材料现代分析方法期末总结

材料现代分析方法期末总结
材料现代分析方法期末总结

材料分析方法习题

1、晶带定律:凡就是属于[uvw]晶带得晶面,它得晶面指数(hkl)都必须符合hu+kv+lw=0,通常把这种关系式称为晶带定律。

2、暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑参与成像得方法,称为暗场成像,所得图象为暗场像。

3、中心暗场像:用物镜光阑挡住透射束及其余衍射束,而只让一束强衍射束通过光阑参与成像得方法,称为暗场成像,所得图象为暗场像。如果物镜光阑处于光轴位置,所得图象为中心暗场像。

4、衍射衬度:入射电子束与薄晶体样品之间相互作用后,样品内不同部位组织得成像电子束在像平面上存在强度差别得反映。

衍射衬度主要就是由于晶体试样满足布拉格反射条件程度差异以及结构振幅不同而形成电子图象反差。

5、背散射电子:入射电子被样品原子散射回来得部分;它包括弹性散射与非弹性散射部分;背散射电子得作用深度大,产额大小取决于样品原子种类与样品形状。

6、吸收电子:入射电子进入样品后,经多次非弹性散射,能量损失殆尽(假定样品有足够厚度,没有透射电子产生),最后被样品吸收。吸收电流像可以反映原子序数衬度,同样也可以用来进行定性得微区成分分析。

7、特征X射线:原子得内层电子受到激发以后,在能级跃迁过程中直接释放得具有特征能量与波长得一种电磁波辐射。利用特征X射线可以进行成分分析。

8、二次电子:二次电子就是指被入射电子轰击出来得核外电子。二次电子来自表面50-100 ?得区域,能量为0-50 eV。它对试样表面状态非常敏感,能有效地显示试样表面得微观形貌。

9、俄歇电子:如果原子内层电子能级跃迁过程中释放出来得能量不以X射线得形式释放,而就是用该能量将核外另一电子打出,脱离原子变为二次电子,这种二次电子叫做俄歇电子。俄歇电子信号适用于表层化学成分分析。

简答题

1、什么叫“相干散射”?

答:相干散射,物质中得电子在X射线电场得作用下,产生强迫振动。这样每个电子在各方向产生与入射X射线同频率得电磁波。新得散射波之间发生得干涉现象称为相干散射。

2、特征x射线谱得产生机理。

答:高速运动得粒子(电子或光子)将靶材原子核外电子击出去,或击到原子系统外,或填到未满得高能级上,原子得系统能量升高,处于激发态。为趋于稳定,原子系统自发向低能态转化:较高能级上得电子向低能级上得空位跃迁,这一降低得能量以一个光子得形式辐射出来变成光子能量,且这降低能量为固定值(因原子序数固定),因而λ固定,所以辐射出特征X射线谱。

3.布拉格方程2dsinθ=λ中得d、θ、λ分别表示什么?布拉格方程式有何用途?答:dHKL表示HKL晶面得面网间距,θ角表示掠过角或布拉格角,即入射X 射线或衍射线与面网间得夹角,λ表示入射X射线得波长。该公式有二个方面用途:(1)已知晶体得d值。通过测量θ,求特征X射线得λ,并通过λ判断产生特征X射线得元素。这主要应用于X射线荧光光谱仪与电子探针中。(2)已知入射X射线得波长,通过测量θ,求晶面间距。并通过晶面间距,测定晶体结构或进行物相分析。

4.面心立方、体心立方、晶体结构X衍射发生消光得晶面指数规律。

答:常见晶体得结构消光规律

面心立方 h,k,l 奇偶混合;

体心立方 h+k+l=奇数;

5、试总结德拜法衍射花样得背底来源,并提出一些防止与减少背底得措施。

答:德拜法衍射花样得背底来源就是入射波得非单色光、进入试样后出生得非相干散射、空气对X 射线得散射、温度波动引起得热散射等。采取得措施有尽量使用单色光、缩短曝光时间、恒温试验等。

6、物相定性分析得原理就是什么?

答:物相定性分析得原理:X射线在某种晶体上得衍射必然反映出带有晶体特征得特定得衍射花样(衍射位置θ、衍射强度I),而没有两种结晶物质会给出完全相同得衍射花样,所以我们才能根据衍射花样与晶体结构一一对应得关系,来确定某一物相。

7、物相定量分析得原理就是什么?试述用K值法进行物相定量分析得过程。

答:根据X射线衍射强度公式,某一物相得相对含量得增加,其衍射线得强度亦随之增加,所以通过衍射线强度得数值可以确定对应物相得相对含量。由于各个物相对X射线得吸收影响不同,X射线衍射强度与该物相得相对含量之间不成线性比例关系,必须加以修正。这就是内标法得一种,就是事先在待测样品中加入纯元素,然后测出定标曲线得斜率即K值。

当要进行这类待测材料衍射分析时,已知K值与标准物相质量分数ωs,只要测出a相强度Ia与标准物相得强度Is得比值Ia/Is就可以求出a相得质量分数ωa。

8、实验中选择X射线管以及滤波片得原则就是什么?已知一个以Fe为主要成分得样品,试选择合适得X射线管与合适得滤波片?

答:实验中选择X射线管得原则就是为避免或减少产生荧光辐射,应当避免使用比样品中主元素得原子序数大2~6(尤其就是2)得材料作靶材得X射线管。

选择滤波片得原则就是X射线分析中,在X射线管与样品之间一个滤波片,以滤掉Kβ线。滤波片得材料依靶得材料而定,一般采用比靶材得原子序数小1或2得材料。分析以铁为主得样品,应该选用Co或Fe靶得X射线管,它们得分别相应选择Fe 与Mn为滤波片。

9、试述X射线衍射单物相定性基本原理及其分析步骤?

答:X射线物相分析得基本原理就是每一种结晶物质都有自己独特得晶体结构,即特定点阵类型、晶胞大小、原子得数目与原子在晶胞中得排列等。因此,从布拉格公式与强度公式知道,当X射线通过晶体时,每一种结晶物质都有自己独特得衍射花样,衍射花样得特征可以用各个反射晶面得晶面间距值d与反射线得强度I来表征。其中晶面间距值d与晶胞得形状与大小有关,相对强度I则与质点得种类及其在晶胞中得位置有关。通过与物相衍射分析标准数据比较鉴定物相。

单相物质定性分析得基本步骤就是:

(1)计算或查找出衍射图谱上每根峰得d值与I值;

(2)利用I值最大得三根强线得对应d值查找索引,找出基本符合得物相名称及卡片号;

(3)将实测得d、I值与卡片上得数据一一对照,若基本符合,就可定为该物相。

10、连续X射线与特征X射线得产生

连续X射线根据经典物理学得理论,一个带负电荷得电子作加速运动时,电子周围得电磁场将发生急剧变化,此时必然要产生一个电磁波,或至少一个电磁脉冲。由于极大数量得电子射到阳极上得时间与条件不可能相同,因而得到得电磁波将具有连续得各种波长,形成连续X射线谱。

特征X射线处于激发状态得原子有自发回到稳定状态得倾向,此时外层电子将填充内层空位,相应伴随着原子能量得降低。原子从高能态变成低能态时,多出得能量以X射线形式辐射出来。因物质一定,原子结构一定,两特定能级间得能量差一定,故辐射出得特征X射波长一定。

11、说明多晶单晶及非晶电子衍射花样得特征及形成原

答:1、单晶电子衍射成像原理与衍射花样特征

因电子衍射得衍射角很小,故只有O*附近落在厄瓦尔德球面上得那些倒易结点所代表得晶面组满足布拉格条件而产生衍射束,产生衍射得厄瓦尔德球面可近似瞧成一平面。电子衍射花样即为零层倒易面中满足衍射条件得那些倒易阵点得放大像。花样特征:薄单晶体产生大量强度不等、排列十分规则得衍射斑点组成,

