黏弹性流体基纳米流体流变学特性_阳倦成

黏弹性流体基纳米流体流变学特性_阳倦成
黏弹性流体基纳米流体流变学特性_阳倦成

20072016:黏弹性流体在多孔介质中的新渗流模型

黏弹性流体在多孔介质中的新渗流模型 学号:20072016 姓名:刘超 摘要:对两种类别的常用聚合物:多糖类(黄原胶)和部分水解聚丙烯酰胺(pusher-700)在玻璃珠人造岩心和贝雷砂岩中稳态流动的实验数据进行了分析。用振荡流测量计算聚合物溶解的最长弛豫时间( θ),即本文所涉及的特征弛豫 1f 时间。两种聚合物的稳态流实验数据与所测得的聚合物自身的黏弹性数据一起被换算成在多孔介质中的平均剪切应力-剪切速率数据,因此就得到聚合物流在多孔介质中的平均幂律指数(n)。用 θ、n、岩石渗透率(k)、饱和度(φ)和渗流 1f 速度(μ)计算黏弹性数( N),结果发现黏弹性数V N与多孔介质中的压力梯度密 V 切相关。这种相关性是定义聚合物渗流黏弹性模型的基础,类似于达西定律。新的模型认为渗流速度和压力梯度呈非线性关系,这证实了聚合物的黏弹性变形,并且也证实孔隙的几何尺寸变化是聚合物的分子吸附和机械滞留所致。 关键词:多孔介质;黏弹性流体;人造岩心;贝雷砂岩;渗流模型;特征弛豫时间 一、概述 聚合物在石油工程方面已经得到广泛的应用。在提高采收率方面,将聚合物加到水中是为了增加水的黏度和减小水的相对流度。水相对流度的降低提高了水的体积波及系数和水驱效率。虽然对聚合物在多孔介质中的渗流机理已经研究了几十年,但是至今没有重大突破。 达西定律适用于渗流流体为线性流,且其黏度恒定、孔隙的几何尺寸也恒定的情况。聚合物在多孔介质中的渗流偏离这些假设是因为:①聚合物的黏度是和剪切速率相关的;②聚合物分子的长短是和孔喉尺寸相匹配的,这样才可提高弹性特性;③聚合物分子的吸附和机械滞留改变了孔隙介质的几何尺寸。因此,应用达西定律模拟聚合物在多孔介质中的流动是错误的。模拟聚合物渗流的传统方法是在应用达西定律的同时应用一个有效黏度,即用恒定剪切速率下的黏度代替牛顿黏度。这种方法校正了剪切速率与黏度的相关性,但却没有考虑到非线性流和弹性流的特性。 Van Poollen和Jargon、Willhite和Uhl给出了一个关于非牛顿流体渗流时压降(ΔP)和渗流速率(Q)之间呈非线性关系的简单的经验模型。这种关系可以表示为:

第三章粘弹性流体的本构方程

第三章非线性粘弹流体的本构方程 1.本构方程概念 本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。 不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。 两种。 唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。 分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。为此首先提出能够描述大分子链运动的正确模型是问题关键。 根据研究对象不同, 象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。

目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。 同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。 从形式上分, 速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。 积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。积分又分为单重积分或多重积分。 判断一个本构方程的优劣主要考察: 1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。 2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。 3)有承前启后的功能。例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。 4)最后也是最重要的一条,即实验事实(实验数据)是判断一个本构方程优劣的出发点和归宿。实践是检验真理的唯一标准。 本章重点介绍用唯象论方法对一般非线性粘弹流体建立的本构方程。分子论方法在第四章介绍。

