幂级数及泰勒展开习题解答(最新整理)

幂级数及泰勒展开习题解答(最新整理)
幂级数及泰勒展开习题解答(最新整理)

例谈一类幂级数和函数的求法

即i薹I、蠢≤妻鍪主委 羹萋矍鍪萋羲鬃戋 姜孽耋爱薹;霎蓁囊爹至雩12毛』三:f毒耋辜耋!姜萼鬟鬻鹱|;曼彗 囊摹l!,∑叁L:: 2垂≤=引●r毛 翼蓁蘩鏊蓁篓鋈篓鋈襄錾鋈鬟黍冀羹 翻N肇 ;萋藿薹摹j霎耋誊薹摹蠹繁型篱篓薹菱垂羹零i i萋莹荔差薹;00i_;蓦毒到}:Ⅱ:而;羹i霎霎萋囊!i雾霎蚕~;;i71专00三;}i—ll蓄;一妻i 薹{重髻硫终;密萋霉童霉羹。囊至■摹吾||争霪 耋嘉霪藿薹。一薹~。霉篓薹薹●,萋一芝___一一誊摹一 藉鏊鼋,尊甾藿姜耋■囊≤||甲琴嘉囊髦鋈薹妻囊囊冀 霎=i薹■||j妻瞻i兰霎薹罨。蓦薹耋j.;蔓i三 雪差薹薹。墨雾萋毫妻季耋蘑二雾薹姜一琴囊冀狐囊竖 萋罄蠹郛萎篓囊霆姿鬣萋,匿鬻i囊磊些羹蘑鍪雾静蒸 蕊蓑鬟霎;雾妻薹羹蠢捞鬓秀鍪彳萄辇雾薹篓篓髫雾刍 譬誊囊善墓量!≤竖羹囊霪鏊雾管基蓥蠢鉴鏊澍m嗜: 奏鸯耋羹暨奎妻錾蕊捆掌囊4-疟~。晡鏊翼蠹藩题÷囊 旨篓霎萋萎萋萋薹蓦。胤耋:~篓雾鋈菱薹薹璺羹荔警

