西南大学0709年数学分析考研真题

西南大学0709年数学分析考研真题
西南大学0709年数学分析考研真题

大学数学分析答案

《数学分析》练习题1 一、单项选择题(本大题共4小题,每小题5分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、广义积分dx x ? -2 2 211的奇点的是 【 】 A .0 B .2 C .2 D .2± 2、下列关于定积分的说法正确的是 【 】 A .函数)(x f 在[]b a ,有界,则)(x f 在[]b a ,一定可积; B .函数)(x f 在[]b a ,可积,则)(x f 在[]b a ,一定有界; C .函数)(x f 在[]b a ,不可积,则)(x f 在[]b a ,一定无界; D .函数)(x f 在[]b a ,无界,则)(x f 在[]b a ,可能可积。 3、函数()x f 在闭区间[]b a ,可积是函数()x f 在闭区间[]b a ,连续的__ __条件。 【 】 A .充分非必要 B .必要非充分 C .充分必要 D .即不充分,又非必要 4、若级数∑∞ =1 n n u 收敛,则下列级数中,为收敛级数的是 【 】 A .()∑∞=-1 1n n n u B .()∑∞=-1 1n n n u C .∑∞=+1 1n n n u u D .∑ ∞ =++1 1 2 n n n u u 二、填空题(本大题共4小题,每小题5分,共20分)请在每小题的横线上给出正确的答案. 1、(){}x f n 在X 一致收敛的定义是: . 2、函数2 x e -在0=x 处的幂级数展开式为, . 3、积分()1012 <x 的收敛性。 解: 5、求级数∑ ∞ =1 3n n n n x 的收敛半径与收敛域。 解: 6、求dx e x ?+∞ 1。 解: 四、综合题(本大题共3小题,每小题8分,共24分)请在每小题后的空白处写出必要的 证明过程。 1、证明:积分?+∞ 02cos dx x 收敛。 证: 2、设()x f 在R 上连续,()()()dt t x t f x F x 20 -= ?。 证明:(1)若()x f 为偶函数,则()x F 也是偶函数;(2)若()x f 为单调函数,则()x F 也是单调函数。 证: 3、若{}n na 收敛, ()∑∞ =--1 1n n n a a n 收敛,证明级数∑∞ =1 n n a 收敛。 证:

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

西南大学数学专业历年考研试题数学分析2000-2014;2018年

西南大学2018年研究生入学考试数学分析真题 一、 计算题 1. 设x≥0,求数列极限 lim x →∞ 2. 设()x ? 具有二阶导数,在ⅹ= 0的某去心邻域()x ?≠ 0,且()lim =0x f x x →∞,()04″?= 。 求()2 x 0lim 1+x →??????? x x 3. 设()x ?二阶连续可导。 且()2π?= ,()()0sin dx π??"? ????x+x x =4 求()0? 的值。 4. 设()2,?-2z =x y x y ,其中?具有连续的二阶偏导数,求2 x y ???z 。 5. 设V 是由曲面 22和Z =x+y Z =x +y 所围的立体,求V 的体积 。 6. 设S 是由曲面222242x+y+z= 的外侧,计算曲面积分

()3222s 2z+y z++dyd dxd dxdy ?? x z x y+z 二、 证明题 1. 利用极限的“ εδ- ”定义证明: 2212lim 3x →=--1x 2x x 2. 设n 0n+1n ==1++,x x 1x 1x ()n 0≥ 证明:数列{}n x 收敛,并求其极限。 3. 按数列极限的柯西准则叙述数列发散的充要条件,并用其证明:数列 ()n 111n=1223n ,a =1++++ 发散。 4. 设S 为非空有界数集, sup =a ∈- S,证明:? 严格递增数列{}n x st.∈,S lim n n a →∞ =x 5. 设数列{}n a 单调递减,()n n n=101n ∞≥-∑且a a 发散,证明:n n=1n 11+∞?? ???∑a 收敛 6. 设函数? 在[]01, 上连续,在[]0,1 内可导,且()()0011?=?=, 证明:对 ? 给定的正数a,b 在()0,1内? 不同的两点ζη,

