lindenbaum , S. Kimel . V ascular damageduring PDT as monitored in t he chick chorioallantoic membrane[J ] . Int . J . Radiat . Biol . , 1991 , 60 (1~2) : 349~354 (19)H. Y. Chen , Q. M. Luo , Q. Liu. Laser speckle imaging ofblood flow in microcirculation [ J ] . Phys . Med. Biol . , 2004 ,49 (7) : 1347~1357

(20)、M. Zhang , Z. H. Zhang , D. Blessington et al . .Pyropheophorbide 22deoxyglucosamide :

a new photosensitizertargeting glucose t ransporters [J ] . Bioconj ugate Chem. , 2003 ,14 (4) : 709~714

(21)、I. J . Macdonald , T. J . Dougherty. Basic principles of photodynamic t herapy [ J ] . J . Porphy rins Phthalocy anines ,2001 , 5 (2) : 105~129

(22)、卢曦, 吴文权..污染扩散浓度场激光散斑测量原理研究.. The Mea surement of Concentration Field of Pollutant Diffusion

by La ser Speckle.. 2006 年7 月

(23)、刘立人.. 合成孔径激光成像雷达时空散斑效应和外差探测信噪比.. 2009年8月(24)、ROBERTSON R , ZHOU H , ZHANG T , et al . Chronic oxi2dative st ress as a mechanism for glucose toxicity of t he betacell in type 2 diabetes [J ] . Cell Biochem Biophys , 2007 , 48(2/ 3) : 1392146.

(25)、CARDOZO A K, HEIMBERG H , HEREMANS Y, et al . Acomprehensive analysis of cytokine2induced and nuclear fac2tor2κB2dependent genes in primary rat pancreaticβ2cells[J ] . JBiol Chem , 2001 , 276 (52) : 48879248886.

(26)、MAEDL ER K, SERGEEV P , RIS F , et al . Glucose2inducedβcell production of IL21βcont ributes to glucotoxicity in hu2man pancreatic islet s[J ] . J Clin Invest , 2002 , 110 (6) : 8512860.

(27)、JAMES L R , TANG D , INGRAM A , et al . Flux t hrought he hexosamine pat hway is a determinant of nuclear factorkappaB2dependent promoter

(28)、蒋立辉、王春晖、王骐、尚铁良.. 脉冲相干激光雷达的散斑成像模型及其散斑噪声压缩. 2000 年12 月

激光散斑测量讲解

引言 散斑现象普遍存在于光学成像的过程中,很早以前牛顿就解释过恒星闪烁而行星不闪烁的现象。由于激光的高度相干性,激光散斑的现象就更加明显。最初人们主要研究如何减弱散斑的影响。在研究的过程中发现散斑携带了光束和光束所通过的物体的许多信息,于是产生了许多的应用。例如用散斑的对比度测量反射表面的粗糙度,利用散斑的动态情况测量物体运动的速度,利用散斑进行光学信息处理、甚至利用散斑验光等等。激光散斑可以用曝光的办法进行测量,但最新的测量方法是利用CCD和计算机技术,因为用此技术避免了显影和定影的过程,可以实现实时测量的目的,在科研和生产过程中得到日益广泛的应用,因此是值得在教学实验中推广的一个实验。本实验的目的是让学生初步了解激光散斑的特性,学习有关散斑光强分布和散射体表面位移的实时测量方法:相关函数法,通过本实验还可以了解激光光束的基本特点以及CCD光电数据采集系统。这些都是当代科研和教育技术中很有用的基本技术和知识。 实验原理 激光散斑的基本概念: 激光自散射体的表面漫反射或通过一个透明散射体(例如毛玻璃)时,在散射表面或附近的光场中可以观察到一种无规分布的亮暗斑点,称为激光散斑(Laser Speckles)或斑纹。如果散射体足够粗糙,这种分布所形成的图样是非常特殊和美丽的(对比度为1)。

激光散斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、对比度和散斑运动规律等特点的认识。 图1 光散斑的产生(图中为透射式,也可以是反射式的情形) 图1说明激光散斑具体的产生过程。当激光照射在粗糙表面上时,表面上的每一点都要散射光。因此在空间各点都要接受到来自物体上各个点散射的光,这些光虽然是相干的,但它们的振幅和位相都不相同,而且是无规分布的。来自粗糙表面上各个小面积元射来的基元光波的复振幅互相迭加,形成一定的统计分布。由于毛玻璃足够粗糙,所以激光散斑的亮暗对比强烈,而散斑的大小要根据光路情况来决定。散斑场按光路分为两种,一种散斑场是在自由空间中传播而形成的(也称客观散斑),另一种是由透镜成像形成的(也称主观散斑)。在本实验中我们只研究前一种情况。当单色激光穿过具有粗糙表面的玻璃板,在某一距离

激光雷达技术的应用现状及应用前景

光电雷达技术 课程论文 题目激光雷达技术的应用现状及应用前景

专业光学工程 姓名白学武 学号2220140227 学院光电学院 2015年2月28日 摘要:激光雷达无论在军用领域还是民用领域日益得到广泛的应用。介绍了激光雷达的工作原理、工作特点及分类,介绍了它们的研究进展和发展现状,以及应用现状和发展前景。 引言 激光雷达是工作在光频波段的雷达。与微波雷达的T作原理相似,它利用光频波段的电磁波先向目标发射探测信号,然后将其接收到的同波信号与发射信号相比较,从而获得目标的位置(距离、方位和高度)、运动状态(速度、姿态)等信息,实现对飞机、导弹等目标的探测、跟踪和识别。 激光雷达可以按照不同的方法分类。如按照发射波形和数据处理方式,可分为脉冲激光雷达、连续波激光雷达、脉冲压缩激光雷达、动目标显示激光雷达、脉冲多普勒激光雷达和成像激光雷达等:根据安装平台划分,可分为地面激光雷达、机载激光雷达、舰载激光雷达和航天激光雷达;根据完成任务的不同,可分为火控激光雷达、靶场测量激光雷达、导弹制导激光雷达、障碍物回避激光雷达以及飞机着舰引导激光雷达等。 在具体应用时,激光雷达既可单独使用,也能够同微波雷达,可见光电视、