例谈一类幂级数和函数的求法 作者:杜炜 作者单位:濮阳广播电视大学,河南,濮阳,457000 刊名: 濮阳教育学院学报 英文刊名:JOURNAL OF PUYANG COLLEGE OF EDUCATION 年,卷(期):2002,15(1) 被引用次数:0次 参考文献(1条) 1.朱有清.贺才兴高等数学复习十五讲 1986 相似文献(10条) 1.期刊论文解烈军求幂级数和函数的微分方程方法-高等数学研究2009,12(3) 按照通常求幂级数和函数的思路,对一些幂级数并不能奏效.在某些情况下,可以引入求幂级数和函数的微分方程方法.其主要思路是通过建立和函数的微分方程,将幂级数求和函数问题化为微分方程初值问题来求解. 2.期刊论文徐凤林.张秀丽.XU Feng-lin.ZHANG Xiu-li幂级数和函数的解法综述-山东轻工业学院学报(自然科学版)2006,20(1) 本文总结了求幂级数和函数的四种方法.一种方法是将待求级数分解成己知和函数的级数的运算(一般是加减)表达形式,然后逐一求和新的级数;第二种方法是"先求导,再积分"或"先积分,再求导";第三种方法是把待求级数用基本初等函数的幂级数展开式表示出来;第四种方法是列写出和函数满足的微分方程,解此微分方程得到和函数. 3.期刊论文张锦来.ZHANG Jin-lai幂级数∞∑n=1x2n/(2n)k和函数的递推公式及其应用-延边大学学报(自然科学版)2008,34(2) 根据收敛级数的分析性质研究了幂级数∞∑n=1x2n/(2n)k(k≥2)的和函数问题,用数学归纳法证明了其和函数的递推公式,由此得出k=2,3,4,…时幂级数和函数的具体表达式,进而导出几个与之相关的非初等积分的值或近似值. 4.期刊论文张玉灵由通项公式求一类幂级数的和函数-高等数学研究2009,12(3) 利用和函数的定义对形如∞∑anbn(x)的幂级数,其中{an}是一等差数列,{bn(x)}是一等比函数列,推导出了求该类幂级数和函数的一个通项公式. 5.期刊论文桂曙光.GUI Shu-guang利用差分法求一类幂级数的和函数-安庆师范学院学报(自然科学版)2001,7(4) 利用差分法导出了求幂级数和函数的一个通项公式,用它能求出系数为高阶等差数列和高阶等比数列的幂级数∞∑n=0anxn的和函数. 6.期刊论文周宏安.ZHOU Hong-an幂级数和函数分析性质的一种证明-陕西工学院学报2000,16(2) 作者在文[1]中给出了幂级数在收敛区内连续性的一种证明,本文直接利用幂级数的收敛性,给出幂级数和函数在收敛区间上的分析性质的一种简捷证明.并举例说明方法的实用性. 7.期刊论文朱双荣例谈求幂级数和函数的一题多解-高等函授学报(自然科学版)2010,23(2) 借助于已知级数的和函数,通过观察或逐项求导、逐项积分等方法得到需要求出和函数的级数所满足的式子,从而求出级数的和函数. 8.期刊论文李高明利用拆项法求一类幂级数的和函数-高等数学研究2009,12(3) 利用拆项法,给出一类系数为和式的幂级数和函数的求法.并对此类幂级数收敛半径计算,给出一个一般性结论. 9.期刊论文金少华.宛艳萍求幂级数的和函数时应注意的几个问题-高等数学研究2007,10(3) 讨论求幂级数的和函数时应注意的几个问题. 10.期刊论文刘永莉.李曼生.LIU Yong-li.LI Man-sheng两类幂级数的和函数求法-甘肃联合大学学报(自然科学版)2005,19(2) 利用差分算子与微分方程导出了两类系数含有高阶等差数列的幂级数的求和公式,并举例介绍了公式的应用. 本文链接:https://www.360docs.net/doc/8b9806423.html,/Periodical_pyjyxyxb200201036.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:1b3522eb-5036-489c-8ded-9dcf00c128de 下载时间:2010年8月11日

幂级数求和

求幂级数的和函数()S x 1.1 (1) (1) n n n x n n ∞ =-+∑ 解:易知收敛域为[]1,1-。当()()1,00,1x ∈-?时,1 1 1 (1) ()(1) n n n S x x x n n ∞ +=-= +∑。 令1 11 (1) ()(1) n n n S x x n n ∞ +=-= +∑,则 11 (1)()n n n S x x n ∞ =-'= ∑ ,() 1 1 11 11()(1)1n n n n n S x x x x ∞∞ --==''= -=--=- +∑ ∑。 两边取积分,则 111()()(0)S x S x S '''=-=10 ()ln(1)1x x dt S t dt x t ''=-=-++? ? 。 再取一次积分,则 11110 ()()(0)()ln(1)(1)ln(1)x x S x S x S S t dt t dt x x x '=-= =-+=-++? ?, 从而当()()1,00,1x ∈-?时有 1()1l n (1)x S x x x +=- +。 (*) 当1x =-时,()1 11 1 111(1) 1n n S n n n n ∞ ∞ ==??-= = -= ?++? ?∑∑。 当0x =时,(0)0S =。 当1x =时, ()() ()()() () 1 1 1 1 1 11111112ln 2(1) 11 n n n n n n n n n S n n n n n n +∞ ∞ ∞ ∞ ====?? -----== -=+ =-??+++??? ? ∑ ∑ ∑ ∑ 。 注意:上面第三个等式成立是因为等式右边的两个级数都收敛; 最后一个等式利用了下列麦克劳林展开式: () 1 1 ln(1)1n n n x x n ∞ -=+=-∑ (11x -<≤)。 将1x =代入,即得 () () () 1 1 1 1 1 111ln 211 n n n n n n n n n -+∞ ∞ ∞ ===---= =-=-+∑ ∑ ∑ 。也可以利用幂 级数和函数的分析运算性质(1)(见P262)直接得出(1)S 也满足(*)的结论。