2、多晶体得电子衍射成像原理与花样特征

多晶试样可以瞧成就是由许多取向任意得小单晶组成得。故可设想让一个小单晶得倒易点阵绕原点旋转,同一反射面hkl得各等价倒易点(即(hkl)平面族中各平面)将分布在以1/dhkl为半径得球面上,而不同得反射面,其等价倒易点将分布在半径不同得同心球面上,这些球面与反射球面相截,得到一系列同心园环,自反射球心向各园环连线,投影到屏上,就就是多晶电子衍射图。

花样特征:多晶电子衍射图就是一系列同心园环,园环得半径与衍射面得面间距有关。

3、非晶体得花样特征与形成原理

点阵常数较大得晶体,倒易空间中倒易面间距较小。如果晶体很薄,则倒易杆较长,因此与爱瓦尔德球面相接触得并不只就是零倒易截面,上层或下层得倒易平面上得倒易杆均有可能与爱瓦尔德球面相接触,从而形成所谓高阶劳厄区。

12、透射电子显微镜得成像原理为啥就是小孔成像

成像原理:电子枪发射得电子束在阳极加速电压作用下加速,经聚光镜会聚成平行电子束照明样品,穿过样品得电子束携带样品本身得结构信息,经物镜、中间镜、投影镜接力聚焦放大,以图像或衍射谱形式显示于荧光屏。

因为:1、小孔成像可以减小球差,像散,色差对分变率得影响,达到提高分辨率得目得。

2.正就是由于α很小,电子显微镜得景深与焦长都很大,对图像得聚焦操

作与图像得照相记录带来了方便。

13、比较光学与投射电子显微镜成像得异同

不同点 1光镜用可见光作照明束,电镜以电子束作照明束。2光镜用玻璃透镜,电镜用电磁透镜。3光镜对组成相形貌分析,电镜兼有组成相形貌与结构分析相同点成像原理相似

14、为啥投射电镜得样品要求非常薄而扫描电镜没有此要求

透射电子显微镜成像时,电子束就是透过样品成像。由于电子束得穿透能力比较低,用于透射电子显微镜分析得样品必须很薄。

由于扫描电镜就是依靠高能电子束与样品物质得交互作用,产生了各种信息:二次电子、背散射电子、吸收电子、X射线、俄歇电子、阴极发光与透射电于等。且这些信息产生得深度不同,故对厚度无明确要求

15、说明透射电镜得工作原理及在材料科学研究中得应用

工作原理:电子枪发射得电子束在阳极加速电压作用下加速,经聚光镜会聚成平行电子束照明样品,穿过样品得电子束携带样品本身得结构信息,经物镜、中间镜、投影镜接力聚焦放大,以图像或衍射谱形式显示于荧光屏。

应用:早期得透射电子显微镜功能主要就是观察样品形貌,后来发展到可以通过电子衍射原位分析样品得晶体结构。具有能将形貌与晶体结构原位观察得两个功能就是其它结构分析仪器(如光镜与X射线衍射仪)所不具备得。

透射电子显微镜增加附件后,其功能可以从原来得样品内部组织形貌观察(TEM)、原位得电子衍射分析(Diff),发展到还可以进行原位得成分分析(能谱仪EDS、特征能量损失谱EELS)、表面形貌观察(二次电子像SED、背散射电子像BED)与透射扫描像(STEM)

16 制备薄膜样品得基本要求就是啥具体工艺过程如何双喷减薄与离子减薄各适用于制备啥样品

答:基本要求:1、薄膜样品得组织结构必须与大块样品相同,在制备过程中,这些组织结构不发生变化。2、薄膜样品厚度必须足够薄,只有能被电子束透过,才有可能进行观察与分析。3、薄膜样品应有一定强度与刚度,在制备,夹持与操作过程中,在一定得机械力作用下不会引起变形或损坏。4、在样品制备过程中不容许表面产生氧化与腐蚀。氧化与腐蚀会使样品得透明度下降,并造成多种假象。工艺过程:第一步就是从大块试样上切割厚度为0、3—0、5mm厚得薄片第二步骤就是样品得预先减薄。预先减薄得方法有两种,即机械法与化学法。

第三步骤就是最终减薄。最终减薄方法有两种,即双喷减薄与离子减薄。

适用得样品效率薄区大小操作难度仪器价格

双喷减薄金属与部分合金高小容易便宜

离子减薄矿物、陶瓷、

半导体及多相合金低大复杂昂贵

16、电子束入射固体样品表面会激发哪些信号,她们有哪些特点与用途

a、背散射电子特点:背散射电于就是指被固体样品中得原子核反弹回来得一部分入射电子。用途:利用背散射电子作为成像信号不仅能分析形貌特征,也可用来显示原子序数衬度,定性地进行成分分析。

b二次电子、特点:二次电子就是指被入射电子轰击出来得核外电子。扫描电子显微镜得分辨率通常就就是二次电子分辨率。二次电于产额随原于序数得变化不明显,它主要决定于表面形貌。用途:它对试样表面状态非常敏感,能有效地显示试样表面得微观形貌。

c、吸收电子特点:若把吸收电子信号作为调制图像得信号,则其衬度与二次电子像与背散射电子像得反差就是互补得。

用途:吸收电流像可以反映原子序数衬度,同样也可以用来进行定性得微区成分分析。

d、透射电子特点用途:如果样品厚度小于入射电子得有效穿透深度,那么就会有相当数量得入射电子能够穿过薄样品而成为透射电子。其中有些待征能量损失 E 得非弹性散射电子与分析区域得成分有关,因此,可以用特征能量损失电子配合电子能量分析器来进行微区成分分析。

e、特征X射线特点用途:特征X射线就是原子得内层电子受到激发以后,在能级跃迁过程中直接释放得具有特征能量与波长得一种电磁波辐射。如果用X射线探测器测到了样品微区中存在某一特征波长,就可以判定该微区中存在得相应元素。

f、俄歇电子特点用途:俄歇电子就是由试样表面极有限得几个原于层中发出得,这说明俄歇电子信号适用于表层化学成分分析。

17、二次电子像得衬度与背射电子像得衬度各有啥特点

二次:特别适用于显示形貌衬度。一般来说,凸出得尖棱、小粒子、较陡斜面二次电子产额多,图像亮;平面上二次电子产额小,图像暗;凹面图像暗。(二次电子像形貌衬度得分辨率比较高且不易形成阴影)

背散射电子:无法收集到背散射电子而成一片阴影,图像衬度大,会掩盖许多细节。

18、什么就是衍射衬度?它与质厚衬度有什么区别?

答:由于样品中不同位相得衍射条件不同而造成得衬度差别叫衍射衬度。

它与质厚衬度得区别:

(1)质厚衬度就是建立在原子对电子散射得理论基础上得,而衍射衬度则就是建立在晶体对电子衍射基础之上。

(2)质厚衬度利用样品薄膜厚度得差别与平均原子序数得差别来获得衬度,而衍射衬度则就是利用不同晶粒得晶体学位相不同来获得衬度。

质厚衬度应用于非晶体复型样品成像中,而衍射衬度则应用于晶体薄膜样品成像中。

19、扫描电子显微镜有哪些特点?

答:与光学显微镜相比,扫描电子显微镜具有能连续改变放大倍率,高放大倍数,高分辨率得优点;扫描电镜得景深很大,特别适合断口分析观察;背散射电子成像还可以显示原子序数衬度。

与透射电子显微镜相比,扫描电镜观察得就是表面形貌,样品制备方便简单。20、与波谱仪相比,能谱仪在分析微区化学成分时有哪些优缺点?