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

西南大学数学分析作业答案

三、计算题 1.求极限 90 20 70) 15() 58()63(lim --++∞ →x x x x . 解: 90 20 70 90 20 70 90 20 70 5 8 3 155863lim ) 15() 58() 63(lim ?= ? ?? ? ? -? ?? ? ? -? ?? ? ?+=--++∞ →+∞ →x x x x x x x x 2.求极限 21 1lim ( ) 2 x x x x +→∞ +-. 解:21 1lim ( ) 2 x x x x +→∞ +=-21111lim 22 11x x x x x x →∞ ? ???++ ? ??= ? ? ? ? --? ? ??211lim 21x x x x →∞? ? + ?= ? ?-?? 2 (4) 2 1[(1)] lim 2[(1) ] x x x x x →∞ - -+ - 2 6 4 e e e -= =. 3. 求极限 1 111lim (1)2 3 n n n →∞ + + ++ 解:由于11 1111(1)2 3 n n n n ≤+ + ++ ≤ , 又lim 1n →∞ =, 由迫敛性定理 1 111lim (1)12 3 n n n →∞ + + ++ = 4.考察函数),(, lim )(+∞-∞∈+-=--∞ →x n n n n x f x x x x n 的连续性.若有间断点指出其类型. 解: 当0x <时,有221()lim lim 11 x x x x x x n n n n n f x n n n --→∞ →∞ --===-++;同理当0x >时,有()1f x =.

数学分析(1)期末试题A

山东师范大学2007-2008学年第一学期期末考试试题 (时间:120分钟 共100分) 课程编号: 4081101 课程名称:数学分析 适用年级: 2007 学制: 四 适用专业:数学与信息试题类别: A (A/B/C) 2分,共20分) 1. 数列{}n a 收敛的充要条件是数列{}n a 有界. ( ) 2. 若0N ?>, 当n N >时有n n n a b c ≤≤, 且lim lim n n n n a c →∞ →∞ ≠, 则lim n n b →∞ 不存在. ( ) 3. 若0 lim ()lim ()x x x x f x g x →→>, 则存在 00(;)U x δ使当00(;)x U x δ∈时,有()()f x g x >. ( ) 4. ()f x 为0x x →时的无穷大量的充分必要条件是当00(;)x U x δ∈时,()f x 为无界函数. ( ) 5. 0x =为函数 sin x x 的第一类间断点. ( ) 6. 函数()f x 在[,]a b 上的最值点必为极值点. ( ) 7. 函数21,0,()0, 0x e x f x x -?? ≠=??=?在0x =处可导. ( ) 8. 若|()|f x 在[,]a b 上连续, 则()f x 在[,]a b 上连续. ( ) 9. 设f 为区间I 上严格凸函数. 若0x I ∈为f 的极小值点,则0x 为f 在I 上唯一的极小值点. ( ) 10. 任一实系数奇次方程至少有两个实根. ( )

二、 填空题(本题共8小题,每空2分,共20分) 1. 0 lim x x x + →=_________________. 2. 设2 ,sin 2x u e v x ==,则v d u ?? = ??? __________________. 3. 设f 为可导函数,(())x y f f e =, 则 y '=_______________. 4. 已知3(1)f x x +=, 则 ()f x ''=_______________. 5. 设 ()sin ln f x x x =, 则()f π'=_______________ . 6. 设21,0, (),0; x x f x ax b x ?+≥=?+

华中科技大学考研数学分析真题答案

2008年华中科技大学招收硕士研究生. 入学考试自命题试题数学分析 一、 求极限1 111lim(1...)23n n I n →∞=++++ 解: 一方面显然1I ≥ 另一方面111 1...23n n ++++≤,且1lim 1n n n →∞= 由迫敛性可知1I =。 注:1 lim 1n n n →∞ =可用如下两种方式证明 1) 1n h =+,则22 (1)2(1)1(2)2n n n n n n n h h h n n -=+≥+ ?≤≥ 即lim 0n n h →∞ =,从而1lim 1n n n →∞ = 2) =有lim 11n n n n →∞==-。 二、证明2232(38)(812)y x y xy dx x x y ye dy ++++为某个函数的全微分,并求它的原函数。 证明:记22(,)38P x y x y xy =+,32(,)812y Q x y x x y ye =++,则 2316P x xy y ?=+?,2316Q x xy x ?=+?? P Q y x ??=?? Pdx Qdy ∴+是某个函数的全微分 设原函数为(,)x y Φ,则x y d dx dy Pdx Qdy Φ=Φ+Φ=+ 2232238(,)4()x x y xy x y x y x y y ?∴Φ=+?Φ=++ 32328()812y y x x y y x x y ye ?'?Φ=++=++ ()12()12(1)y y y ye y y e C ??'?=?=-+ 322(,)412(1)y x y x y x y y e C C ∴Φ=++-+所求原函数为(为常数) 三、设Ω是空间区域且不包含原点,其边界∑为封闭光滑曲面:用n 表示∑的单位外法向量,(,,)r x y z =和2r r x y ==+,证明:

山东大学数学分析

2005年试题 一、1.求极限1222lim n n a a na n →∞ ++L ,其中lim .n n a a →∞= 2.求极限21lim (1).x x x e x -→+∞+ 3.证明区间(0,1)和(0,)+∞具有相同的基数(势)。 4.计算积分:21,D dxdy y x +??其中D 是由0,1,x y y x ===所围成的区域。 5.计算:2222,:21C ydx xdy I C x y x y -+=+=+?方向为逆时针。 6.设0,0,a b >>证明:11()().1b b a a b b ++≥+ 二、设()f x 为[,]a b 上的有界可测函数且 2[,]()0,a b f x dx =?证明: ()f x 在 [,]a b 上几乎处处为零。 三、设()f x 在(0,)+∞内连续且有界,试讨论()f x 在(0,)+∞内的一致连续性。 四、 设222220(,)0,0 x y f x y x y +>=+=?,讨论(,)f x y 在原点的连续性,偏导数存在性及可微性。 五、设()f x 在(,)a b 内二次可微,求证: 2 ()(,),..()2()()().24a b b a a b s t f b f f a f ξξ+-''?∈-+= 六、()f x 在R 上二次可导,,()0,x f x ''?∈>R 又00,()0,lim ()0,lim ()0.x x x f x f x f x αβ→-∞→+∞''?∈<=<=>R 证明:()f x 在R 上恰有两个零点。 七、设()f x 和()g x 在[,]a b 内可积,证明:对[,]a b 的任意分割

大学工科数学分析期末考试_(试题)A

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

一、填空题(每题4分,共20XX 分) 1. 设 ABC L 是从 (1,0) A 到 (0,1) B -再到 (1,0) C -连成的折线,则曲线积分 d d |||| ABC L x y x y +=+? . 2. 设向量场222(1)(1)(1)A x x z i y x z j z x z k =++-+-,则向量场在点012 1M -(,,)处的旋度A =rot . 3. 若x y xe -=和sin y x =为某四阶常系数齐次线性微分方程的两个解,则该方程是 . 4. 函数(),(),(,)x x f x y ?ψ皆可微,设()(),()z f x y xy ?ψ=+,则 z z x y ??-=?? . 5. 锥面 22 z x y +被圆柱面 222,(0) x y ax a +=>截下的曲面的面积 为 . 二、单项选择题(每题4分,共20XXXX 分) 本题分数 20XX 得 分 本题分数 20XXXX 得 分

(多选不得分) 6.若 ()() 0000,,, x y x y f f x y ????都存在,则(,)f x y 在()00,x y ( ) (A )极限存在但不一定连续 (B )极限存在且连续 (C )沿任意方向的方向导数存在 (D )极限不一定存在,也不一定连续 7. 12,L L 是含原点的两条同向封闭曲线,若已知122 d d L y x x y K x y -+=+?(常数), 则222d d L y x x y I x y -+= +?的值 ( ) (A )一定等于 K (B )一定等于K - (C ) 与2L 的形状有关 (D )因为 Q P x y ??=??,所以0I = 8.∑为球面2222x y z a ++=外侧,Ω为球体2222x y z a ++≤,则有 ( )

南京大学数学分析

南京大学1992年数学分析试题 一、定0a ,0a ≠k π(k ∈Z ),设1+n a =sin n a (n=0,1,2,…). 1) 求∞→n lim n a ;2)求lim ∞→n 21n na . 二、设f(x) ∈]1,0[C ,在}0{\)1,1(- 内可微,且)0(+'f 及)0(-'f 存在有限,而数列}{},{n n b a 满足条件,101<<<<-n n b a 且∞→n lim n a =∞ →n lim n b =0,求证存在子序列}{},{k k n n b a 及正数p,q,p+q=1,使 ∞→n lim )0()0() ()(-+'+'=--f q f p a b a f b f k k k k n n n n 三、设)(x f 在]1,1[-上(R )可积,令 ?????≤≤-≤≤-=0 1,10,)1()(x e x x x nx n n 当当? 1) 证明函数)()(x x f n ?在]1,1[-上(R )可积; 2) 又若)(x f 在x=0还是连续的,求证 ∞→n lim ?-=11)0()()(2f dx x x f n n ? 四、证明?∑∞=+-=101 1 )1(n n n x n dx x . 五、试以u 为因变量,ηξ,为自变量,对方程 y z x z ??=??22 进行变量代换z y x y u y y x ???? ??=-==4exp ,1,2ηξ. 六、已知?∞+-=02 12 πdx e x ,求()?+∞->00cos 2a bxdx e ax 之值. 七、计算()()()??++++++++=S dxdy b a z dzdx a c y dydz c b x I 222,其中S 为半球面 ()()()c z R c z b y a x ≥=-+-+-,2222的上侧. 八、设)(),(),(t t t p ψ?是区间],[b a 上的连续函数,)(),(t t ψ?单调增加,0)(>t p ,试证