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =L 是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++∈L L 为定义在E 上的函数项级数,简记为1()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 200102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑L L

第四节-泰勒级数与幂级数

第四节 泰勒级数与幂级数 教学目的:理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;了解幂级数在其收敛区间的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间的和函数,并会由此求出某些常数项级数的和;了解函数展开为泰勒级数的充分必要条件、掌握,sin ,cos x e x x ,ln(1)x +和(1)x α +的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。 教学重点 :幂级数的收敛半径、收敛区间及收敛域;,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式。 教学难点:幂级数的收敛域及和函数。 教学时数:4 教学容: 一、函数项级数的概念 1.函数项级数的定义 定义:设函数()(1,2,3 )n u x n =都在D 上有定义,则称表达式 1 2 1 ()()()n n u x u x u x ∞ ==++ ∑ 为定义在D 上的一个函数项级数,() n u x 称为通项,1 ()()n k k S x u x ∞ ==∑称为部分和函数. 2.收敛域 定义:设 1()n n u x ∞ =∑是定义在D 上的一个函数项级数,0 x D ∈,若数项级数01 ()n n u x ∞ =∑收敛, 则称0x 是 1 ()n n u x ∞ =∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域. 3.和函数 定义:设函数项级数 1 ()n n u x ∞ =∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x ,使得 1 ()()n n S x u x ∞ ==∑成立.定义域为I 的函数()S x 称为级数1 ()n n u x ∞ =∑的和函数. 二、幂级数 1.幂级数的定义

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

考研数学之幂级数展开与求和

考研数学之幂级数展开与求和 来源:文都图书 级数在考研数学中属于数一和数三要考查的内容,其核心内容为幂级数展开与求和,今天我们就来详细学习一下幂级数的展开与求和步骤。 幂级数展开与求和在考试中常以解答题形式出现。要学好展开与求和,首先,我们需要两大工具:1、常见泰勒级数及收敛域;2、逐项展开与逐项求导。其次,要掌握常用方法。 展开常用方法,一是直接展开,这种考法较少,二是间接展开,以这种考法居多。间接展开解题的要点如下: (1)转化,将函数f(x)在某非零点处展开,转化到在x=0处展开。 (2)拆项,将函数拆成两项之和或差,然后利用常见函数的幂级数展开将两个展开式求和或者求差便可。 (3)因式分解,将函数分解成两项之积,一般其中一个因式为低次(至多为二次)多项式,另一个用常见幂级数展开式展开。 (4)求导法,先对函数求导,再用常见幂级数展开式展开,最后逐项积分。 (5)积分法,先对函数积分,再用常见幂级数展开式展开,最后逐项求导。 幂级数求和是展开的逆问题,比展开要难,考研中常用到的方法如下。 (1)直接套用已知的基本展开式,后者拆后套用。 (2)系数的分母中含有n的阶乘的,考虑用指数函数,或者正弦函数与余弦函数的某种组合。 (3)系数的分母中含有n、n+1、n+2的可以先逐项求导。系数的分子中含有n、n+1、n+2的可以先逐项积分。 除此之外,展开与求和部分还会考一些综合性题目,如跟微分方程结合在一起考查。总之主要方法还是如上综述的方法。望考生们多

联系,以体会上述方法。此外建议考生找一些类似的题目,强化练习。学会利用其方法和技巧,考研数学会涉及很多题目考察很多知识点,对待这些题目,我们要从运用的基本知识,及其解题方法,从理论到实践系统性的掌握,建议参考一下汤家凤的2017《考研数学复习大全》认真备考吧,预祝考试顺利。 When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars. The furthest distance in the world Is not between life and death But when I stand in front of you