答:能谱仪全称为能量分散谱仪(EDS),波谱仪全称为波长分散谱仪(WDS)。

Si(Li)能谱仪得优点:

(1)分析速度快

能谱仪可以同时接受与检测所有不同能量得X射线光子信号,故可在几分钟内分析与确定样品中含有得所有元素。

(2)灵敏度高

X射线收集立体角大,由于能谱仪中Si(Li)探头可以放在离发射源很近得地方(10㎝左右),无需经过晶体衍射,信号强度几乎没有损失,所以灵敏度高。此外,能谱仪可在低入射电子束流条件下工作,这有利于提高分析得空间分辨率。

(3)谱线重复性好

由于能谱仪结构比波谱仪简单,没有机械传动部分,因此稳定性与重复性好。(4)对样品表面没有特殊要求

能谱仪不必聚焦,因此对样品表面没有特殊要求,适合于粗糙表面得分析工作。能谱仪得缺点:

(1)能量分辨率低

峰背比低。由于能谱仪得探头直接对着样品,所以由背散射电子或X射线所激发产生得荧光X射线信号也被同时检测到,从而使得Si(Li)检测器检测到得特征谱线在强度提高得同时,背底也相应提高,谱线得重叠现象严重。故仪器分辨不同能量特征X射线得能力变差。能谱仪得能量分辨率(160eV)比波谱仪得能量分辨率(5eV)低。

(2)分析元素范围限制

带铍窗口得探测器可探测得元素范围为11Na~92U,而波谱仪可测定原子序数从4-92之间得所有元素。

(3)工作条件要求严格

Si(Li)探头必须始终保持在液氦冷却得低温状态,即使就是在不工作时也不能中断,否则晶体内Li得浓度分布状态就会因扩散而变化,导致探头功能下降甚至完全被破坏。

21、简述热差分析得原理

原理:差热分析就是在程序控制温度下,测量试样与参比物质之间得温度差ΔT与温度T(或时间t)关系得一种分析技术,所记录得曲线就是以ΔT为纵坐标,以T (或t)为横坐标得曲线,称为差热曲线或DTA曲线,反映了在程序升温过程中,ΔT与T或t得函数关系:ΔT = f ( T ) 或f ( t ) DTA检测得就是ΔT与温度得关系试样吸热ΔT<0

ΔT=Ts – Tr 试样放热ΔT>0

22、简述热差分析得应用

凡就是在加热(或冷却)过程中,因物理-化学变化而产生吸热或者放热效应得物质,均可以用差热分析法加以鉴定。其主要应用范围如下:

1)水

对于含吸附水、结晶水或者结构水得物质,在加热过程中失水时,发生吸热作用,在差热曲线上形成吸热峰。

2)气体

一些化学物质,如碳酸盐、硫酸盐及硫化物等,在加热过程中由于CO2、SO2等气体得放出,而产生吸热效应,在差热曲线上表现为吸热谷。不同类物质放出气体得温度不同,差热曲线得形态也不同,利用这种特征就可以对不同类物质进行区分鉴定。

3)变价

矿物中含有变价元素,在高温下发生氧化,由低价元素变为高价元素而放出热量,在差热曲线上表现为放热峰。变价元素不同,以及在晶格结构中得情况不同,则因氧化而产生放热效应得温度也不同。如Fe2+在340~450℃变成Fe3+。

4)重结晶

有些非晶态物质在加热过程中伴随有重结晶得现象发生,放出热量,在差热曲线上形成放热峰。此外,如果物质在加热过程中晶格结构被破坏,变为非晶态物质后发生晶格重构,则也形成放热峰。

5)晶型转变

有些物质在加热过程中由于晶型转变而吸收热量,在差热曲线上形成吸热谷。因而适合对金属或者合金、一些无机矿物进行分析鉴定。

差热分析操作简单,但在实际工作中往往发现同一试样在不同仪器上测量,或不同得人在同一仪器上测量,所得到得差热曲线结果有差异。峰得最高温度、形状、面积与峰值大小都会发生一定变化。其主要原因就是因为热量与许多因素有关,传热情况比较复杂所造成得。虽然影响因素很多,但只要严格控制某种条件,仍可获得较好得重现性。

22、简述热差分析得应用影响因素

(1)气氛与压力得选择

气氛与压力可以影响样品化学反应与物理变化得平衡温度、峰形。因此,必须根据样品得性质选择适当得气氛与压力,有得样品易氧化,可以通入N2、Ne等惰性气体。

(2)升温速率得影响与选择

升温速率不仅影响峰温得位置,而且影响峰面积得大小,一般来说,在较快得升温速率下峰面积变大,峰变尖锐。但就是快得升温速率使试样分解偏离平衡条件得程度也大,因而易使基线漂移。更主要得可能导致相邻两个峰重叠,分辨力下降。较慢得升温速率,基线漂移小,使体系接近平衡条件,得到宽而浅得峰,也能使相邻两峰更好地分离,因而分辨力高。但测定时间长,需要仪器得灵敏度高。一般情况下选择10℃/min~15℃/min为宜。

(3)试样得预处理及用量

试样用量大,易使相邻两峰重叠,降低了分辨力。一般尽可能减少用量,最多大至毫克。样品得颗粒度在100目~200目左右,颗粒小可以改善导热条件,但太细可能会破坏样品得结晶度。对易分解产生气体得样品,颗粒应大一些。参比物得颗粒、装填情况及紧密程度应与试样一致,以减少基线得漂移。

(4)参比物得选择

要获得平稳得基线,参比物得选择很重要。要求参比物在加热或冷却过程中不发生任何变化,在整个升温过程中参比物得比热、导热系数、粒度尽可能与试样一致或相近。

23、三类残余应力对衍射峰得影响:

(1)第一类内应力,又称宏观残余应力,它就是由工件不同部分得宏观变形不均匀性引起得,故其应力平衡范围包括整个工件。这类残余应力所对应得畸变能不大,仅占总储存能得0、1%左右。会使衍射峰偏移。

(2)第二类内应力,又称微观残余应力,它就是由晶粒或亚晶粒之间得变形不均匀性产生得。其作用范围与晶粒尺寸相当,即在晶粒或亚晶粒之间保持平衡。会使衍射峰变宽。

(3)第三类内应力,又称点阵畸变。其作用范围就是几十至几百纳米,它就是由于工件在塑性变形中形成得大量点阵缺陷(如空位、间隙原子、位错等)引起得。会使衍射峰强度变低。

材料分析方法课后答案(更新至第十章)

材料分析方法课后练习题参考答案 2015-1-4 BY:二专业の学渣 材料科学与工程学院

3.讨论下列各组概念的关系 答案之一 (1)同一物质的吸收谱和发射谱; 答:λk吸收〈λkβ发射〈λkα发射 (2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:λkβ发射(靶)〈λk吸收(滤波片)〈λkα发射(靶)。任何材料对X射线的吸收都有一个Kα线和Kβ线。如Ni 的吸收限为0.14869 nm。也就是说它对0.14869nm波长及稍短波长的X射线有强烈的吸收。而对比0.14869稍长的X射线吸收很小。Cu靶X射线:Kα=0.15418nm Kβ=0.13922nm。 (3)X射线管靶材的发射谱与被照射试样的吸收谱。 答:Z靶≤Z样品+1 或Z靶>>Z样品 X射线管靶材的发射谱稍大于被照射试样的吸收谱,或X射线管靶材的发射谱大大小于被照射试样的吸收谱。在进行衍射分析时,总希望试样对X射线应尽可能少被吸收,获得高的衍射强度和低的背底。 答案之二 1)同一物质的吸收谱和发射谱; 答:当构成物质的分子或原子受到激发而发光,产生的光谱称为发射光谱,发射光谱的谱线与组成物质的元素及其外围电子的结构有关。吸收光谱是指光通过物质被吸收后的光谱,吸收光谱则决定于物质的化学结构,与分子中的双键有关。 2)X射线管靶材的发射谱与其配用的滤波片的吸收谱。 答:可以选择λK刚好位于辐射源的Kα和Kβ之间的金属薄片作为滤光片,放在X射线源和试样之间。这时滤光片对Kβ射线强烈吸收,而对Kα吸收却少。 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、非相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。