广义Oldroyd-B粘弹性流体Stokes第一问题

Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model1 Haitao Qi Department of Applied Mathematics and Statistics, Shandong University at Weihai Weihai, P. R. China 264209 htqi@https://www.360docs.net/doc/8c18050045.html, Mingyu Xu School of Mathematics and Systematical Science, Shandong University Jinan, P.R. China, 250100 Abstract The flow near a wall suddenly set in motion for a viscoelastic fluid with the generalized Oldroyd-B model is studied. The fractional calculus approach has been taken into account in the constitutive relationship of fluid model. Exact analytical solutions of velocity and stress are obtained by using the discrete Laplace transform of the sequential fractional derivative and the Fox-H function. The obtained results indicate that some well known solutions for the Newtonian fluid, the generalized second grade fluid as well as for the ordinary Oldroyd-B fluid, as limiting cases, are included in our solutions. Keywords: Generalized Oldroyd-B fluid, Stokes' first problem, Fractional calculus, Exact solution, Fox- H function. 1Introduction Navier-Stokes equations are the most fundamental motion equations in fluid dynamics. However, there are few cases in which their exact analytical solutions can be obtained. Exact solutions are very important not only because they are solutions of some fundamental flows, but also because they serve as accuracy checks for experimental, numerical, and asymptotic methods. The inadequacy of the classical Navier-Stokes theory to describe rheologically complex fluids such as polymer solutions, blood and heavy oils, has led to the development of several theories of non-Newtonian fluids. In order to describe the non-linear relationship between the stress and the rate of strain, numerous models or constitutive equations have been proposed. The model of differential type and those of rate type have received much attention [1]. In recent years, the Oldroyd-B fluid has acquired a special status amongst the many fluids of the rate type, as it includes as special cases the 1 Supported by the National Natural Science Foundation of China (10272067), the Doctoral Program Foundation of the Education Ministry of China (20030422046) and the Natural Science Foundation of Shandong University at Weihai.

激光原理复习题重点难点

《激光原理》复习 第一部分知识点 第一章激光的基本原理 1、自发辐射受激辐射受激吸收的概念及相互关系 2、激光器的主要组成部分有哪些?各个部分的基本作用。激光器有哪些类型?如何对激光器进行分类。 3、什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度? 4、如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强? 5、EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN 关系? 4、产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么? 5、什么是粒子数反转,如何实现粒子数反转? 6、如何定义激光增益,什么是小信号增益?什么是增益饱和? 7、什么是自激振荡?产生激光振荡的基本条件是什么? 8、如何理解激光横模、纵模? 第二章开放式光腔与高斯光束 1、描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件? 2、如何计算纵模的频率、纵模间隔? 3、如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系? 4、写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射 5、什么是激光谐振腔的稳定性条件? 6、什么是自再现模,自再现模是如何形成的? 7、画出圆形镜谐振腔和方形镜谐振腔前几个模式的光场分布图,并说明意义 8、基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积 9、如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征 10、高斯光束的特征参数?q参数的定义? 11、如何用ABCD方法来变换高斯光束? 12、非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。 第三章电磁场与物质的共振相互作用 1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么? 2、自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关? 3、光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。 4、画出激光三能级和四能级系统图,描述相关能级粒子的激发和去激发过程。建立相应能级系统的速率方程。 5、说明均匀加宽和非均匀加宽工作物质中增益饱和的机理。 6、描述非均匀加宽工作物质中增益饱和的“烧孔效应”,并说明它们的原理。

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μ μ?'=-=-?,24y y u p a y μμ ?'=-=?, 4x x p p p p a μ '=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。 (请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2 d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切 流动。它只是由于平板运动,由于流体的粘滞性

带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式 中 2d () 2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为 2sin (2) 2x g u zh z r q m =-,单宽流量 3 sin 3gh q r q m =。

翼型气动特性实验指导书2017版

《空气动力学》课程实验指导书 翼型压强分布测量与气动特性分析实验 一、实验目的 1 熟悉测定物体表面压强分布的方法,用多管压力计测出水柱高度,利用伯努利方程计算出翼型表面压强分布。 2 测定给定迎角下,翼型上的压强分布,并用坐标法绘出翼型的压强系数分布图。 3 采用积分法计算翼型升力系数,并绘制不同实验段速度下的升力曲线。 4 掌握实验段风速与电流频率的校核方法。 二、实验仪器和设备 (1) 风洞:低速吸气式二元风洞。实验段为矩形截面,高0.3米,宽0.3米。实验风速 20,30,40V ∞=/m s 。实验段右侧壁面的静压孔可测量实验段气流静压p ∞,实验段气流的总压0p 为实验室的大气压a p 。 表2.1 来流速度与电流频率的对应(参考) 表2.2 翼型测压点分布表 上表面 下表面 (2) 实验模型:NACA0012翼型,弦长0.12米,展长0.09米,安装于风洞两侧壁间。模