幂级数及泰勒展开习题解答电子版本

幂级数及泰勒展开习 题解答

幂级数及泰勒展开 一、求下列幂级数的收敛区间 1. 1 2(21)n n x n n ∞ =-∑ 解:12(21) lim lim 12(1)(21) n n n n a n n a n n +→∞ →∞-==++ 1R ?= 当1x =时,因 2111 2(21)2(1)n n n n n n =<-+-, 所以1 12(21)n n n ∞ =-∑收敛, 当1x =-时, 1(1)2(21) n n n n ∞ =--∑绝对收敛, ? 收敛区间为[1,1]-。 2. 1 1 n n n -∞ = 解:11lim 2n n n n a a +→∞== 2R ?= 当2x = 时,1 n n ∞ =为收敛的交错级数, 当2x =-时, 111 n n n n -∞ ∞===- ? 收敛区间为(2,2]-。 3. 1(1)32n n n n n n x x ∞ =?? -+???? ∑ 解:11 1 1 (1)32lim lim 3(1)32 n n n n n n n n n n a a ++++→∞ →∞-+==-+ 13R ?=, 当13x =±时,通项不趋于零,? 收敛区间为11,33??- ??? 。

4. 1 (23)(1)21n n n x n ∞ =---∑ 解:121lim lim 121 n n n n a n a n +→∞ →∞-==+ 1R ?= 故当231x -<,即12x <<时级数绝对收敛。 当1x =时, 11(1)(1)11 1, 21212-1 2n n n n n n n n ∞ ∞==--??=> ?--??∑∑发散, 当2x =时, 1 (1)21n n n ∞ =--∑为收敛的交错级数, ? 收敛区间为(1,2]。 5. 1 ln(1) (1)1n n n x n ∞ =+-+∑ 解:1ln(2)(1) lim lim 1(2)ln(1) n n n n a n n a n n +→∞ →∞++==++ 1R ?= 故当11x -<,即02x <<时级数绝对收敛。 当0x =时,因为 1 ln(1)ln lim lim lim 01 1n x x n x x n x →∞→+∞→+∞+===+,2 ln 1ln ln(2)ln(1) ()()0() 3 21 x x n n f x f x x e n x x n n -++'=?=<>?≥<++时, 所以 1 (1)ln(1) 1n n n n ∞ =-++∑收敛, 当2x =时,因为当2n ≥时ln(1)11 112n n n n +>>++ 所以1 ln(1)1n n n ∞ =++∑发散, ? 收敛区间为[0,2)。 6. 21 1(1)(1)4 n n n n x n ∞ -=--∑

幂级数求和函数方法概括与汇总

幂级数求和函数方法概括与汇总

————————————————————————————————作者:————————————————————————————————日期:

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

用幂级数展开式求极限Word版

用幂级数展开式求极限 极限理论是微积分理论的基础,极限是一个非常重要的概念,它是深入研究一些实际问题的重要工具.求函数极限的方法很多,幂级数法是其中之一. 例1 求极限21 lim[ln(1)]x x x x →∞-+. 解 因为 212111111 ln(1)(1)()23n n x x x x n x ---+=-?+???+-??+???, 所以 22111111 ln(1)(1)()23n n x x x x n x --+=-?+???+-??+???, 因此 21 lim[ln(1)]x x x x →∞-+ 211111 lim[(1)()]23n n x x n x -→∞=-?++-??+ 2 1=. 例2 利用幂级数展开式,求极限30sin lim tan x x x x →-. 解 由于x sin 在0=x 处的幂级数展开式为 3521sin (1)3!5!(21)! n n x x x x x n +=-+-???+-+???+,x -∞<<+∞ 又当0→x 时,tan ~x x ,因此 35 33 00()sin 1 3!5!lim lim 6 tan x x x x x x x x x x →→--+- -== . 例3 求极限2242lim()333 n n n →∞++???+. 解 设 2242333 n n n S = ++???+, 作幂级数1 23n n n n x ∞ =∑ ,设其和函数为()S x ,即 12()3 n n n n S x x ∞ ==∑ ,

由 12 1 1 (1) n n nx x ∞ -== -∑,1x < 得 11 1)3(3232)(-∞=∞ =∑∑==n n n n n x n x x n x S 221 3(1)3 x x =-,13x < 由此可得 23 )3 11(1323 2)1(2 1=-==∑ ∞ =n n n S , 因此 22423 lim()33 32 n n n →∞+++ =.