材料物理专业《材料分析测试方法A》作业

材料物理专业《材料分析测试方法A 》作业 第一章 电磁辐射与材料结构 一、教材习题 1-1 计算下列电磁辐射的有关参数: (1)波数为3030cm -1的芳烃红外吸收峰的波长(μm ); (2)5m 波长射频辐射的频率(MHz ); (3)588.995nm 钠线相应的光子能量(eV )。 1-3 某原子的一个光谱项为45F J ,试用能级示意图表示其光谱支项与塞曼能级。 1-5 下列原子核中,哪些核没有自旋角动量? 12C 6、19F 9、31P 15、16O 8、1H 1、14N 7。 1-8 分别在简单立方晶胞和面心立方晶胞中标明(001)、(002)和(003)面,并据此回答: 干涉指数表示的晶面上是否一定有原子分布?为什么? 1-9 已知某点阵∣a ∣=3?,∣b ∣=2?,γ = 60?,c ∥a ×b ,试用图解法求r *110与r *210。 1-10 下列哪些晶面属于]111[晶带? )331(),011(),101(),211(),231(),132(),111(。 二、补充习题 1、试求加速电压为1、10、100kV 时,电子的波长各是多少?考虑相对论修正后又各是多 少? 第二章 电磁辐射与材料的相互作用 一、教材习题 2-2 下列各光子能量(eV )各在何种电磁波谱域内?各与何种跃迁所需能量相适应? 1.2×106~1.2×102、6.2~1.7、0.5~0.02、2×10-2~4×10-7。 2-3 下列哪种跃迁不能产生? 31S 0—31P 1、31S 0—31D 2、33P 2—33D 3、43S 1—43P 1。 2-5 分子能级跃迁有哪些类型?紫外、可见光谱与红外光谱相比,各有何特点? 2-6 以Mg K α(λ=9.89?)辐射为激发源,由谱仪(功函数4eV )测得某元素(固体样品) X 射线光电子动能为981.5eV ,求此元素的电子结合能。 2-7 用能级示意图比较X 射线光电子、特征X 射线与俄歇电子的概念。 二、补充习题 1、俄歇电子能谱图与光电子能谱图的表示方法有何不同?为什么? 2、简述X 射线与固体相互作用产生的主要信息及据此建立的主要分析方法。 第三章 粒子(束)与材料的相互作用 一、教材习题 3-1 电子与固体作用产生多种粒子信号(教材图3-3),哪些对应入射电子?哪些是由电子 激发产生的?

材料现代分析方法试题及答案1

一、单项选择题(每题 2 分,共10 分) 3.表面形貌分析的手段包括【 d 】 (a)X 射线衍射(XRD)和扫描电镜(SEM)(b) SEM 和透射电镜(TEM) (c) 波谱仪(WDS)和X 射线光电子谱仪(XPS)(d) 扫描隧道显微镜(STM)和 SEM 4.透射电镜的两种主要功能:【b 】 (a)表面形貌和晶体结构(b)内部组织和晶体结构 (c)表面形貌和成分价键(d)内部组织和成分价键 二、判断题(正确的打√,错误的打×,每题2 分,共10 分) 1.透射电镜图像的衬度与样品成分无关。(×)2.扫描电镜的二次电子像的分辨率比背散射电子像更高。(√)3.透镜的数值孔径与折射率有关。(√)4.放大倍数是判断显微镜性能的根本指标。(×)5.在样品台转动的工作模式下,X射线衍射仪探头转动的角速度是样品转动角 速度的二倍。(√) 三、简答题(每题5 分,共25 分) 1. 扫描电镜的分辨率和哪些因素有关?为什么? 和所用的信号种类和束斑尺寸有关,因为不同信号的扩展效应不同,例如二次电子产生的区域比背散射电子小。束斑尺寸越小,产生信号的区域也小,分辨率就高。 1.透射电镜中如何获得明场像、暗场像和中心暗场像? 答:如果让透射束进入物镜光阑,而将衍射束挡掉,在成像模式下,就得到明场象。如果把物镜光阑孔套住一个衍射斑,而把透射束挡掉,就得到暗场像,将入射束倾斜,让某一衍射束与透射电镜的中心轴平行,且通过物镜光阑就得到中心暗场像。 2.简述能谱仪和波谱仪的工作原理。 答:能量色散谱仪主要由Si(Li)半导体探测器、在电子束照射下,样品发射所含元素的荧光标识X 射线,这些X 射线被Si(Li)半导体探测器吸收,进入探测器中被吸收的每一个X 射线光子都使硅电离成许多电子—空穴对,构成一个电流脉冲,经放大器转换成电压脉冲,脉冲高度与被吸收的光子能量成正比。最后得到以能量为横坐标、强度为纵坐标的X 射线能量色散谱。 在波谱仪中,在电子束照射下,样品发出所含元素的特征x 射线。若在样品上方水平放置一块具有适当晶面间距 d 的晶体,入射X 射线的波长、入射角和晶面间距三者符合布拉格方程时,这个特征波长的X 射线就会发生强烈衍射。波谱仪利用晶体衍射把不同波长的X 射线分开,即不同波长的X 射线将在各自满足布拉格方程的2θ方向上被检测器接收,最后得到以波长为横坐标、强度为纵坐标的X射线能量色散谱。 3.电子束与试样物质作用产生那些信号?说明其用途。 (1)二次电子。当入射电子和样品中原子的价电子发生非弹性散射作用时会损失其部分能量(约30~50 电子伏特),这部分能量激发核外电子脱离原子,能量大于材料逸出功的价电子可从样品表面逸出,变成真空中的自由电子,即二次电子。二次电子对试样表面状态非常敏感,能有效地显示试样表面的微观形貌。 (2)背散射电子。背散射电子是指被固体样品原子反射回来的一部分入射电子。既包括与样品中原子核作用而形成的弹性背散射电子,又包括与样品中核外电子作用而形成的非弹性散射电子。利用背反射电子作为成像信号不仅能分析形貌特征,也可以用来显示原子序数衬度,进行定性成分分析。 (3)X 射线。当入射电子和原子中内层电子发生非弹性散射作用时也会损失其部分能量(约

材料测试分析方法(究极版)

绪论 3分析测试技术的发展的三个阶段? 阶段一:分析化学学科的建立;主要以化学分析为主的阶段。 阶段二:分析仪器开始快速发展的阶段 阶段三:分析测试技术在快速、高灵敏、实时、连续、智能、信息化等方面迅速发展的阶段4现代材料分析的内容及四大类材料分析方法? 表面和内部组织形貌。包括材料的外观形貌(如纳米线、断口、裂纹等)、晶粒大小与形态、各种相的尺寸与形态、含量与分布、界面(表面、相界、晶界)、位向关系(新相与母相、孪生相)、晶体缺陷(点缺陷、位错、层错)、夹杂物、内应力。 晶体的相结构。各种相的结构,即晶体结构类型和晶体常数,和相组成。 化学成分和价键(电子)结构。包括宏观和微区化学成份(不同相的成份、基体与析出相的成份)、同种元素的不同价键类型和化学环境。 有机物的分子结构和官能团。 形貌分析、物相分析、成分与价键分析与分子结构分析四大类方法 四大分析:1图像分析:光学显微分析(透射光反射光),电子(扫描,透射),隧道扫描,原子力2物象:x射线衍射,电子衍射,中子衍射3化学4分子结构:红外,拉曼,荧光,核磁 获取物质的组成含量结构形态形貌及变化过程的技术 材料结构与性能的表征包括材料性能,微观性能,成分的测试与表征 6.现代材料测试技术的共同之处在哪里? 除了个别的测试手段(扫描探针显微镜)外,各种测试技术都是利用入射的电磁波或物质波(如X射线、高能电子束、可见光、红外线)与材料试样相互作用后产生的各种各样的物理信号(射线、高能电子束、可见光、红外线),探测这些出射的信号并进行分析处理,就课获得材料的显微结构、外观形貌、相组成、成分等信息。 9.试总结衍射花样的背底来源,并提出一些防止和减少背底的措施 衍射花样要素:衍射线的峰位、线形、强度 答:(I)花材的选用影晌背底; (2)滤波片的作用影响到背底;(3)样品的制备对背底的影响 措施:(1)选靶靶材产生的特征x射线(常用Kα射线)尽可能小的激发样品的荧光辐射,以降低衍射花样背底,使图像清晰。(2)滤波,k系特征辐射包括Ka和kβ射线,因两者波长不同,将使样品的产生两套方位不同得衍射花样;选择浪滋片材料,使λkβ靶<λk滤<λkα,Ka射线因因激发滤波片的荧光辐射而被吸收。(3)样品,样品晶粒为50μm左右,长时间研究,制样时尽量轻压,可减少背底。 11.X射线的性质; x射线是一种电磁波,波长范围:0.01~1000à X射线的波长与晶体中的原子问距同数量级,所以晶体可以用作衍射光栅。用来研究晶体结构,常用波长为0.5~2.5à 不同波长的x射线具有不同的用途。硬x射线:波长较短的硬x封线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。软x射线:波长较长的软x射线的能量较低,穿透性弱,可用干分析非金属的分析。用于金属探伤的x射线波长为0.05~0.1à当x射线与物质(原子、电子作用时,显示其粒子性,具有能量E=h 。产生光电效应和康普顿效应等 当x射线与x射线相互作用时,主要表现出波动性。 x射线的探测:荧光屏(ZnS),照相底片,探测器