型表面开测压孔,前缘孔编号为0,上下翼面的其它孔的编号从前到后,依次为1、2、3 ……。(如表-2所示) (3) 多管压力计:压力计斜度90θ=,压力计标定系数 1.0K =。压力计左端第一测压管 通大气,为总压管,其液柱长度为I L ;左端第二测压管接风洞收缩段前的风洞入口侧壁静压孔,其液柱长度为IN L ;左端第三、四、五测压管接实验段右侧壁面的三个测压孔,取其液柱长度平均值为II L 。其余测压管分成两组,分别与上下翼面测压孔一一对应连接,并有编号,其液柱长度为i L 。这两组测压管间留一空管通大气,起分隔提示作用。 三、实验原理 测定物体表面压强分布的意义如下:首先,根据表面压强分布,可以知道物体表面上各部分的载荷分布,这是强度设计的基本数据;其次,根据表面压强分布,可以了解气流绕过物体时的物理特性,如何判断激波,分离点位置等。在某些风洞中(例如在二维风洞中,模型紧夹在两壁间,不便于装置天平),全靠压强分布来间接推算出作用在机翼上的升力或力矩。 测定压强分布的模型构造如下:在物体表面上各测点垂直钻一小孔,小孔底与埋置在模型内部的细金属管相通,小管的一端伸出物体外(见图1),然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。多管压力计的原理与普通压力计相同,都是基于连通器原理,只是把多个管子装在同一架子上而已,这样就可同时观察多点的压强分布情况,为了提高量度的准确性,排管架的倾斜度可任意改变。 图3.1 接多管压力计上各相应支管 图3.2 实验安装示意图

激光基本知识周炳坤-第5章知识题目解析

第五章 激光振荡特性 1、证明: 由谐振腔内光强的连续性,有:I =I 'ηη ' ' =?'?'=??C N C N V N V N 谐振腔内总光子数 )(l L S N NSl -'+=Φ)(l L NS NSl -' + =η η ηηη/])([l l L NS +-'=η/L NS '= , 其中)(l L l L -'+='ηη R NSl C n dt d τησΦ -?=Φ21 R L NS NSl C n dt dN L S ητηση'-?='21 , C L R δτ' = L C N L l CN n dt dN ' -'?=δσ21 2.长度为10cm 的红宝石棒置于长度为20cm 的光谐振腔中,红宝石694.3nm 谱线的自发辐射 寿命3410s s τ-≈?,均匀加宽线宽为5 210MHz ?。光腔单程损耗0.2δ=。求 (1)阈值反转粒子数t n ?; (2)当光泵激励产生反转粒子数 1.2t n n ?=?时,有多少个纵模可以振荡?(红宝石折射率为1.76) 解:(1) 阈值反转粒子数为: 222 21211233 72 173 44210 1.764100.2 cm 10(694.310) 4.0610cm H s t n l l πνητδδ σλπ----??== ??????=??=? (2) 按照题意 1.2m t g g =,若振荡带宽为osc ν?,则应该有 2 22 21.222H t t osc H g g ννν??? ???=?????? + ? ??? ??

由上式可以得到 108.9410Hz osc H νν?==? 相邻纵模频率间隔为 10 831022( 1.76())2(10 1.7610) 5.4310Hz q c c l l L l ν??=== '?+-?+=? 所以 10 8 8.9410164.65.4310 osc q νν??==?? 所以有164~165个纵模可以起振。 3.在一理想的三能级系统如红宝石中,令泵浦激励几率在t =0瞬间达到一定值13W , 1313()t W W >[13()t W 为长脉冲激励时的阈值泵浦激励几率]。经d τ时间后系统达到反转状态并产生 振荡。试求1313/()d t W W τ-的函数关系,并画出归一化1313//()d s t W W ττ-的示意关系曲线(令 1F η=)。 解:根据速率方程(忽略受激跃迁),可以知道在达到阈值之前,在t 时刻上能级的粒子数密度2()n t 与时间t 的关系为 2113()1322113 ()1 (1)A W t nW n t e A W -+??= -??+ 当d t τ=时,t n n ?=?,即 2113()1322113 ()1 (2)22 d A W d t nW n e A W n n n ττ-+??=-??++?= ≈ 由(1)可知,当时间t 足够长的时候 13 22113 ()nW n t A W ≈ + 由上式可知