红外电视或微光电视等成像设备组合使用,使得系统既能搜索到远距离目标,又能实现对目标的精密跟踪,是目前较为先进的战术应用方式。 一、激光雷达技术发展状况 1.1关键技术分析 1.1.1空间扫描技术 激光雷达的空间扫描方法可分为非扫描体制和扫描体制,其中扫描体制可以选择机械扫描、电学扫描和二元光学扫描等方式。非扫描成像体制采用多元探测器,作用距离较远,探测体制上同扫描成像的单元探测有所不同,能够减小设备的体积、重量,但在我国多元传感器,尤其是面阵探测器很难获得,因此国内激光雷达多采用扫描工作体制。 机械扫描能够进行大视场扫描,也可以达到很高的扫描速率,不同的机械结构能够获得不同的扫描图样,是目前应用较多的一种扫描方式。声光扫描器采用声光晶体对入射光的偏转实现扫描,扫描速度可以很高,扫描偏转精度能达到微弧度量级。但声光扫描器的扫描角度很小,光束质量较差,耗电量大,声光晶体必须采用冷却处理,实际工程应用中将增加设备量。 二元光学是光学技术中的一个新兴的重要分支,它是建立在衍射理论、计算机辅助设计和细微加工技术基础上的光学领域的前沿学科之一。利用二元光学可制造出微透镜阵列灵巧扫描器。一般这种扫描器由一对间距只有几微米的微透镜阵列组成,一组为正透镜,另一组为负透镜,准直光经过正透镜后开始聚焦,然后通过负透镜后变为准直光。当正负透镜阵列横向相对运动时,准直光方向就会发生偏转。这种透镜阵列只需要很小的相对移动输出光束就会产生很大的偏转,透镜阵列越小,达到相同的偏转所需的相对移动就越小。因此,这种扫描器的扫

激光散斑和激光多普勒测量

激光散斑和激光多普勒测量 从图1.3 可知,激光散斑主要应用于微循环的血流监测,这是因为激光散斑测量 法相对于放射性微球技术 [25] 、荧光示踪检测法 [26] 和氢离子稀释 [27] 等方法,具有非接触、 无创伤、能对血流分布快速成像等优点。具有相同优点的另外一种光学检测技术——激光多普勒速度测量技术,是利用粒子散射光的强度波动引起的多普勒频移来测量散射子的速度,它可用于监控血流以及人体其它组织或器官的运动。激光多普勒技术用于测量血流速度的研究始于20 世纪70 年代,至今已经发展为成熟的医疗诊断工具。与激光多普勒技术不同的是,激光散斑是受激光照射物体产生的随机干涉效应的颗粒状图案。如果物体由单个移动散射体(如血细胞)组成,散射图案会有波动。这些波动包含了散射体运动变化的信息。尽管激光散斑技术看起来和激光多普勒技术大相径庭,一个是多普勒现象,一个是干涉现象,但是通过数学分析,这两种方法在最终的数学表达上是可以统一的 (1.1 a)描述的是频率变化引起的强度变化,(1.1 b)是相位变化引起的强度变化。可以 看出激光散斑和激光多普勒是观察同一现象的两种不同途径,却各有自身的发展。 相干光照射的运动散射粒子会引起光强的随机波动,其物理基础可以通过两种方 式来表示:随机相干图案的波动(时间积分和微分的时变散斑或动态散斑)和不同频率之间产生的拍频和混频(多普勒频移)。图1.4 展示了运动散射粒子引起的随机光强波动的测量方法。 .2 激光散斑测量与统计特性 5 固体或流体的散射粒子运动时,会产生多普勒频移。对同向运动的散射体,其所 有的或大部分的散射光具有相同的频移,这时需要加入参考光源来产生频率差。不移动的参考光源与运动散射粒子频移的频率差与散射粒子的运动速度相关,这就是典型的激光多普勒测速仪的外差测量法。当散射粒子运动产生的多普勒频移具有一定的范围,即产生了多普勒频移谱,这时频移之间会发生相互的自拍频,在零频附近展开,此为频率的零差,可以使用光子相干光谱测量 [14,15] 。

毕业设计论文——激光散斑测物体位移

武汉轻工大学 毕业设计(论文) 论文题目:基于激光散斑进行位移测量 院系: 电气与电子工程学院 学号: 101204222 姓名: 王斌 专业: 电子信息科学与技术 指导老师: 李丹 二零一四年五月

摘要 用散斑法测量无题的位移、应变、振动、等是散斑法在实验力学中的主要应用之一。这种测量方法不但有非接触的优点,而且可以测量面内及离面的位移。物体表面以及内部的应变、比较圆满地解决振动与瞬变的问题。本文主要介绍了散斑测量技术的发展情况,对激光散斑的特性进行了系统的分析。 激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。 关键词:激光散斑;位移测量;数字图像处理;位移散斑图