材料现代分析方法

《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分: 3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,2005年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,2003年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出版社,2003年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,2001年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,2001年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,2001年。 [7]《材料结构分析基础》,余鲲编,科学出版社,2001年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时 教学内容:X射线的性质,X射线的产生,X射线谱,X射线与物质的相互作用,X射线的衰减规律,吸收限的应用

材料现代分析方法练习题及答案

8. 什么是弱束暗场像?与中心暗场像有何不同?试用Ewald图解说明。 答:弱束暗场像是通过入射束倾斜,使偏离布拉格条件较远的一个衍射束通过物镜光阑,透射束和其他衍射束都被挡掉,利用透过物镜光阑的强度较弱的衍射束成像。 与中心暗场像不同的是,中心暗场像是在双光束的条件下用的成像条件成像,即除直射束外只有一个强的衍射束,而弱束暗场像是在双光阑条件下的g/3g的成像条件成像,采用很大的偏离参量s。中心暗场像的成像衍射束严格满足布拉格条件,衍射强度较强,而弱束暗场像利用偏离布拉格条件较远的衍射束成像,衍射束强度很弱。采用弱束暗场像,完整区域的衍射束强度极弱,而在缺陷附近的极小区域内发生较强的反射,形成高分辨率的缺陷图像。图:PPT透射电子显微技术1页 10. 透射电子显微成像中,层错、反相畴界、畴界、孪晶界、晶界等衍衬像有何异同?用什么办法及根据什么特征才能将它们区分开来? 答:由于层错区域衍射波振幅一般与无层错区域衍射波振幅不同,则层错区和与相邻区域形成了不同的衬度,相应地出现均匀的亮线和暗线,由于层错两侧的区域晶体结构和位相相同,故所有亮线和暗线的衬度分别相同。层错衍衬像表现为平行于层错面迹线的明暗相间的等间距条纹。 孪晶界和晶界两侧的晶体由于位向不同,或者还由于点阵类型不同,一边的晶体处于双光束条件时,另一边的衍射条件不可能是完全相同的,也可能是处于无强衍射的情况,就相当于出现等厚条纹,所以他们的衍衬像都是间距不等的明暗相间的条纹,不同的是孪晶界是一条直线,而晶界不是直线。 反相畴界的衍衬像是曲折的带状条纹将晶粒分隔成许多形状不规则的小区域。 层错条纹平行线直线间距相等 反相畴界非平行线非直线间距不等 孪晶界条纹平行线直线间距不等 晶界条纹平行线非直线间距不等 11.什么是透射电子显微像中的质厚衬度、衍射衬度和相位衬度。形成衍射衬度像和相位衬度像时,物镜在聚焦方面有何不同?为什么? 答:质厚衬度:入射电子透过非晶样品时,由于样品不同微区间存在原子序数或厚度的差异,导致透过不同区域落在像平面上的电子数不同,对应各个区域的图像的明暗不同,形成的衬度。 衍射衬度:由于样品中的不同晶体或同一晶体中不同部位的位向差异导致产生衍射程度不同而形成各区域图像亮度的差异,形成的衬度。 相位衬度:电子束透过样品,试样中原子核和核外电子产生的库伦场导致电子波的相位发生变化,样品中不同微区对相位变化作用不同,把相应的相位的变化情况转变为相衬度,称为相位衬度。 物镜聚焦方面的不同:透射电子束和至少一个衍射束同时通过物镜光阑成像时,透射束和衍射束相互干涉形成反应晶体点阵周期的条纹成像或点阵像或结构物象,这种相位衬度图像的形成是透射束和衍射束相干的结果,而衍射衬度成像只用透射束或者衍射束成像。

《材料现代分析方法》练习与答案修改

一、选择题 1.用来进行晶体结构分析的X 射线学分支是( B ) A.X 射线透射学; B.X 射线衍射学; C.X 射线光谱学; 2. M 层电子回迁到K 层后,多余的能量放出的特征X 射线称( B ) A. K α; B. K β; C. K γ; D. L α。 三、填空题 1. 当X 射线管电压超过临界电压就可以产生 连续 X 射线和 特征 X 射线。 2. X 射线与物质相互作用可以产生 俄歇电子 、 透射X 射线 、 散射X 射线 、 荧光X 射线 、 光电子 、 热 、 、 。 3. X 射线的本质既是 波长极短的电磁波 也是 光子束 ,具有 波粒二象 性 性。 5. 短波长的X 射线称 ,常用于 ;长波长的X 射线称 ,常用于 。 一、选择题 1.有一倒易矢量为*+*+*=*c b a g 22,与它对应的正空间晶面是( )。 A. (210); B. (220); C. (221); D. (110);。 2.有一体心立方晶体的晶格常数是0.286nm ,用铁靶K α(λK α=0.194nm )照射该晶体能 产生( )衍射线。 A. 三条; B .四条; C. 五条;D. 六条。 3.一束X 射线照射到晶体上能否产生衍射取决于( )。 A .是否满足布拉格条件; B .是否衍射强度I ≠0; C .A+B ; D .晶体形状。 4.面心立方晶体(111)晶面族的多重性因素是( )。 A .4; B .8; C .6; D .12。 二、填空题 1. 倒易矢量的方向是对应正空间晶面的 ;倒易矢量的长度等于对应 。 2. 只要倒易阵点落在厄瓦尔德球面上,就表示该 满足 条件,能产生 。 3. 影响衍射强度的因素除结构因素、晶体形状外还 有 , , , 。 4. 考虑所有因素后的衍射强度公式为 ,对于粉末 多晶的相对强度为 。 5. 结构振幅用 表示,结构因素用 表示,结构因素=0时没有衍射我们称 或 。对于有序固溶体,原本消光的地方会出现 。 三、选择题 1.最常用的X 射线衍射方法是( )。 A. 劳厄法; B. 粉末多法; C. 周转晶体法; D. 德拜法。 2.德拜法中有利于提高测量精度的底片安装方法是( )。 A. 正装法; B. 反装法; C. 偏装法; D. A+B 。 3.德拜法中对试样的要求除了无应力外,粉末粒度应为( )。 A. <325目; B. >250目; C. 在250-325目之间; D. 任意大小。 4.测角仪中,探测器的转速与试样的转速关系是( )。 A. 保持同步1﹕1 ; B. 2﹕1 ; C. 1﹕2 ; D. 1﹕0 。 5.衍射仪法中的试样形状是( )。

材料测试方法

2010年: 1.说明产生特征X射线谱的原理以及如何命名特征X射线。 答:X射线的产生与阳极靶物质的原子结构紧密相关,原子系统中的电子遵从泡利不相容原理不连续的分布在K L M N 等不同能级的壳层上,而且按照能量最低原理首先填充最靠近原子核的K壳层,再依次填充L M N壳层。各壳层能量由里到外逐渐增加。 E k