激光原理习题

第一章:激光的基本原理 1.为使He-Ne激光器的相干长度达到1km,它的单色性?λ/λ0应是多少? 2.设一对激光能级为E2和E1(f1=f2),相应的频率为v(波长为λ),能级上的粒子 数密度分别为n2和n1,求: (a)当v=3000MHz,T=300K时,n2/n1=? (b)当λ=1μm,T=300K时,n2/n1=? (c)当λ=1μm,n2/n1=0.1时,温度T=? 3.设一对激光能级为E2和E1(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n1和n2,求 (a)当ν=3000Mhz,T=300K时,n2/n1=? (b)当λ=1um,T=300K时, ,n2/n1=? (c)当λ=1um, ,n2/n1=0.1时,温度T=? 4.在红宝石Q调制激光器中,有可能将几乎全部Cr+3离子激发到激光上能级并产生激光巨脉冲。设红宝石棒直径1cm,长度7.5cm,Cr+3离子浓度为2×1019cm-3,巨型脉冲宽度为10ns,求输出激光的最大能量和脉冲功率。 5.试证明,由于自发辐射,原子在E2能级的平均寿命t s=1/A21。 6.某一分子的能级E4到三个较低能级E1,E2和E3的自发跃迁几率分别是A43=5*107s-1,A42=1*107s-1和A41=3*107s-1,试求该分子能级的自发辐射寿命τ4。若τ1=5*107s-1,τ2=6*10-9s,τ3=1*10-8s在对E4连续激发并达到稳态时,试求相应能级上的粒子数比值n1/n4,n2/n4,n3/n4,并回答这时在哪两个能级间实现了集居数反转。 7.证明当每个膜内的平均光子数(光子简并度)大于1时,辐射光中受激辐射占优势。 8.(1)一质地均匀的材料对光的吸收系数为0.01mm-1,光通过10cm长的该材料后,出射光强为入射光强的百分之几?(2)一光束通过长度为1m的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。 第二章:开放式光腔与高斯光束 1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。

粘弹性流体的流动和传热传质研究

推荐国家自然科学奖项目公示 项目名称粘弹性流体的流动和传热传质研究 推荐单位教育部 推荐单位意见: 我单位认真审阅了该项目推荐书及附件材料,确认全部材料真实有效,相关栏目均符合国家科学技术奖励工作办公室的填写要求。 该项目首次提出了根据本构关系计算多孔介质内粘弹性流体流动阻力的新方法,建立了粘弹性流体在多孔介质内非定常流动的新模型,丰富了非牛顿流体力学的新理论;发现了多物理场耦合效应下粘弹性流体在多孔介质内对流发生的新模态、新判据,揭示了粘弹性流体在多孔介质内自然对流的演化规律;将分数阶微积分引入到粘弹性流体力学的研究中,首次构建了粘弹性流体广义分数阶单元的网络表述模式,建立了粘弹性流体力学问题的新理论;建立了钙火花空间反常扩散的力学模型,成功解释了“钙火花峰宽”悖论,发现了钙离子在细胞内反常扩散的新机制,填补了空间次扩散的空白。 对照国家自然科学奖授奖条件,推荐该项目申报2017年度国家自然科学奖二等奖。