Abstract One main application of the speckle measurement method in experimental mechanics is to measure the displacement, strain, vibration and so on. This method can not only processed non-contact measurement, but also can measure the in-plane or out-plane displacement and transient. In this paper, we introduced the development of speckle measurement technique, and systemically analyzed the characters of speckle. The laser speckle based on holography is of great practical value and can measure micro-displacement. In surface micro-displacement is focused on in this paper. The two laser speckle patterns are respectively shot before and after the object is moved. Digital speckle correlation method and speckle photography are used to measure a small displacement moved along x or y axle. The above two methods are compared at the end of the paper. Keywords:laser speckle; displacement measurement; digital image process; displacement of speckle pattern

激光雷达与激光成像雷达

激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 一、激光雷达与激光成像雷达 人通过感觉器官感知,认识外部世界的一切。用耳朵听音乐、话音、机器的轰隆声、钟声、铃声等一切通过声音传递的信息;用手感觉温度、物体的硬软以及物质的存在;用眼睛观察外部世界的形状、颜色、运动状态、速度、位置、识别物体的种类等等。人的眼睛之所以可以看见外部世界,是因为太阳光谱中的可见光照射在物体上反射的结果。那么除了“可见光谱”之外还存在别的“不可见的光谱”吗?事实上,广义的光谱按频段的不同,有大家所熟悉的电磁波、远红外、近红外、可见光、紫外光谱,而可见光谱区中,红色的光波长最长,紫色的波长最短。而且人们已经发现不同的物质辐射不同的谱线,在特定的条件下还可以只辐射某一单一波长的谱线,当其人们发现不可见光谱区中的单一的光谱谱线具有可贵的特性的时候,就力图去产生、开发、利用这种单一光谱谱线,由此产生了激光及用于不同场合的激光系统。 视觉引发人们的形象思维,眼睛从外界事物所获取的信息量大,直接而快速,是其他感觉器官所不能代替的,这也就是古人所说的“眼见为实”的深切内涵。正是因为这个道理,人们不愿受限于“可见光”的可见,而想去探求自然光条件下所看不见的东西,如想在漆黑的夜晚,去观察外部世界,就开发出了“夜视仪”。被动“红外热成像仪”也不是依赖于可见光的反射特性去观察变幻莫测的外部世界的,而是依赖于物体本身的热辐射,无论白天或黑夜都可以用以观察人类世界的一切,而且已经是超视距的。目前最新的热成像仪,1ms内热敏成像。红外成像高速测温用来检测来复枪,其射出的弹头在弹道上飞行速度为840m/s,弹头距枪口0.914 4m处的热成像还能分辨出弹头上不同部位摩擦热的温差。 遥感仪则可以依据物体本身的辐射谱线,包括电磁波段与红外光区,远距离成像,把肉眼原本看不见的自然变化,转化为可见,以照片的形式或屏幕显示的图像,甚至动态图像的形式展现出来,这就是当今人们感兴趣的可视化技术。人们力图从各个领域做这方面的研究和开发应用。 通过眼睛人们能够确定方向——定位,作为控制手的动作的依据,当然这是受限于“视距”之内的,通过望远镜可以延伸视距;但是“定位”的精度达不到人们通用目的需要,所谓“差之毫厘,失之千里”。雷达满足了远距离定位和精度的要求,雷达源于英文Radio Detection And Ranging的缩写RADAR,于1935年问世。 当其“激光”这种波长处于红外光谱波段的“激光光源”被研究出来之后,人们自然想到利用微米波段(红外光谱波段)的光波作为信息的载体去探测、获取其他手段难于探测、观测到的目标的信息。激光雷达研制成功后,相继激光成像雷达应运而生。激光雷达的英文名字“LADAR”是Laser Detection And Ranging的缩写。激光雷达的研究是从目标探测和测距入手的,早期(1962~1976年)的研究系统被称为光雷达(Optical RADAR),并命名为LIDAR(Light Detection And Ranging)。可以说军事应用对测量系统精确度的要求日

激光散斑位移测量方法研究

第23卷 第1期2008年3月 北京机械工业学院学报 Journal of Beijing I nstitute ofM achinery Vol.23No.1 Dec.2008 文章编号:1008-1658(2008)01-0039-03 激光散斑位移测量方法研究 李晓英,郎晓萍 (北京信息科技大学 光电信息与通信工程学院,北京100192) 摘 要:激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。 主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD 记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。 关 键 词:激光散斑;位移测量;数字图像处理 中图分类号:O436.1 文献标识码:A Research of d ispl acem en t m ea surem en t ba sed on l a ser speckle L I Xiao2ying,LANG Xiao2p ing (School of Phot oelectric I nfor mati on and Telecommunicati on Engineering, Beijing I nfor mati on Science and Technol ogy University,Beijing100192,China) Abstract:The laser s peckle based on hol ography is of great p ractical value and can measure m icr o2 dis p lace ment.I n surface m icr o2dis p lace ment is focused on in this paper.The t w o laser s peckle patterns are res pectively shot bef ore and after the object is moved.D igital s peckle correlati on method and s peckle phot ography are used t o measure a s mall dis p lace ment moved al ong x or y axle.The above t w o methods are compared at the end of the paper. Key words:laser s peckle;dis p lace ment measure ment;digital i m age p r ocess 散斑测量与其他测量方法相比具有光路简单、成本低、调试及操作方便等优点,从而在位移测量中得到了广泛的应用。其实,散斑不仅可测量物体的位移和形变,还可测量振动、无损探伤等等。散斑在精细无损计量方面具有很大的发展潜力,是目前研究的一个热点[1]。所以对散斑特性和规律研究具有非常重要的意义[2]。 1激光散斑测量基本原理 1.1散斑照相法 当一束激光射到粗糙物体表面时,光被物体表面反射后在成像空间形成散斑。若将物体发生微小位移前后的散斑分别对记录介质曝光一次,就会得到一副双曝光散斑图,光强度分布为: I(x,y)=I0(x,y)+I0(x-Δx,y-Δy)(1) I0(x,y)表示第一次曝光光强,I0(x-Δx,y-Δy)表示第二次曝光光强,Δx,Δy分别指物体发生的面内微位移。根据全息原理知,记录介质的振幅透过率与光强成线性关系,即: t(x,y)=a-bI(x,y)(2)式中,a与b为常数。 因为当物体发生一个较小的面内位移时,可以认为前后两张散斑图的微观结构相同,仅有一个相对位移。当用一束细平行激光照射该散斑图时,在接收平面上可以接受到散斑图的夫琅和费衍射图样(杨氏条纹),其振幅分布由记录介质振幅透过率的傅里叶变换决定,经分析可得出微位移和条纹间距之间的关系[3,4]: Δx= λL M d x Δy= λL M d y (3) 收稿日期:2008-01-16 作者简介:李晓英(1975-),女,山西原平市人,北京信息科技大学光电信息与通信工程学院讲师,硕士,主要从事光学的教学与研究工作。