幂级数求和函数方法概括与总结-幂级数总结

幂级数求和函数方法概括与总结-幂级数总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

论文_幂级数求和的方法

长沙学院信息与计算科学系本科生科研训练 幂级数求和的方法 系(部):信息与计算科学系 专业:数学与应用数学 学号: 2009031110 学生姓名:范庆勇 成绩: 2012年 6月

幂级数求和的方法 范庆勇 长沙学院 信息与计算科学系 湖南长沙 410022 摘要:幂级数是无穷级数中的一种.本文主要总结了幂级数的多种求和方法.主要有逐项微分与逐项积分法,代数方程法,公式法等.同时通过举例说明了不同方法在解题中的应用. 关键词:幂级数,和函数,微分,积分 1 引言 幂级数是微积分中十分重要的内容之一,而求幂级数的和函数是一类难度较高、技巧性较强的问题,因此是有必要对这类问题进行研究和探讨.求解幂级数的和函数时,我们通常用幂级数的有关运算,综合运用求导,求积分,拼凑,分解等技巧来解决.也可以利用幂级数的有关公式求解. 本文通过具体例子介绍了幂级数求和的几种方法.文献[1]主要介绍了利用逐项积分与逐项微分的思想,计算部分和的极限以及转化为微分方程求幂级数的和.文献[2]主要是讲述了裂项组合法,逐项积分与逐项微分法,有限递推法,代数方程法,微分方程法求幂级数的和,同时还介绍了化归思想在幂级数求和中的应用.文献[3]主要是介绍通过逐项微分推导出几种公式,利用公式求和函数. 本文主要介绍逐项积分与逐项微分法,代数方程法,公式法求幂级数的和. 2 幂级数求和的几种方法 2.1 逐项微分[1] 幂级数在其收敛区间内其和函数是可导的,且有逐项求导公式 )x ('s =(n n n x a ∑∞ =)'= x a n n n )(∑ ∞ ==1 -n 1 n n x na ∑∞ =, 通过对幂级数的逐项求导将其转化为能求出和函数的幂级数,再积分即可.