项目简介: 本项目属于流体力学领域的核心关键基础问题。现实中许多化学流体、生物流体、智能流体等都是典型的粘弹性流体,粘弹性流体的流动问题与石油开采、地下水污染修复、心血管疾病防治等工程应用密切相关,是我国能源、环保、健康领域重点关注的关键力学问题。同时,由于粘弹性流体的本构关系复杂且具有多样性,其流动特征更加具有复杂性、非线性、不稳定性,因此,粘弹性流体力学一直是流体力学的研究热点和难点之一。本项目对粘弹性流体的流动与传热传质进行了系统深入的研究,做出了一系列原创性贡献,获得了一批创新性成果: 1、首次提出了根据本构关系计算多孔介质内粘弹性流体流动阻力的新方法,克服了以往用Darcy定律估算流动阻力时没有考虑流体弹性特征的缺点,建立了粘弹性流体在多孔介质内非定常流动的新模型,发现了速度震荡、速度阶跃和速度超射等新现象; 2、发现了多物理场耦合效应下粘弹性流体在多孔介质内热对流发生的新模态和新判据,阐明了其发生的物理机制,得到了粘弹性流体在多孔介质内对流传热效率的标度律,揭示了粘弹性流体在多孔介质内自然对流的演化规律; 3、将分数阶微积分引入到粘弹性流体力学的研究中,首次构建了粘弹性流体广义分数阶单元的网络表述模式,提出了离散求分数阶拉普拉斯逆变换的方法,发现了粘弹性流体启动流的涡量函数依赖于速度剖面的时间历程, 而这种时间历程是可以用分数阶微积分来刻画的; 4、考虑了细胞液的粘弹性,建立了钙火花反常扩散的力学模型,成功解释了“钙火花峰宽”悖论,发现了钙离子在细胞内扩散的新机制;同时,首

激光原理 周炳琨版课后习题答案

激光原理 周炳琨 (长按ctrl键点击鼠标即可到相应章节) 第一章激光的基本原理 (2) 第二章开放式光腔与高斯光束 (4) 第三章空心介质波导光谐振腔 (14) 第四章电磁场和物质的共振相互作用 (17) 第五章激光振荡特性 (31) 注:考华科者如需激光原理历年真题与答案可联系 E-mail:745147608@https://www.360docs.net/doc/8c18050045.html,

第一章激光的基本原理 习题 2.如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少? 解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则: 由此可得: 其中34 6.62610 J s h -=??为普朗克常数,8310m/s c =?为真空中光速。 所以,将已知数据代入可得: =10μm λ时: 19-1=510s n ? =500nm λ时: 18-1=2.510s n ? =3000MHz ν时: 23-1=510s n ? 3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为λ),能级上的粒子数密度分别为2n 和1n ,求 (a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=? 解:当物质处于热平衡状态时,各能级上的粒子数服从波尔兹曼统计分布: (a) 当ν=3000MHz ,T=300K 时: (b) 当λ=1μm ,T=300K 时: c P nh nh νλ ==P P n h hc λν= =2211()exp exp exp n E E h hc n KT KT K T νλ-??????=-=-=- ? ???????? ?3492 231 6.62610310exp 11.3810300n n --?????=-≈ ????? 3482 2361 6.62610310exp 01.381010300n n ---?????=-≈ ??????

一类粘弹性流体模型与数值分析的分析

一类粘弹性流体模型与数值分析的分析

摘要 粘弹性流体问题一直是流体力学和理论数学研究的一个重要问题.本文主 要研究一类粘弹性流体的数学模型.耳POldroyd—B型流体的数学模型.这类数 学模型一直以来都是众多科学家感兴趣的研究内容,均归结为偏微分方程(组)的求解,因此,研究具有高效率高精度的算法是很有必要的.在本文 中我们提供了几种解决两类偏方程的数学方法.文章主要内容如下j 本文第一章介绍了非牛顿流体力学及相关数值分析综述.第二章着重讨论 了基于Oldroyd随体时间导数的01droyd-B型流体的数学模型的本构方程的 建立、求解,并最终给出了此类方程l级、2级变分一解析解,同时,我们还在 两个特殊情形(常压力梯度和周期性压力梯度)下,讨论了该变分一解析解具体表 达形式. 第三章主要工作是应用混合有限元、最小二乘混合有限元和V循环多重网格 法去解决Oldroyd B型流体流动问题.一方面,我们将混合有限元方法应用于求 解非定常型的服从Oldroyd B型本构律的黏弹性流体流动问题.另一方面,我们将 运用混合有限元方法、最小二乘混合有限元方法和Y循环多重网格法去逼近 Oldroyd B型流体流动问题,并讨论了逼近解与真解的误差估计和收敛性.其主要 内容如下:讨论用混合有限元方法去研究01droyd B型流体流动问题的解的存在 唯一性,并给出了逼近解的误差估计;介绍应用混合有限元的最小二乘法去逼近01droyd B型流体流动问题,并讨论了逼近解的收敛性;讨论01droyd B型流体 流动问题的V循环多重网格格式,并给出了迭代解的存在唯一性和误差估计.本文第四章的主要目的就是研究一类非对称椭圆问题的最小二乘混合有限 元方法的超收敛现象.特别是对一般的非自共扼二阶椭圆边值问题,我们讨论了其最小二乘混合元解的存在唯一性及超收敛性.在第五章中,我们分别对半线性反应扩散问题和非线性反应扩散问题的扩张混合有限元方法给出了几个两层网格方法,并对它们的收敛性进行了分析.关键词:Oldroyd—B型流体,反应扩散方程,有限元,混合有限元,超收敛,误差估计