激光散斑测量实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目:激光散斑测量 实验目的: 了解单光束散斑技术的基本概念,并应用此技术测量激光散斑的大小和毛玻璃的面内位移。 实验内容: 本实验中用到的一些已知量:(与本次实验的数据略有不同) 激光波长λ = 0.0006328mm 常数π = 3.14159265 CCD像素大小=0.014mm 激光器内氦氖激光管的长度d=250mm 会聚透镜的焦距f’=50mm 激光出射口到透镜距离d1=650mm 透镜到毛玻璃距离=d2+P1=150mm 毛玻璃到CCD探测阵列面P2=550mm 毛玻璃垂直光路位移量dξ和dη, dξ=3小格=0.03mm,dη=0 光路参数:P1=96.45mm ρ(P1)=96.47mm P2= 550mm dξ=3小格=0.03mm (理论值) 数据及处理: 光路参数: P1+d2=15cm P2=52.5cm

d1=激光出射口到反射镜的距离+反射镜到透镜距离=33.6+28.5=62.1cm f ’=5cm d=250mm λ=632.8nm (1)理论值S 的计算: 经过透镜后其高斯光束会发生变换,在透镜后方形成新的高斯光束 由实验讲义给的公式: 2'2 012'11 '' 2)()1(d f W f d d f f λπ+--- = πλd W 01= 201W d πλ= 代入数据,可得: '' 1 21 221''12 2 22 01 02 2 2 2101102 d 15(1)() 5 62.11559.6332439.63362.12515511f d f cm P d d f f cm cm P cm cm cm cm cm cm cm cm d W W d d W d f f W λπ πλ???? ? ? ???? ?????? ?? ? ? ? ? ? ? ? ????? ???? -=-=--+-=-+ =≈-+= = -+-+= 可得 由公式-31.80010cm ≈? 此新高斯光束射到毛玻璃上的光斑大小W 可以由计算氦氖激光器的

激光散斑检测与三维激光检测

激光散斑检测与三维激光检测 专业:测控技术与仪器 学号:12081403 姓名:黄春萍

引言 激光的发现进一步扩大了光学技术的应用范围,提高了光学技术在国民经济中的地位。激光的引入不仅使经典干涉技术开拓了测试范围,也提高了测量精度,而且激光技术大大带动了全息、散斑技术在工程应用方面的进展。传统的干涉仪只能检测透明介质的性能和检测光学表面的缺陷,而全息、散斑干涉的功能扩展到检测任何粗糙表面的形变、位移等力学特性。从而为无损检测技术开拓了一条宽阔的发展之路,并大大提高了检测精度、检出率和可信度。 当激光甚至白光自物体表面漫反射,或通过透明散射体时,在散射体附近或表面广场中,可以观察到或照相记录下一种无规则分布的明暗颗粒状斑纹,成为散斑。近年来发展起来的散斑摄影术和散斑干涉度量术,正是应用了激光的散斑形成一种崭新的光学测量方法,有广泛的应用前景。 一、激光散斑 1.激光散斑特性 (1)经透镜成像形成的散斑为主观散斑,在自由空间传播形成的散斑是客观散斑 (2)散斑的大小,位移及运动是有规律的,它可以反映激光照明区域内物体及传播介质的物理性质和动态变化。 (3)随机过程,统计方法研究散斑的强度分布,对比度和大小分布等。

2.散斑的概念及研究方法 激光自散射体的表面漫反射或通过一个透明散射体(例如毛玻璃)时,在散射表面或附近的光场中可以观察到一种无规分布的亮暗斑点,称为激光散斑(laser Speckles)或斑纹。 激光散斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、对比度和散斑运动规律等特点的认识。3. 散斑的成因及散斑的类型 在光场通过自由空间传播的条件下,从可见光波长这个尺度看,物体的表面一般都很粗糙,这样的表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。对比较粗糙的表面来说,不同衍射单元给入射光引入的附加位相之差可达2π的若干倍。经由表面上不同面元透射或反射的光振动在空间相遇时将发生干涉。由于诸面元无规分布而且数量很大,随着观察点的改变,干涉效果将急剧而无规地变化,从而形成具有无规分布的颗粒