材料现代分析方法北京工业大学

材料现代分析方法北京工业大学 篇一:13103105-材料现代分析方法 《材料现代分析方法》课程教学大纲 一、课程基本信息 课程编号:13103105 课程类别:专业核心课程 适应专业:材料物理 总学时:54学时 总学分:3 课程简介: 本课程介绍材料微观形貌、结构及成分的分析与表面分析技术主要方法及基本技术,简单介绍光谱分析方法。包括晶体X射线衍射、电子显微分析、X射线光电子谱仪、原子光谱、分子光谱等分析方法及基本技术。 授课教材:《材料分析测试方法》,黄新民解挺编,国防工业出版社,20XX年。 参考书目: [1]《现代物理测试技术》,梁志德、王福编,冶金工业出版社,20XX 年。 [2]《X射线衍射分析原理与应用》,刘粤惠、刘平安编,化学工业出

版社,20XX年。 [3]《X射线衍射技术及设备》,丘利、胡玉和编,冶金工业出版社,20XX年。 [4]《材料现代分析方法》,左演声、陈文哲、梁伟编,北京工业大学出版社,20XX年。 [5]《材料分析测试技术》,周玉、武高辉编,哈尔滨工业大学出版社,2000年。 [6]《材料结构表征及应用》,吴刚编,化学工业出版社,20XX年。 [7]《材料结构分析基础》,余鲲编,科学出版社,20XX年。 二、课程教育目标 通过学习,了解X射线衍射仪及电子显微镜的结构,掌握X-射线衍射及电子显微镜的基本原理和操作方法,了解试样制备的基本要求及方法,了解材料成分的分析与表面分析技术的主要方法及基本技术,了解光谱分析方法,能够利用上述相关仪器进行材料的物相组成、显微结构、表面分析研究。学会运用以上技术的基本方法,对材料进行测试、计算和分析,得到有关微观组织结构、形貌及成分等方面的信息。 三、教学内容与要求 第一章X射线的物理基础 教学重点:X射线的产生及其与物质作用原理 教学难点:X射线的吸收和衰减、激发限 教学时数:2学时

(完整版)材料分析方法期末考试总结

材料分析方法 1.x射线是一种波长很短的电磁波,具有波粒二相性,粒子性往往表现突出,故x射线也可视为一束具有一定能量的光量子流。X射线有可见光无可比拟的穿透能力,可使荧光物质发光,可使气体或其它物质电离等。 2.相干散射:亦称经典散射,物质中的电子在X射线电场的作用下,产生强迫振动。这样每个电子在各方向产生与入射X射线同频率的电磁波。新的散射波之间发生的干涉现象称为相干散射。 3.不相干散射:亦称量子散射,X射线光子与束缚力不大的外层电子,或自由电子碰撞时电子获得一部分动能成为反冲电子,X射线光子离开原来方向,能量减小,波长增加。 4.吸收限:物质原子序数越大,对X射线的吸收能力越强;对一定的吸收体,X射线的波长越短,穿透能力越强,表现为吸收系数的下降,但随着波长的的降低,质量吸收系数并非呈连续的变化,而是在某些波长位置上突然升高,出现了吸收限。 5.荧光辐射:由入射X射线所激发出来的特征X射线称为荧光辐射(荧光X 射线,二次X射线)。 6.俄歇效应:由于光电效应而处于激发态的原子还有一种释放能量的方式,及俄歇效应。原子中一个K层电子被入射光量子击出后,L层一个电子跃入K层填补空位,此时多余的能量不以辐射X光量子放出,而是以另一个L层电子活的能量跃出吸收体,这样的一个K层空位被两个L层空位代替的过程称为俄歇效应,跃出的L层电子称为俄歇电子。 7.光电子:当入射光量子的能量等于或大于吸收体原子某壳体层电子的结合能时,此光量子就很容易被电子吸收,获得能量的电子从内层溢出,成为自由电子,称为光电子。原子则处于激发态,这种原子被入射辐射电离的现象即光电效应。8.滤波片的作用:滤波片是利用吸收限两侧吸收系数差很大的现象制成的,用以吸收不需要的辐射而得到基本单色的光源。 9.布拉格方程只是获得衍射的必要条件而非充分条件。 10.晶面(hkl)的n级反射面(nh nk nl),用符号(HKL)表示,称为反射面或干涉面。 11.掠射角是入射角(或反射角)与晶面的夹角,可表征衍射的方向。 12.衍射极限条件:在晶体中,干涉面的划取是无极限的,但并非所有的干涉面均能参与衍射,因存在关系dsinθ=λ/2,或d>=λ/2,说明只有间距大于或等于X 射线半波长的那些干涉面才能参与反射。 13.劳埃法:采用连续X射线照射不动的单晶体,因为X射线的波长连续可变,故可从中挑选出其波长满足布拉格关系的X射线使产生衍射。 14.周转晶体法:采用单色X射线照射转动的单晶体,并用一张以旋转轴为轴的圆筒形底片来记录。 15.粉末法:采用单色X射线照射多晶体,试样是由数量众多、取向混乱的微晶体组成。 16.吸收因数:由于试样本身对X射线的吸收,使衍射强度的实测值与计算值不符,为了修正这一影响,则在强度公式中乘以吸收因数。 17.温度因数:原子热振动使晶体点阵原子排列的周期性受到破坏,使得原来严格满足布拉格条件的相干散射产生附加的相差,从而使衍射强度减弱。为修正实验温度给衍射强度带来的影响,需要在积分强度公式中乘以温度因数。

材料测试总结

XRD: 1.作用:X射线衍射分析是研究晶体结构内部原子排列状况最有力的工具。 2.由原子排列规律与标准数据库对照可直接得到结晶物质的相,因为世界上有七十万种(2008年底)结晶物质都有其特有的原子排列。 3.对X射线衍射峰强度和峰形函数分析又可得到物相的精确点阵参数、晶格畸变、微观尺寸、微观应力、结晶度、织构等。 4.X射线是在1895年由德国科学家伦琴在研究阴极射线时发现的。1912年德国科学家劳埃首次将X射线穿透晶体时发现衍射现象,从而既证明了它电磁波的性质和对应超短的波长,现已证明它的波长介于γ射线和紫外线之间,由0.01到100?。 5.X射线的产生是由高速运动的电子轰激金属靶子,电子的动能转变成X光能,其X射线成分很复杂,由各种波长各种强度的X射线混合而成,从本质上可分成两组: 6.例1.要想得到α-Fe的(222)面的衍射线,应该选用何种靶? 解:α-Fe属立方晶系,查数据库资料得知a=2.8664?,那么(222)晶面间距根据公式可得:d222=a/(H2+K2+L2)1/2 =2.8664/√12=0.8225 ? 将d值代入布拉格公式2dsinθ=nλ得λ=1.6450 ?,即λ≤1.6450 ? 时才满足α-Fe的(222)面的衍射线,根据上面的表可知铜、钼靶满足此条件,但此仅只满足衍射条件而已,如果考虑其他原因如避免激发试样荧光辐射,铜靶也不合适。 例2.如上例,求出不同靶对α-Fe的(222)面的衍射角。 根据公式sinθ=λ/2*0.8225,θ=sin-1(λ/1.6450) 若用铜靶λ=1.541,θ=69.72 衍射角2 θ=139.44 若用钼靶λ=0.708,θ=25.49 衍射角2 θ=50.98 7.K值法应用实例:锐钛矿(A-TiO2)和金红石(R-TiO2)都由TiO2组成的不同结构的同质异构体,他们是重要的光催化材料,两者的性能差别很大。由锐钛矿加温在一定的条件下转化为稳定的金红石相,因此对它们的转化条件及转化过程研究尤为重要。从PDF卡片上查到R-TiO2用d=0.325nm的线条K=3.4,A-TiO2用d=0.351nm的线条K=4.3。 通过实测样品W-54号样,IR=1628,IA=10006,那么: WA/WR=( IA/ IR)*(KR/KA)=(10006/1628)*(3.4/4.3)=4.87. 因W A+ WR=1,故W A=0.8296=82.96%,即锐钛矿占82.96,相应的金红石占17.04%。W-57号样是在上面样品基础上提高温度的产物,此时明显金红石相增加,I3.25=3163,I3.51=8453,W A/WR=2.11,得到W A=67.85%,相应的金红石占32.15%。 8.