幂级数求和法的归纳总结与推广

幂级数求和法的归纳总结与推广 摘要:本文研究的是如何对幂级数进行求和,主要从数学专业中的三个学科(常微分方程、初等数学、高等代数),分别通过微分方程法、初等数学中的杨辉三角法以及矩阵法对幂级数进行求和。对那些能用这三种方法进行求和的幂级数进行了一定的归纳和总结,并展开了一定的推广。通过对这三类方法的典型例题的求解,加深对方法的了解和运用,完善级数求和的知识体系。 关键词:级数求和,微分方程,矩阵,杨辉三角 引言 级数是高等数学的一个重要组成部分, 其理论是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期杰出的数学家刘徽于公元263 年创立了“割圆术”, 其要旨是用圆内接正多边形去逐步逼近圆, 从而求得圆的面积。这种“割圆术”就已建立了级数的思想方法, 即无限多个数的累加问题。而今, 级数的理论已发展的相当丰富和完整, 在工程实践中有着广泛的应用, 可用来表示函数、研究函数的性质, 也是其进行数值计算的一种工具。 同时级数也是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,这是因为:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数。在各种有力的解析工具中按其简单.灵活.明确以及使用的方便而言,毫无疑问第一位应属于函数级数。这个最重要的解析工具的思想很简单:我们想要研究的函数可以表示为其它的更为简单的。容易研究的函数的系列(即表示此函数为级数的部分和的极限。如果这个部分和在整个所研究的区间上完全趋近于所研究的函数,则我们就有理由从整个近似的部分和的性质来估计所研究函数的一些性质——尽管只是近似的研究。特别地,会对自变量的某个值近似计算这些部分和的值,我们同时也有办法近似计算所研究函数的相应的值。 用什么样的函数作为我们的展开式的元素最方便.最适合呢?即选什么函数作为表示所研究函数级数的项,最便于帮助我们研究函数?对此问题,当然不指望有唯一的答案适用于所有情形。这几乎完全取决于所研究的函数的性质以及我们对函数所提出的问题的性质,只是必须指出,有一种最重要的函数级数类值得推荐起作用,因为每一步都可以应用它们,这样就自然地要求创立相应的一般理论。这种函数级数就是幂级数(其中展开式的元素是自变量的整数次数幂——首先是非整数次幂)。 在幂级数收敛性的判断,求和问题等性质中,求和问题不免也是一处重要的知识点。幂级数求和的求解是一类难度较大技巧性较高的问题,更好地了解和掌握幂级数求和的方法和技巧对于学习幂级数具有更好的指导意义和学习价值。 幂级数求和,包括求某些数项级数的和,利用技术性质,展开定理、收敛定理等求函数项级数的和函数,函数的幂级数展开式、Fourier级数等,无疑是级数理论学习中的重要内容,在一定意义上对这部分知识掌握的程度,也是衡量学生数学能力、数学素质的一项检验指标。 而作为特殊函数项级数的幂级数,由于具有结构形式简单和近似表达函数的灵活性的优点,而作为一个极为有用的计算工具,数项级数的求和就是一个重要的应用。它的基本理论依据是在一致收敛条件下,函数项级数的和函数连续,可导、可积,即求和运算与极限运算求积运算、求导运算可以换序。而幂级数更具有收敛半径易求,在(-R,R)上内闭一致收敛以及在逐项求导或逐项积分收敛

幂级数展开的多种方法

幂级数展开的多种方法 摘要:本文通过举例论证的说明方法,系统地对幂级数展开的多种解法进行了详细地概括、分类及总结 关键词:幂级数;泰勒展式;洛朗展式;展开 在复变函数的学习过程中,我们涉及了对解析函数幂级数展开的学习.由课本的知识知道,任意一个具有非零收敛半径的幂级数在其收敛圆内收敛于一个解析函数.这个性质是很重要的,但在解析函数的研究上,幂级数之所以重要,还在于这个性质的逆命题也是成立的.即有下面的泰勒定理和洛朗定理: 定理 1(泰勒定理)设()z f 在区域D 内解析,D a ∈,只要圆R a z K <-:含于D ,则()z f 在K 内能展成幂级数()()∑∞ =-= n n n a z c z f ,其中系数 () () () () ! 21 1n a f d a f i c n n n = -= ?Γ+ζζζ π.(ρ=-Γa z : R <<ρ0 n=0,1,2 )且展式唯 一. 定理2(洛朗定理)在圆环R a z r H <-<: (0≥r +∞≤R )内解析的函数 ()z f 必可展成双边幂级数()() ∑ ∞ -∞ =-= n n n a z c z f ,其中系数() () ζζζ πd a f i c n n ?Γ+-= 121 ( 2,1,0±±=n ρ=-Γa z : R r <<ρ) 且展式唯一. 这两个定理的存在,使得在函数解析的范围内,我们可以通过幂级数展开的方法来更好的研究解析函数的性质.而这两个定理,也是我们后面研究幂级数展开的基础和前提. 接下来,我们将着重开始讨论幂级数展开问题的多种解法: 1、直接法. 即按照泰勒定理和洛朗定理中所给的幂级数展开的公式,直接将函数展开. 例1 求()z z f tan =在4 0π =z 点处的泰勒展开式. 解:用公式 () () ! 0n z f c n n = 求n c :;14tan 0==π c ()2 ,24 sec | tan 12 4 ==='= c z z π π ;