激光主动成像制导雷达的研究方向

激光主动成像制导雷达的研究方向 刘立宝1 蔡喜平2 乔立杰2 杨 洋2 (哈尔滨工业大学威海分校理学系1 威海 264209) (哈尔滨工业大学应用物理系2 哈尔滨 150001) 文摘:文中介绍了国外制导用激光成像雷达近年来的发展情况,总结提出了激光主动成像制导雷达的研究方向。CO2激光成像雷达系统效率高,大气传输性能好,信息处理技术成熟,易于实现高灵敏度外差探测和三维成像,曾经是主要的研究对象;固体激光雷达系统具有系统质量轻、价格低,探测器不需要制冷的独特优点正成为现在研究热点;二极管激光成像雷达体积小、造价低、寿命长、可靠性高、功耗低,可采用室温探测,有着很大的发展前途。 关键词: 激光雷达 成像 制导 R esearch of active im aging guiding lidar system Liu Libao1 Cai Xiping2 Qiao Lijie2 Yang Yang2 (Department of Science,Weihai Campus,Harbin Institute of Technology1, Weihai, China, 264209) (Department of Applied Physics,Harbin Institute of Technology2, Harbin, China, 150001) Abstract:In this paper,the latest development of imaging guiding lidar overseas is introduced, and the future of that is predicted.The CO2lidar system has the advantages of higher efficiency,bet2 ter transmission capability in air,more developed information processing technology,easy to actualize the coherent detection with high sensitivity,and3D imaging,so it has been the main object for study2 ing.For the special excellence of light weight,lower price,and detector without cooling,the solid imaging lidar system is now being a hot spot of research.With well outlook,the diode lidar system has got more characteristics than the systems before. K eyw ords: Lidar Imaging Guidance 1999206224收稿 1999212220修回作者简介:刘立宝 男 31岁 讲师 从事光学成像研究及教学工作。 第29卷第2期 红外与激光工程 2000年4月Vol.29No.2 Infrared and Laser Engineering A pr.2000

激光散斑测量技术与应用研究

激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,选题较为合理。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80 激光散斑测量技术与应用研究 1 前言 近些年来,激光散斑计量技术发展迅速,已在许多领域得到了广泛应用。迄今为止,散斑测量技术经历了两个发展阶段:第一阶段1965-1978年,这一发展阶段以纯光学的相干计量技术为主,形成了一系列纯光学的全息散斑计量方法。对计量机理的解释,主要是用传统的干涉计量理论。第二阶段70年代末开始,这一发展阶段是以光电结合的精密计量技术为主的,全息散斑计量技术向着高精度、高速度及自动化方向发展,同时,发展出了用统计学方法解释的新理论,该理论更适合描述空间随机分布光场。 激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,主要有:直接照相法,双曝光法,电子散斑干涉法,错位散斑干涉法和散斑相关测量技术等。它具有全场,非接触,高精度,高灵敏度和实时快速等优点。现已广泛应用于振动,位移,形变,断裂及粗糙度的测量等方面,成为无损计量领域的有效工具,是当前国际上的热门研究课题之一。 图1.1 激光散斑的技术和应用发展时间路线图 2 激光散斑测量基本理论 1)散斑的形成 一般地说,电磁波以至粒子束经受介质的无规散射后,其散射场常会呈现确定分布的斑纹结构,这就是所谓的散斑。散斑的形成必须具备两个基本条件: 1)必须有可能发生散射光的粗糙表面。为了使散射光较均匀,则粗糙表面的深度必须大于波长; 2)入射光线的相干度要足够高,例如使用激光 从可见光波长这个尺度看,粗糙的物体表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。相干光照射时,不同的面元对

激光雷达在军事中的应用

激光雷达在军事中的应用 摘要:本文简要介绍激光雷达的特点、激光雷达探测的基本物理原理及其在军事领域的应用现状.Laser rader’s character was briefly introduced in this essay.Besides,its elementary physical fundamental was also introduced as well al its use from military field. 关键词:激光雷达;探测;军事应用 1引言 激光雷达是现代激光技术与传统雷达技术相结合的产物,由发射机、天线、接收机、跟踪架及信息处理等部分组成。发射机是各种形式的激光器,如二氧化碳激光器、掺钕钇铝石榴石激光器半导体激光器及波长可调谐的固体激光器等;天线是光学望远镜;接收机采用各种形式的光电探测器,如光电倍增管、半导体光电二极管、雪崩光电二极管、红外和可见光多元探测器件等。激光雷达采用脉冲或连续波2种工作方式即为直接探测和外差探测。它像传统的微波雷达一样,由雷达向目标发射波束,然后接收目标反射回来的信号,并将其与发射信号对比,获得目标的距离、速度以及姿态等参数.但是它又不同于传统的微波雷达,它发射的不是微波束,而是激光束,使激光雷达具有不同于普通微波雷达的特点. 根据激光器的不同,激光雷达可工作在红外光谱、可见光谱和紫外光谱的波段上.相对于工作在米波至毫米波波段的微波雷达而言,激光雷达的工作波长短,是微波雷达的万分之一到千分之一,根据光学仪器的分辨率与波长成反比的原理,利用激光雷达可以获得极高的角分辨率和距离分辨率,通常角分辨率不低于0.1mrad ,距离分辨率可达0.1m , 利用多普勒效应可以获得10m / s 以内的速度分辨率.这些指标是一般微波雷达难以达到的,因此激光雷达可获得比微波雷达清晰得多的目标图像。 激光束的方向性好、能量集中,在20km 外,其光束也只有茶杯口大小,因而敌方难以截获,而且激光束的抗电磁干扰能力强,难以受到敌方有源干扰的影响. 由于各种地物回波影响,因而在低空存在微波雷达无法探测的盲区.而对于激光雷达,只有被激光照射的目标才能产生反射,不存在低空地物回波的影响,所以激光雷达的低空探测性能好.激光雷达体积小、重量轻,有的整套激光雷达系统的重量仅几十千克.例如为了适应海军陆战队的需要,美国桑迪亚国家实验室和伯恩斯公司都提出了手持激光雷达的设计方案.相对于重达数吨、乃至数十吨的微波雷达而言,激光雷达的机动性能显然要好得多. 任何事物都是一分为二的,激光雷达也有自身的缺陷.激光光束窄、方向性好,虽然表现出能量集中的优点,但不宜用作战场监视雷达搜索大空域.而且激光的传输受环境影响大,尤其是在雨、雪、雾的天气,激光在传输过程中的衰减更大.当然,激光在大气层外传输时不易衰减,有其得天独厚的优势.经过几十年的努力,科学家们趋利避害,已研制出多种类型的军用激光雷达.激光雷达在军事上可用于对各种飞行目标轨迹的测量。如对导弹对卫星的精密定轨等。激光雷达与红外、电视等光电设备相结合,组成地面、舰载和机载的火力控制系统对目标进行搜索、识别、跟踪和测量。由于激光雷达可以获取目标的三维图像及速度信息,有利于识别隐身目标。激光雷达可以对大气进行监测,遥测大气中的污染和毒剂,还可测量大气的温度、湿度、风速、能见度及云层高度。用激激光器作为辐射源的雷达。 2. 用干战场侦察的激光雷达 众所周知,普通的成像技术(如电视摄像、航空摄影及红外成像等)获得的场景图像都是反映被摄区域辐射强度几何分布的图像,而激光雷达可以通过采集方位角一俯冲角一距离一速度一强度等三维数据,再将这些数据以图像的形式显示出来,从而可产生极高分辨率的辐射强度几何图像、距离图像、速度图像等,因而它提供了普通成像技术所不能提供的信息. 例如美国桑迪亚国家实验库研制的一种激光雷达,激光器功率为120MW ,显示屏幕的像素为64