2010激光原理复习

《激光原理》复习 第一章激光的基本原理 1、自发辐射受激辐射受激吸收的概念及相互关系 2、激光器的主要组成部分有哪些?各个部分的基本作用。激光器有哪些类型?如何对激光器进行分类。 3、什么是光波模式和光子状态?光波模式、光子状态和光子的相格空间是同一概念吗?何谓光子的简并度? 4、如何理解光的相干性?何谓相干时间,相干长度?如何理解激光的空间相干性与方向性,如何理解激光的时间相干性?如何理解激光的相干光强? 5、 EINSTEIN系数和EINSTEIN关系的物理意义是什么?如何推导出EINSTEIN 关系? 4、产生激光的必要条件是什么?热平衡时粒子数的分布规律是什么? 5、什么是粒子数反转,如何实现粒子数反转? 6、如何定义激光增益,什么是小信号增益?什么是增益饱和? 7、什么是自激振荡?产生激光振荡的基本条件是什么? 8、如何理解激光横模、纵模? 第二章开放式光腔与高斯光束 1、描述激光谐振腔和激光镜片的类型?什么是谐振腔的谐振条件? 2、如何计算纵模的频率、纵模间隔? 3、如何理解无源谐振腔的损耗和Q值?在激光谐振腔中有哪些损耗因素?什么是腔的菲涅耳数,它与腔的损耗有什么关系? 4、写出(1)光束在自由空间的传播;(2)薄透镜变换;(3)凹面镜反射;(4)介质中传播的射线光学矩阵 5、什么是激光谐振腔的稳定性条件? 6、什么是自再现模,自再现模是如何形成的? 7、写出菲涅耳-基尔赫夫方程,并说明每一项的物理意义 8、画出圆形镜谐振腔和方形镜谐振腔前几个模式的光场分布图,并说明意义 9、基模高斯光束的主要参量:束腰光斑的大小,束腰光斑的位置,镜面上光斑的大小?任意位置激光光斑的大小?等相位面曲率半径,光束的远场发散角,模体积 10、如何理解一般稳定球面腔与共焦腔的等价性?如何计算一般稳定球面腔中高斯光束的特征 11、高斯光束的特征参数?q参数的定义? 12、如何用ABCD方法来变换高斯光束? 13、非稳定腔与稳定腔的区别是什么?判断哪些是非稳定腔。 14、激光器输出横模和纵模如何确定。 第三章电磁场与物质的共振相互作用 1、什么是谱线加宽?有哪些加宽的类型,它们的特点是什么?如何定义线宽和线型函数?什么是均匀加宽和非均匀加宽?它们各自的线型函数是什么? 2、自然加宽、碰撞加宽和多普勒加宽的线宽与哪些因素有关? 3、能级光学跃迁的速率方程,并考虑连续谱和单色谱光场与物质的作用和工作物质的线型函数。 4、画出激光三能级和四能级系统图,描述相关能级粒子的激发和去激发过程。建立相应能级系统的速率方程,求解速率方程,求出激光能级的反转粒子数密度。