幂级数及泰勒展开习题解答

一、求下列幂级数的收敛区间 1. 12(21) n n x n n ∞ =-∑ 解:12(21) lim lim 12(1)(21)n n n n a n n a n n +→∞ →∞-==++ 1R ?= 当1x =时,因 2111 2(21)2(1)n n n n n n =<-+-, 所以112(21) n n n ∞ =-∑收敛, 当1x =-时, 1 (1)2(21)n n n n ∞ =--∑绝对收敛, ? 收敛区间为[1,1]-。 2. 1 n n n -∞ = 解:11 lim 2n n n n n a a -+→∞== 2R ?= 当2x = 时,1 n n ∞ =为收敛的交错级数, 当2x =-时, 111 n n n n -∞ ∞===-发散, ? 收敛区间为(2,2]-。 3. 1(1)32n n n n n n x x ∞ =?? -+???? ∑ 解:11 1 1 (1)32lim lim 3(1)32n n n n n n n n n n a a ++++→∞ →∞-+==-+ 13R ?=, 当13x =±时,通项不趋于零,? 收敛区间为11,33?? - ??? 。

4. 1 (23)(1)21n n n x n ∞ =---∑ 解:121lim lim 121 n n n n a n a n +→∞ →∞-==+ 1R ?= 故当231x -<,即12x <<时级数绝对收敛。 当1x =时, 11(1)(1)11 1, 21212-1 2n n n n n n n n ∞ ∞==--??=> ?--??∑∑发散, 当2x =时, 1 (1)21n n n ∞ =--∑为收敛的交错级数, ? 收敛区间为(1,2]。 5. 1 ln(1) (1)1n n n x n ∞ =+-+∑ 解:1ln(2)(1)lim lim 1(2)ln(1) n n n n a n n a n n +→∞ →∞++==++ 1R ?= 故当11x -<,即02x <<时级数绝对收敛。 当0x =时,因为 1 ln(1)ln lim lim lim 01 1n x x n x x n x →∞→+∞→+∞+===+, 2 ln 1ln ln(2)ln(1) ()()0() 3 21 x x n n f x f x x e n x x n n -++'=?=<>?≥<++时, 所以 1 (1)ln(1) 1n n n n ∞ =-++∑收敛, 当2x =时,因为当2n ≥时ln(1)11 112n n n n +>> ++ 所以1 ln(1)1n n n ∞ =++∑发散, ? 收敛区间为[0,2)。 6. 21 1 (1)(1)4n n n n x n ∞ -=--∑

第四节泰勒级数与幂级数

第四节 泰勒级数与幂级数 教学目的:理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法;了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和;了解函数展开为泰勒级数的充分必要条件、掌握,sin ,cos x e x x ,ln(1)x +和(1)x α +的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。 教学重点 :幂级数的收敛半径、收敛区间及收敛域;,sin ,cos x e x x ,ln(1)x +和 (1)a α+的麦克劳林展开式。 教学难点:幂级数的收敛域及和函数。 教学时数:4 教学内容: 一、函数项级数的概念 1.函数项级数的定义 定义:设函数()(1,2,3 )n u x n =都在D 上有定义,则称表达式 1 2 1 ()()()n n u x u x u x ∞ ==++ ∑ 为定义在D 上的一个函数项级数, () n u x 称为通项,1 ()()n k k S x u x ∞ ==∑称为部分和函数. 2.收敛域 定义:设 1()n n u x ∞ =∑是定义在D 上的一个函数项级数,0 x D ∈,若数项级数01 ()n n u x ∞ =∑收 敛,则称0x 是1 ()n n u x ∞ =∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域. 3.和函数 定义:设函数项级数 1 ()n n u x ∞ =∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x , 使得1 ()()n n S x u x ∞ == ∑成立.定义域为I 的函数()S x 称为级数1 ()n n u x ∞ =∑的和函数.