固态激光雷达研究进展

190218-1 DOI: 10.12086/oee.2019.190218 固态激光雷达研究进展 陈敬业,时尧成* 浙江大学现代光学仪器国家重点实验室,浙江 杭州 310058 摘要:激光雷达可以高精度、高准确度地获取目标的距离、速度等信息或者实现目标成像,在测绘、导航等领域具有重要作用。本文首先介绍了从机械式向全固态过渡的微机械系统激光雷达解决方案;其次针对激光雷达全固态的发展需求,介绍了面阵闪光、相控阵激光雷达的基本原理和典型实现方法,从液晶、光波导材料等研究方向阐述相控阵激光雷达研究现状;最后总结了目前激光雷达存在的问题及不同的解决方案,并对未来发展趋势进行了展望。 关键词:激光雷达;微机电系统;闪光;光学相控阵 中图分类号:TN249 文献标志码:A 引用格式:陈敬业,时尧成. 固态激光雷达研究进展[J]. 光电工程,2019,46(7): 190218 Research progress in solid-state LiDAR Chen Jingye, Shi Yaocheng * State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, Zhejiang 310058, China Abstract: Light detection and ranging (LiDAR) system can be used to capture the distances and speeds of the tar-gets with high resolution and high accuracy, and can also form imaging. It is important for the applications such as mapping, and navigation, et al. This paper introduces the LiDAR solution based on micro-electromechanical system (MEMS) is a transitional scheme from mechanical one to solid-state. Meanwhile, in terms of the requirement of sol-id-state, the principles of Flash and optical phased array LiDAR are introduced in this paper. At the same time, the miniaturization trend of LiDAR is presented with optical phased array based on liquid crystal (LC) and integrated optical waveguides. At last, the performances and open issues of the solutions for LiDAR are concluded and the development trends of LiDAR are summarized with outlook. Keywords: LiDAR; MEMS; Flash; optical phased array Citation: Chen J Y , Shi Y C . Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering , 2019, 46(7): 190218 1 引 言 雷达技术作为人类感知世界的“眼睛”,具备对于 人类视觉范围以外、中远距离的环境感知的能力,在 现代军事和民用领域都扮演着重要的角色[1-4]。众所周 知的毫米波雷达、微波雷达、超声波雷达等传统技术发展历程较长,技术相对成熟,激光雷达(LiDAR)相比传统雷达的工作频段,光频段的波长较短,因而可以极大提高雷达的距离分辨力、角分辨力、速度分辨力, —————————————————— 收稿日期:2019-05-05; 收到修改稿日期:2019-06-06 基金项目:国家自然科学基金资助项目(11861121002) 作者简介:陈敬业(1993-),男,博士研究生,主要从事集成光电子器件的研究。E-mail :jingyechen@https://www.360docs.net/doc/884229487.html, 通信作者:时尧成(1981-),男,博士,教授,主要从事光通信、光互连、片上相控阵激光雷达、集成光电子器件的研究。 E-mail :yaocheng@https://www.360docs.net/doc/884229487.html,