材料现代分析方法实验报告

力学与材料学院 材料现代分析方法实验报告二 XRD图谱分析 专业年级:1 姓名:1 指导老师:1 学号:1 2016年12月 中国南京 目录 实验名称:XRD图谱分析…………………………………………… 一、实验目的……………………………………………………

二、实验要求…………………………………………………… 三、操作过程…………………………………………………… 四、结果分析与讨论……………………………………………… 实验名称:XRD图谱分析 一、实验目的 了解XRD基本原理及其应用,不同物相晶体结构XRD图谱的区别,熟练掌握如何来分析利用X射线测试得到的XRD图谱。 二、实验要求

1、熟练掌握如何来利用软件打开、分析XRD图谱,以及输出分析结果。 2、明确不同物质的XRD图谱,掌握XRD图谱包含的晶体结构的关系,通过自己分析、数据查找和鉴别的全过程,了解如何利用软件正确分析和确定不同物相的XRD图谱,并输出分析结果。 3、实验报告的编写,要求报告能准确的反映实验目的、方法、过程及结论。 三、操作过程 1、启动Jade 6.0,并打开实验数据。 2、点击图标使图谱平滑后,再连续两次点击图标扣除背景影响。 3、右击工具栏中的图标,全选左侧的项目,取消选择右侧中的Use Chemistry Filter,最后在下方选择S/M Focus on Major Phases(如图一),并点击OK。 图一

4、得到物相分析,根据FOM值(越小,匹配性越高)可推断出该物相为以ZnO为主,可能含有CaF2、Al2O3、Mg(OH)2混合组成的物质(如图二),双击第一种物质可以得到主晶相的PDF卡片(如图三),点击图三版面中的Lines可以观察到不同角度处的衍射强度(如图四)。 图二

材料测试分析方法答案

第一章 一、选择题 1.用来进行晶体结构分析的X射线学分支是() A.X射线透射学; B.X射线衍射学; C.X射线光谱学; D.其它 2. M层电子回迁到K层后,多余的能量放出的特征X射线称() A.Kα; B. Kβ; C. Kγ; D. Lα。 3. 当X射线发生装置是Cu靶,滤波片应选() A.Cu;B. Fe;C. Ni;D. Mo。 4. 当电子把所有能量都转换为X射线时,该X射线波长称() A.短波限λ0; B. 激发限λk; C. 吸收限; D. 特征X射线 5.当X射线将某物质原子的K层电子打出去后,L层电子回迁K层,多余能量将另一个L层电子打出核外,这整个过程将产生()(多选题) A.光电子; B. 二次荧光; C. 俄歇电子; D. (A+C) 二、正误题 1. 随X射线管的电压升高,λ0和λk都随之减小。() 2. 激发限与吸收限是一回事,只是从不同角度看问题。() 3. 经滤波后的X射线是相对的单色光。() 4. 产生特征X射线的前提是原子内层电子被打出核外,原子处于激发状态。() 5. 选择滤波片只要根据吸收曲线选择材料,而不需要考虑厚度。() 三、填空题 1. 当X射线管电压超过临界电压就可以产生X射线和X射线。 2. X射线与物质相互作用可以产生、、、、 、、、。 3. 经过厚度为H的物质后,X射线的强度为。 4. X射线的本质既是也是,具有性。 5. 短波长的X射线称,常用于;长波长的X射线称 ,常用于。 习题 1.X射线学有几个分支?每个分支的研究对象是什么?

2. 分析下列荧光辐射产生的可能性,为什么? (1)用CuK αX 射线激发CuK α荧光辐射; (2)用CuK βX 射线激发CuK α荧光辐射; (3)用CuK αX 射线激发CuL α荧光辐射。 3. 什么叫“相干散射”、“非相干散射”、“荧光辐射”、“吸收限”、“俄歇效应”、“发射谱”、 “吸收谱”? 4. X 射线的本质是什么?它与可见光、紫外线等电磁波的主要区别何在?用哪些物理量 描述它? 5. 产生X 射线需具备什么条件? 6. Ⅹ射线具有波粒二象性,其微粒性和波动性分别表现在哪些现象中? 7. 计算当管电压为50 kv 时,电子在与靶碰撞时的速度与动能以及所发射的连续谱的短 波限和光子的最大动能。 8. 特征X 射线与荧光X 射线的产生机理有何异同?某物质的K 系荧光X 射线波长是否等 于它的K 系特征X 射线波长? 9. 连续谱是怎样产生的?其短波限V eV hc 3 01024.1?= =λ与某物质的吸收限k k k V eV hc 3 1024.1?= =λ有何不同(V 和V K 以kv 为单位)? 10. Ⅹ射线与物质有哪些相互作用?规律如何?对x 射线分析有何影响?反冲电子、光电 子和俄歇电子有何不同? 11. 试计算当管压为50kv 时,Ⅹ射线管中电子击靶时的速度和动能,以及所发射的连续 谱的短波限和光子的最大能量是多少? 12. 为什么会出现吸收限?K 吸收限为什么只有一个而L 吸收限有三个?当激发X 系荧光 Ⅹ射线时,能否伴生L 系?当L 系激发时能否伴生K 系? 13. 已知钼的λK α=0.71?,铁的λK α=1.93?及钴的λK α=1.79?,试求光子的频率和能量。 试计算钼的K 激发电压,已知钼的λK =0.619?。已知钴的K 激发电压V K =7.71kv ,试求其λK 。 14. X 射线实验室用防护铅屏厚度通常至少为lmm ,试计算这种铅屏对CuK α、MoK α辐射 的透射系数各为多少? 15. 如果用1mm 厚的铅作防护屏,试求Cr K α和Mo K α的穿透系数。 16. 厚度为1mm 的铝片能把某单色Ⅹ射线束的强度降低为原来的23.9%,试求这种Ⅹ射 线的波长。 试计算含Wc =0.8%,Wcr =4%,Ww =18%的高速钢对MoK α辐射的质量吸收系数。 17. 欲使钼靶Ⅹ射线管发射的Ⅹ射线能激发放置在光束中的铜样品发射K 系荧光辐射,问 需加的最低的管压值是多少?所发射的荧光辐射波长是多少? 18. 什么厚度的镍滤波片可将Cu K α辐射的强度降低至入射时的70%?如果入射X 射线束 中K α和K β强度之比是5:1,滤波后的强度比是多少?已知μm α=49.03cm 2 /g ,μm β =290cm 2 /g 。 19. 如果Co 的K α、K β辐射的强度比为5:1,当通过涂有15mg /cm 2 的Fe 2O 3滤波片后,强 度比是多少?已知Fe 2O 3的ρ=5.24g /cm 3,铁对CoK α的μm =371cm 2 /g ,氧对CoK β的 μm =15cm 2 /g 。 20. 计算0.071 nm (MoK α)和0.154 nm (CuK α)的Ⅹ射线的振动频率和能量。(答案:4.23