周炳坤版 习题解答第五章

第五章 激光振荡特性 2.长度为10cm 的红宝石棒置于长度为20cm 的光谐振腔中,红宝石694.3nm 谱线的自发辐 射寿命3410s s τ-≈?,均匀加宽线宽为5 210MHz ?。光腔单程损耗0.2δ=。求 (1)阈值反转粒子数t n ?; (2)当光泵激励产生反转粒子数 1.2t n n ?=?时,有多少个纵模可以振荡?(红宝石折射率为1.76) 解:(1) 阈值反转粒子数为: 222 21211233 72 173 44210 1.764100.2 cm 10(694.310) 4.0610cm H s t n l l πνητδδ σλπ----??== ??????=??=? (2) 按照题意 1.2m t g g =,若振荡带宽为osc ν?,则应该有 2 22 21.222H t t osc H g g ννν??? ???=?????? + ? ??? ?? 由上式可以得到 108.9410Hz osc H νν?==? 相邻纵模频率间隔为 10 831022( 1.76())2(10 1.7610) 5.4310Hz q c c l l L l ν??=== '?+-?+=? 所以 10 8 8.9410164.65.4310 osc q νν??==?? 所以有164~165个纵模可以起振。 3.在一理想的三能级系统如红宝石中,令泵浦激励几率在t =0瞬间达到一定值13W , 1313()t W W >[13()t W 为长脉冲激励时的阈值泵浦激励几率]。经d τ时间后系统达到反转状态并产生 振荡。试求1313/()d t W W τ-的函数关系,并画出归一化1313//()d s t W W ττ-的示意关系曲线(令 1F η=)。 解:根据速率方程(忽略受激跃迁),可以知道在达到阈值之前,在t 时刻上能级的粒子数密

粘弹性力学学习心得

这学期新学了一门课:粘弹性力学。以前在本科阶段没有接触过有关弹性和粘弹性力学方面的知识,学起来感觉有些抽象。弹性力学和我们之前所学过的材料力学、结构力学的任务一样,都是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并且寻求或改进它们的计算方法。然而,它们还是略有不同的。 在以前所学的材料力学中,研究对象主要是杆状构件。材料力学的主要研究内容是这种杆状构件在拉压、剪切、弯曲、扭转作用下的应力和位移。而结构力学则是在材料力学内容的基础上研究由杆状构件所组成的结构,诸如桁架、钢架等。若研究一些非杆状构件,此时就需要运用弹性力学的知识,当然,弹性力学同样适用于杆状构件的研究计算。 虽然材料力学和弹性力学都可以对杆状构件进行分析,但两者的研究方法却是不大相同的。在材料力学的研究中,除了从静力学、几何学、物理学三方面进行分析外,大都会引用一些关于构件的形变状态或者应力分布的假定,这种假定就使得数学推演变得简化了,所以有时得到的答案只是近似解而不是精确解。这种假定在弹性力学中一般是不引用的,在我们这学期所学的有关弹性力学的知识中,只用精确的数学推演而不引用关于形变状态或应力分布的假定,所以结果较材料力学而言更为精确。 通过对以前学过的力学课程对比,能够更好地了解到弹性力学的一些特点,下面我将说一些自己对弹性力学的了解。 在这学期的弹性力学课程中,我们主要从认识弹性力学出发,然后学习了一些基本理论。比如平面应力与平面应变、平衡微分方程、几何方程、物理方程以及边界条件等。然后由这些基本理论出发,对直角坐标系和极坐标系下的平面问题进行解答,了解到了在平面问题中弹性力学的运用。继而学习到了空间问题的一些基本理论 弹性力学主要运用到的基本概念有外力、应力、形变和位移。作用于物体的外力可分为体积力和表面里,可简称为体力和面力。其中体力是分布在物体体积内的力,如重力和惯性力。面力则是分布在物体表面上的力,如流体压力和接触力。物体受到了外力的作用或者由于温度有所改变,物体内部将会发生内力。而应力,其作用在截面的法向量和切向量,也就是正应力和切应力,是和物体的形