激光散斑检测中剪切散斑干涉术和相移ESPI技术介绍讲解

激光散斑检测中剪切散斑干涉术和相移ESPI技术介绍 孙小勇周克印王开福 (南京航空航天大学无损检测中心南京中国210016) 摘要:本文介绍了剪切散斑干涉术和相移ESPI技术成像的原理,对剪切散斑干涉术和相移ESPI技术应用于无损检测领域中散斑图像的获取方法进行了说明,列举了两种方法所得的散斑图,并比较了剪切散斑干涉术和相移ESPI技术在无损检测领域的应用,可为激光散斑检测技术应用到无损检测工作提供有益的参考。 关键词:无损检测剪切散斑干涉术相移ESPI技术 引言:激光散斑检测技术在无损检测应用广泛。与非光测技术相比,激光散斑检测技术具有非接触,高精度和全场等优点,是无损检测领域的一种重要和新兴的检测方法,随着激光散斑测量技术的发展,采用CCD摄像机输出干涉图像信号,可直接将输出的数字化信号与计算机连接,自动处理,并可在计算机屏幕上实时观察到干涉图形,现场应用十分方便。 在激光散斑应用于无损检测领域过程中,出现了剪切散斑干涉和相移ESPI两种技术,本文将就两种技术进行介绍并比较其在应用过程中的差异。 1、剪切散斑干涉技术: 1.1剪切散斑干涉的原理 电子剪切散斑干涉技术能直接测定位移的微分,对于应变非常有利。其基本原理是一般散斑干涉测量和剪切机理的结合,其装置是在一般散斑干涉测量光路的透镜前加上错位元件一剪切镜,通过不同的剪切元件,形成剪切散斑。其光路如图1所示,由激光器发出的激光经扩束镜照射在具有漫反射的物体上时,漫反射的光线通过剪切镜将产生偏折,在像平面上产生两个错位的像。它们在像平面上互相干涉,形成散斑干涉图像。该图像通过透镜由CCD经图像卡采集到计算机中,并对

激光散斑成像的研究进展

激光散斑成像的研究进展 摘要:事实上激光散斑成像在我们的生活中早就得到了广泛的应用、只是我们平常没有注意而已。例如在医学方面:利用激光散斑成像仪监测肠系膜上微循环血流时空响应特性,此发明一种利用激光散斑成像仪监测肠系膜上微循环血流时空响应特性的方法,包括光路和成像系统。光路由氦氖激光器发出的光束耦合到光纤束形成均匀扩散光束构成;成像系统由带CCD相机的立体显微镜、图像采集卡与图像采集控制软件、信号分析软件构成(1)。利用激光散斑成像监测光动力治疗的血管损伤效应,研究表明,通过对血管管径和血流速度的监测,激光散斑衬比成像技术可以用于评估光动力治疗过程中的肿瘤周围血管损伤效应(2)。在与环境相关的方面:近几年,研究出了一种先进的方法检测环境污染浓度的方法,提出了一种利用激光散斑和散斑照相技术的污染扩散非定常瞬时全场浓度测量的新方法。根据污染烟雾粒子成像、粒子散射、统计光学以及数字图像处理技术,从理论上详细论证了浓度场全场测量的原理和此方法测量的局限性,为进一步设计浓度场测量系统提供了参考依据(3)。当然激光散斑成像,主要是用在成像方面。特别是现代、随着照相技术的快速发展,激光散斑成像占据了越来越重要的地位。 关键词:激光散斑成像技术成像监测时空散斑效应外差探测信号引言:激光散斑技术由来已久,在牛顿的那个时代就已经开始被人们认识,那时牛顿就已经认识到“恒星闪烁”而“行星不闪烁”。随科学技术的快速发展,激光散斑得到了越来越重要的应用。是在成像方面,可以利用激光成像技术研究坐骨神经刺激时大老鼠躯体的感觉;在军事方面,有了合成孔径激光雷达监测激光散斑时空效应。 激光散斑的基础知识 对于激光散斑在很久以前人类就已经开始了研究。1730年牛顿已经注意到"恒星闪烁"而行星不闪烁,光源发出的光被随机介质散射在空间形成的一种斑纹。1960年世界出现了激光器,高度相干性的激光照在粗糙表面很容易看到这种图样,散斑携带大量有用信息。散斑在工程技术方面等各方面有广泛的应用。散斑的理论是统计光学的一部分,与光的相干理论在很多地方相似和相通。最初人们主要研究如何减弱散斑的影响,在研究的过程中人们发现散斑携带了大量的光束和光束所通过的物体大量信息。于是产生了许多的应用。例如用散光的对比度测量物体的粗糙度,利用散斑的动态情况测量物体的运动速度,利用散斑进行光学处理,甚至利用散斑验光等。