幂级数求和函数方法概括与总结-幂级数总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++ ++ ∈ ! 为定义在E 上的函数项级数,简记为1 ()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

幂级数及泰勒展开习题解答

幂级数及泰勒展开 一、求下列幂级数的收敛区间 1. 1 2(21)n n x n n ∞ =-∑ 解:12(21) lim lim 12(1)(21) n n n n a n n a n n +→∞ →∞-==++ 1R ?= 当1x =时,因 2111 2(21)2(1)n n n n n n =<-+-, 所以1 12(21)n n n ∞ =-∑收敛, 当1x =-时, 1(1)2(21) n n n n ∞ =--∑绝对收敛, ? 收敛区间为[1,1]-。 2. 1 n n n -∞ = 解:11 lim 2n n n n a a +→∞== 2R ?= 当2x = 时,1 n n ∞ =为收敛的交错级数, 当2x =-时, 111 n n n n -∞ ∞===-发散, ? 收敛区间为(2,2]-。 3. 1(1)32n n n n n n x x ∞ =?? -+???? ∑ 解:11 1 1 (1)32lim lim 3(1)32 n n n n n n n n n n a a ++++→∞ →∞-+==-+ 13R ?=, 当13x =±时,通项不趋于零,? 收敛区间为11,33?? - ??? 。

4. 1 (23)(1)21n n n x n ∞ =---∑ 解:121lim lim 121 n n n n a n a n +→∞ →∞-==+ 1R ?= 故当231x -<,即12x <<时级数绝对收敛。 当1x =时, 11(1)(1)11 1, 21212-1 2n n n n n n n n ∞ ∞==--??=> ?--??∑∑发散, 当2x =时, 1 (1)21n n n ∞ =--∑为收敛的交错级数, ? 收敛区间为(1,2]。 5. 1 ln(1) (1)1n n n x n ∞ =+-+∑ 解:1ln(2)(1)lim lim 1(2)ln(1) n n n n a n n a n n +→∞ →∞++==++ 1R ?= 故当11x -<,即02x <<时级数绝对收敛。 当0x =时,因为 1 ln(1)ln lim lim lim 01 1n x x n x x n x →∞→+∞→+∞+===+, 2 ln 1ln ln(2)ln(1) ()()0() 3 21 x x n n f x f x x e n x x n n -++'=?=<>?≥<++时, 所以 1 (1)ln(1) 1n n n n ∞ =-++∑收敛, 当2x =时,因为当2n ≥时ln(1)11 112n n n n +>>++ 所以1 ln(1)1n n n ∞ =++∑发散, ? 收敛区间为[0,2)。 6. 211(1)(1)4 n n n n x n ∞ -=--∑

函数的幂级数展开

教案 函 数 的 幂 级 数 展 开 复 旦 大 学 陈纪修 金路 1. 教学内容 函数的幂级数(Taylor 级数)展开是数学分析课程中最重要的内容之一,也是整个分析学中最有力的工具之一。通过讲解将函数展开成幂级数的各种方法,比较它们的优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数选择最简单快捷的方法来展开幂级数,提高学生的计算与运算能力。 2.指导思想 (1)函数的幂级数(Taylor 级数)展开作为一个强有力的数学工具,在分析学中占有举足轻重的地位。通常的数学分析教科书往往注重于讲解幂级数的理论,而忽视了讲解将函数展开成幂级数的方法,这样容易造成学生虽然掌握了幂级数的基本理论,但在实际计算中,即使对于一个很简单的函数,在求它的幂级数展开时也会感到很困难,这种状况必须加以改变。 (2)求函数的幂级数展开是每个数学工作者时时会碰到的问题,虽然我们有函数的幂级数展,但一般来说,直接利用(*)式来求函数的幂级数展开往往很不因此有必要向学生介绍一些方便而实用的幂级数展开方法,提高学生的实际计算能力, 3. f (x )在 x 0 的某个邻域O (x 0, r )中能级数: (*).,(0r x O (1) x ∈(-∞, +∞)。 (2) =+0 !)12(n n )!12() 1(!5!31253+-+-+-=+n x x x x n n + …, x ∈(-∞, + ∞)。 (3) f (x ) = cos x = ∑∞ =-02! )2()1(n n n x n )! 2()1(!4!21242n x x x n n -+-+-= + …, x ∈(-∞, + ∞)。

相关文档
最新文档