(完整版)材料现代分析方法考试试卷

班级学号姓名考试科目现代材料测试技术A 卷开卷一、填空题(每空1 分,共计20 分;答案写在下面对应的空格处,否则不得分) 1. 原子中电子受激向高能级跃迁或由高能级向低能级跃迁均称为_辐射跃迁__ 跃迁或_无辐射跃迁__跃迁。 2. 多原子分子振动可分为__伸缩振动_振动与_变形振动__振动两类。 3. 晶体中的电子散射包括_弹性、__与非弹性___两种。 4. 电磁辐射与物质(材料)相互作用,产生辐射的_吸收_、_发射__、_散射/光电离__等,是光谱分析方法的主要技术基础。 5. 常见的三种电子显微分析是_透射电子显微分析、扫描电子显微分析___和_电子探针__。 6. 透射电子显微镜(TEM)由_照明__系统、_成像__系统、_记录__系统、_真空__系统和__电器系统_系统组成。 7. 电子探针分析主要有三种工作方式,分别是_定点_分析、_线扫描_分析和__ 面扫描_分析。 二、名词解释(每小题3 分,共计15 分;答案写在下面对应的空格处,否则不得分) 1. 二次电子二次电子:在单电子激发过程中被入射电子轰击出来的核外电子. 2. 电磁辐射:在空间传播的交变电磁场。在空间的传播遵循波动方程,其波动性表现为反射、折射、干涉、衍射、偏振等。 3. 干涉指数:对晶面空间方位与晶面间距的标识。 4. 主共振线:电子在基态与最低激发态之间跃迁所产生的谱线则称为主共振线 5. 特征X 射线:迭加于连续谱上,具有特定波长的X 射线谱,又称单色X 射线谱。 三、判断题(每小题2 分,共计20 分;对的用“√”标识,错的用“×”标识) 1.当有外磁场时,只用量子数n、l 与m 表征的原子能级失去意义。(√) 2.干涉指数表示的晶面并不一定是晶体中的真实原子面,即干涉指数表示的晶面上不一定有原子分布。(√) 3.晶面间距为d101/2 的晶面,其干涉指数为(202)。(×) 4.X 射线衍射是光谱法。(×) 5.根据特征X 射线的产生机理,λKβ<λK α。 (√ ) 6.物质的原子序数越高,对电子产生弹性散射的比例就越大。(√ ) 7.透射电镜分辨率的高低主要取决于物镜。(√ )8.通常所谓的扫描电子显微镜的分辨率是指二次电子像的分辨率。(√)9.背散射电子像与二次电子像比较,其分辨率高,景深大。(× )10.二次电子像的衬度来源于形貌衬度。(× ) 四、简答题(共计30 分;答案写在下面对应的空格处,否则不得分) 1. 简述电磁波谱的种类及其形成原因?(6 分)答:按照波长的顺序,可分为:(1)长波部分,包括射频波与微波。长波辐射光子能量低,与物质间隔很小的能级跃迁能量相适应,主要通过分子转动能级跃迁或电子自旋或核自旋形成;(2)中间部分,包括紫外线、可见光核红外线,统称为光学光谱,此部分辐射光子能量与原子或分子的外层电子的能级跃迁相适应;(3)短波部分,包括X 射线和γ射线,此部分可称射线谱。X 射线产生于原子内层电子能级跃迁,而γ射线产生于核反应。

材料分析方法部分课后习题答案(供参考)

第一章X 射线物理学基础 2、若X 射线管的额定功率为1.5KW,在管电压为35KV 时,容许的最大电流是多少? 答:1.5KW/35KV=0.043A。 4、为使Cu 靶的Kβ线透射系数是Kα线透射系数的1/6,求滤波片的厚度。 答:因X 光管是Cu 靶,故选择Ni 为滤片材料。查表得:μ m α=49.03cm2/g,μ mβ=290cm2/g,有公式,,,故:,解得:t=8.35um t 6、欲用Mo 靶X 射线管激发Cu 的荧光X 射线辐射,所需施加的最低管电压是多少?激发出的荧光辐射的波长是多少? 答:eVk=hc/λ Vk=6.626×10-34×2.998×108/(1.602×10-19×0.71×10-10)=17.46(kv) λ 0=1.24/v(nm)=1.24/17.46(nm)=0.071(nm) 其中h为普郎克常数,其值等于6.626×10-34 e为电子电荷,等于1.602×10-19c 故需加的最低管电压应≥17.46(kv),所发射的荧光辐射波长是0.071纳米。 7、名词解释:相干散射、不相干散射、荧光辐射、吸收限、俄歇效应 答:⑴当χ射线通过物质时,物质原子的电子在电磁场的作用下将产生受迫振动,受迫振动产生交变电磁场,其频率与入射线的频率相同,这种由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称为相干散射。 ⑵当χ射线经束缚力不大的电子或自由电子散射后,可以得到波长比入射χ射线长的χ射线,且波长随散射方向不同而改变,这种散射现象称为非相干散射。 ⑶一个具有足够能量的χ射线光子从原子内部打出一个K 电子,当外层电子来填充K 空位时,将向外辐射K 系χ射线,这种由χ射线光子激发原子所发生的辐射过程,称荧光辐射。或二次荧光。 ⑷指χ射线通过物质时光子的能量大于或等于使物质原子激发的能量,如入射光子的能量必须等于或大于将K 电子从无穷远移至K 层时所作的功W,称此时的光子波长λ称为K 系的吸收限。 ⑸原子钟一个K层电子被光量子击出后,L层中一个电子跃入K层填补空位,此时多余的能量使L层中另一个电子获得能量越出吸收体,这样一个K层空位被两个L层空位代替的过程称为俄歇效应。 第二章X 射线衍射方向 2、下面是某立方晶第物质的几个晶面,试将它们的面间距从大到小按次序重新排列:(123),(100),(200),(311),(121),(111),(210),(220),(130),(030),(221),(110)。 答:立方晶系中三个边长度相等设为a,则晶面间距为d=a/ 则它们的面间距从大小到按次序是:(100)、(110)、(111)、(200)、(210)、(121)、(220)、(221)、(030)、(130)、

(完整word版)材料现代分析测试方法总结(2)汇总

名词解释: 晶带:晶体中,与某一晶向[uvw]平行的所有(HKL)晶面属于同一晶带,称为[uvw] 晶带。 辐射的吸收:辐射通过物质时,其中某些频率的辐射被组成物质的粒子(原子、离子或分子等)选择性地吸收,从而使辐射强度减弱的现象。 辐射被吸收程度对ν或λ的分布称为吸收光谱。 辐射的发射:物质吸收能量后产生电磁辐射的现象。 辐射的散射:电磁辐射与物质发生相互作用,部分偏离原入射方向而分散传播的现象 光电离:入射光子能量(hν)足够大时,使原子或分子产生电离的现象。 光电效应:物质在光照射下释放电子(称光电子)的现象又称(外)光电效应。 点阵消光:因晶胞中原子(阵点)位置而导致的|F|2=0的现象 系统消光:晶体衍射实验数据中出现某类衍射系统消失的现象。 结构消光:在点阵消光的基础上,因结构基元内原子位置不同而进一步产生的附 加消光现象,称为结构消光。 衍射花样指数化:确定衍射花样中各线条(弧对)相应晶面(即产生该衍射线条的晶面)的干涉指数,并以之标识衍射线条,又称衍射花样指数化(或指标化)。 背散射电子:入射电子与固体作用后又离开固体的总电子流。 特征X射线:射线管电压增至某一临界值,使撞击靶材的电子具有足够能量时,可使靶原子内层产生空位,此时较外层电子将向内层跃迁产生辐射即是特征X 射线。 俄歇电子:由于原子中的电子被激发而产生的次级电子,在原子壳层中产生电子空穴后,处于高能级的电子可以跃迁到这一层,同时释放能量。当释放的能量传递到另一层的一个电子,这个电子就可以脱离原子发射,被称为俄歇电子。 二次电子:入射电子从固体中直接击出的的原子的核外电子和激发态原子退回基态时产生的电子发射,前者叫二次电子,后者叫特征二次电子。 X射线相干散射:入射光子与原子内受核束缚较紧的电子发生弹性碰撞作用,仅其运动方向改变没有能量改变的散射。 X射线非相干散射:入射光子与原子内受到较弱的电子或者晶体中自由电子发生非弹性碰撞作用,在光子运动方向改变的同时有能量损失的散射。 K系特征辐射:原子K层出现空位,较外的L层电子向内的K层辐射跃迁,发

相关文档
最新文档