第5章 汽车空气动力学-5学时

第五章汽车空气动力学 第一节概述第二节汽车空气动力学基础 第三节汽车行驶时所受到的气动力和力矩第四节汽车外形与空气动力学特性的关系 第一节概述 一、研究目的 ?赋予轿车以高的空气动力性的车身造型,以降低空气阻力,提高行驶稳定性和降低空气动力噪声等 二、空气动力学研究的主要内容包括:1、汽车行驶过程中的气动力和力矩的研究2、汽车表面及周围的流谱和局部流场的分布研究3、发动机和制动装置的空气冷却问题的研究4、汽车内部自然通风和换气问题的研究 三、汽车空气动力学的研究手段理论分析 试验研究 数值模拟 随着计算机硬件和软件技术的发展和湍流理论的深入研究,使得计算机流体力学(CFD)在汽车设计和分析领域应用更加广泛。 目前国外应用较成功的商用CFD 软件有:?福特汽车公司的Start-CD;?Fluent公司的FLUENT;?CHAM公司的PHOENICES;?AEA Technology公司的CFX-4等。 第二节汽车空气动力学基础 一、空气的力学特性 空气具有可压缩、粘性和热传导性等性质。但是在实际研究中为了研究的方便,一般不考虑空气的压缩性,称为理想空气。1、流线和流谱 ?流线:空气流动的轨迹,即该假想曲线上任一点的切线方向与该时刻气流质点速度向量的方向相同。?流谱:在某一瞬时的流场中,许多流线的集合称为该时刻气流的流谱。通过流谱来描述气流流动的全貌。 2、流体流动的连续性 ?流体的流速与流管的截面积的关系常数 v Α=计算机计算得到的围绕车身廓形的空气流线 计算机计算得到的围绕车身廓形的空气流线3、伯努利方程式 ?伯努利方程式用来描述定常流的流动情况,说明静压和动压的关系:=常数 即为空气密度 为空气的流速,,=式中:动压222 1 :2 1 v p v v q 常数 q p ρρρ+=+

第5章 典型激光器

2010-12-14 首都师范大学物理系王卫宁 1 第5章典型激光器 1 按工作物质分: 固体、液体、气体、半导体、光纤、自由电子…… 2 按输出激光波长的不同分: 远红外、红外、可见光、紫外、x 射线等 3 按激光器的泵浦方式不同分: 光泵浦、电泵浦、化学反应等 4 按运转方式不同分 连续、脉冲、重复脉冲、模式可调 5 按输出激光的脉冲时间宽度不同分 长脉冲、短脉冲、超短脉冲(皮秒、飞秒、阿秒) 本课程按工作物质的分类方式讲解 2010-12-14首都师范大学物理系王卫宁 2 常见激光器及其特性 类型名称 工作物质 波长(μm )激励方式特征 气体激光器 原子He-Ne He-Ne 0.6328气体放电广泛分子 CO 2CO 210.6气体放电高功率输出N 2N 20.3371气体放电无谐振腔离子 Ar + Ar +0.4880气体放电常用作泵浦源He-Cd Cd 3+0.4416气体放电固体红宝石 Cr 3+-Al 2O 30.6943光泵浦应用广泛,可得到高功率输出 Nd 3+-YAG Nd 3+-YAG 1.06光泵浦钕玻璃Nd 3+ 1.06光泵浦液体染料染料0.32激光泵浦波长可调半导体 GaAs/ GaAlAs GaAs 0.85电流注入短波长通信InP/InGaAsP InP 1.30 电流注入 长波长通信 2010-12-14 首都师范大学物理系王卫宁 3 5.1 固体激光器 ?固体激光器最早实现激光输出. 目前,激光输出能量高达105焦耳,最高峰值功率达1013瓦,中小型激光器技术的发展已相当成熟。 ?光泵激励:气体放电灯激励,半导体激光器激励 ?常用固体激光器:红宝石激光器、掺钕钇铝石榴 石激光器、钕玻璃激光器、光纤激光器、钛宝石激光器 ?工作物质:以绝缘晶体或玻璃作为基质,掺入少量的过渡金属离子或稀土作为激活介质; 参与受激辐射的离子密度一般为1025-1026m -3,激光上能级的寿命10-4-10-3s 2010-12-14 首都师范大学物理系王卫宁 4 5.1.1 固体激光器的基本结构与工作物质1.基本结构: 工作物质、泵浦系统、谐振腔和冷却、滤光系统 图5-1 固体激光器的基本结构示意图

相关文档
最新文档