成像激光雷达的无人机载技术探讨

成像激光雷达的无人机载技术探讨 发表时间:2018-03-21T16:26:32.870Z 来源:《基层建设》2017年第34期作者:胡亮闫小华刘凯 [导读] 摘要:作为一种主动成像激光雷达成像方法,在低光照条件下,在复杂背景条件下获得高分辨率的远程场景前景广阔。 天津市津典工程勘测有限公司天津 300222 摘要:作为一种主动成像激光雷达成像方法,在低光照条件下,在复杂背景条件下获得高分辨率的远程场景前景广阔。针对高压输电线路巡检周期长,工作强度大,不能保证检查结果的客观性和完整性的问题,无人机(uav)3 d激光雷达情报研究输电线路缺陷识别方法。方法首先采用自动分类方法,对走廊的三维点云进行重新采样和分类。其次,将数据自动划分为地面、植被、杆塔和导线等四类,并结合人工解释,确定低电源线、高速公路等类别;最后,根据国家网络的规定,提取出导线的安全缺陷和周围的地面。 关键词:成像激光雷达;无人机载;技术探讨 1前言 无人驾驶飞行器(uav),由无线电遥控设备或机载程序控制系统操作,已经发展了一个世纪。自20世纪80年代以来,随着航空、电子、信息、材料等技术的发展,无人机技术取得了长足的进步。无人机的使用在现代战争中得到了广泛应用,促使世界上许多国家以更大的热情发展和生产无人机。无人机(uav)的蓬勃发展和广泛应用取决于自身具有显著的优势:没有人员伤亡的风险,节省成本,使用无人机(uav)不考虑驾驶员因素。其次,电机性能良好,具有较强的生存能力,相无人飞行器(uav)轻量、体积小、机动能力强、易于使用、对使用环境要求低、着陆地点、具有较高的生存能力;第三,应用领域广泛,无人机(uav)在战场侦察等军事应用,战斗,攻击,建立其独特的位置在突如其来的灾难和紧急事件监测中发挥了重要作用,在航空摄影,地图测绘、环境监测、矿产资源勘探、动物保护和农业和许多其他应用程序变得越来越普遍在民事领域。 2成像激光雷达常见类型 成像激光雷达可分为扫描式、非扫描式和合成孔径三大类。扫描类型包括光学扫描类型和电子扫描类型。非扫描类型包括阵列检测,信号调制和条形管,激光照明是工作时间的要求,因此也被称为闪光类型或照明。非扫描激光检测成像可以基于雪崩光电二极管(APD)等多种阵列探测器,并结合距离选择或各种信号调制方法。条纹是一种真空管光电成像装置,基于瞬态光学工作中的弱信号测量原理,应用于激光雷达系统,可以实现宽场、高帧频、高距离分辨率成像,以探测水下目标。合成孔径激光雷达在工作波长上的某些情况下,系统光阑的空间分辨率随距离的增大而减小,使用合成孔径雷达工作原理,实现高分辨率成像激光探测远距离。如果激光雷达不移动,目标移动,则是反合成孔径激光雷达。 3成像激光雷达主要研究进展 3.1扫描型成像激光雷达 扫描成像激光雷达技术相对成熟,其产品已应用于工业建模、遥感、测绘等领域。该原理是基于APD单元探测器,类似于光束指向一个受控制的窄场激光测距仪。传输和接收光路可与光学孔径共享,以压缩系统结构,但需要解决串扰问题。光束扫描模式有两种类型:光扫描(机械运动)和电子扫描(非机械)。系统工作时,狭窄的激光束在给定区域逐点扫描,接收回波,并记录每个相应的扫描角度和时间信息,扫描角点的位置和距离,采集、处理、显示,在一定的顺序对形成扫描区域的三维图像。 3.2固定成像激光雷达 非扫描成像激光雷达阵列探测器的成像速度和高帧频、大视场、体积小的优点,因为没有束扫描,系统大大简化,减少了体积,低质量,与此同时,激光脉冲重复率和低光束准直发射和接收之间的需求。但由于发射的激光照射整个成像检测区域,并接收激光应均匀分布在阵列探测器检测单元,所以发射(或接收)梁均质化处理,这在一定程度上,降低激光的发射峰,没有充分利用激光强度。非扫描成像激光雷达常用的距离选通技术,变换的空间扫描目标时域扫描,只有当激光回波脉冲探测器选通工作,同时抑制后向散射的影响激光大气传输领域,为目标的距离信息和辅助系统。甚至一些系统也特别添加了一个测距通道来精确地设置距离和宽度。 3.3合成孔径激光雷达 直接安装在飞机以恒定速度,其光学传输/接收天线阵列,合成孔径激光雷达使用相对目标运动,实际尺寸较小的等效大孔径天线孔径天线,从而打破光学孔径衍射极限的限制,实现高空间分辨率,成像激光在很长一段距离。如果目标在移动,则可以暂停直升机,利用逆合成孔径技术实现目标激光成像。合成孔径激光雷达的动态范围在微动目标检测中具有明显的优势。目前国内外尚未进入工程应用阶段,需要进行进一步的研究。 4无人机载总体设计考虑 在长距离、高分辨率、轻量化、低功耗、高实时性和人眼安全性的基础上,国外机载三维成像激光雷达的发展特性,这也是无人机(uav)负载的发展方向。麻省理工学院林肯实验室开发了创——我,Gen - II,Gen - III和加强版的机载三维成像探测系统,DARPA的高隐身目标识别进行了高分辨率成像的小型机载激光三维成像传感器(拼图)的研究和开发,其设备的大小和性能类似于中小型无人机(uav)负载要求。原则上说,各种成像激光雷达很可能适用于无人机(uav),但技术系统的具体选择主要来自于应用需求、技术成熟度和平台适应性。 4.1总体结构形式 无人驾驶飞行器成像激光雷达通常用于查看、降低或侧视,并以某一瞬时视场(或扫描场)成像某一区域。为了避免机体的振动或振动,一般系统结构包括一个陀螺仪稳定平台,以维持视轴的稳定性,而定位或调距可用于图像不同的方向。小系统可以被制成一个整体、插件或隐藏(到)光学窗口的安装,否则可以制造裂变结构,只有激光发射和接收光学部件安装在陀螺稳定平台上。 4.2采用扫描成像体制实现远距离激光成像 扫描激光雷达系统适用于成像探测距离,但不快速。窄激光系统的工作原理,使用光机或电子扫描激光区域逐点测量的发射和接收,通过激光脉冲飞行时间(TOF)获得目标距离,根据机载INS / GPS导航,飞机平台的运动和姿态参数和激光扫描角目标方位和仰角,距离三维坐标,最后通过数据处理和相应的算法来获得三维图像的目标或区域进行测试。 4.3高帧频激光成像是通过非扫描成像系统实现的 基于阵列探测器的非扫描成像激光雷达适用于高帧频成像。利用衍射光谱法,将激光束分割成一个细束阵列,就像探测器阵列的元素

相关文档
最新文档