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?== 1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--= 1 111)(2)(2])1[(])1[(! !21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2) (2 ])1[(])1[(] )1[(])1[(=

上海财经大学 数学分析 测试题 (大一)

《数学分析》考试题 一、(满分10分,每小题2分)单项选择题: 1、{n a }、{n b }和{n c }是三个数列,且存在N,? n>N 时有≤n a ≤n b n c , ( ) A. {n a }和{n b }都收敛时,{n c }收敛; B. {n a }和{n b }都发散时,{n c }发散; C. {n a }和{n b }都有界时,{n c }有界; D. {n b }有界时,{n a }和{n c }都有界; 2、=)(x f ??? ????>+=<,0 ,2.( ,0 ,0, ,sin x x k x k x x kx 为常数) 函数 )(x f 在 点00=x 必 ( ) A.左连续; B. 右连续 C. 连续 D. 不连续 3、''f (0x )在点00=x 必 ( ) A. x x f x x f x ?-?+→?)()(lim 02020 ; B. ' 000)()(lim ??? ? ???-?+→?x x f x x f x ; C. '000)()(lim ???? ???-?+→?x x f x x f x ; D. x x f x x f x ?-?+→?)()(lim 0'0'0 ; 4、设函数)(x f 在闭区间[b a ,]上连续,在开区间(b a ,)内可微,但≠)(a f )(b f 。则 ( ) A. ∈?ξ(b a ,),使0)('=ξf ; B. ∈?ξ(b a ,),使0)('≠ξf ; C. ∈?x (b a ,),使0)('≠x f ; D.当)(b f >)(a f 时,对∈?x (b a ,),有)('x f >0 ; 5、设在区间Ⅰ上有?+=c x F dx x f )()(, ?+=c x G dx x g )()(。则在Ⅰ上有 ( ) A. ?=)()()()(x G x F dx x g x f ; B. c x G x F dx x g x f +=?)()()()( ; C. ?+=+c x G x F dx x F x g dx x G x f )()()]()()()([ ;

曲阜师范学院:数学分析期期末考试试题

数学科学学院05-06学年第一学期期末考试试题 考试科目:数学分析 年级: 05 适用专业:数学与应用数学 信息与计算科学 统计学 考试时间:120分钟 考试方式:闭卷 试卷类别:A 试题满分:100分 一.判断题(正确的划√,错误的划×,每小题2分,共20分). 1.若数列{}n a 收敛,则{}n a 必为有界数列. 2.无穷小量与一个有界变量的乘积仍是一个无穷小量. 3.若单调数列{}n a 中有一个子列{} k n a 收敛,则数列{}n a 收敛. 4.若n n x y >,1,2,n =L ,且lim n n x a →∞ =,lim n n y b →∞ =,则必有a b >. 5.若()f x 在0x =点可导,则()f x 在0x =点也可导. 6.若()f x 在0x 点连续,()g x 在0x 点不连续,则()()f x g x 在0x 点一定不连续. 7.设 ()f x 在[,]a b 上可导,若()f x 在[,]a b 上严格单调增加,则在[,]a b 上 必有()0f x >'. 8.若()f x 在0x x =取的最大值,则()0f x ='. 9.若()f x 在X 上一致连续,则2()f x 在X 上必定一致连续. 10.若()f x 为可导的偶函数,则()f x '必为奇函数. 二.叙述定义并用定义证明(每题9分,共18分) 1.叙述()lim x f x A →∞ =的定义,并用定义证明22 5 lim 11x x x →∞-=+. 2.叙述函数()f x 在X 上一致连续的定义,并用定义证明()f x =在 (),-∞+∞上一致连续. 三.计算下列各题(每题4分,共24分)

湖南理工学院数学分析期末考试试题

数学分析期末考试试题 一、叙述题:(每小题6分,共18分) 1、 牛顿-莱不尼兹公式 2、 ∑∞=1n n a 收敛的cauchy 收敛原理 3、 全微分 二、计算题:(每小题8分,共32分) 1、40202sin lim x dt t x x ?→ 2、求由曲线2x y =和2y x =围成的图形的面积和该图形绕x 轴旋转而成的几何体的体积。 3、求∑∞ =+1)1(n n n n x 的收敛半径和收敛域,并求和 4、已知z y x u = ,求y x u ???2 三、(每小题10分,共30分) 1、写出判别正项级数敛散性常用的三种方法并判别级数 ∑∞ =1!n n n n 2、讨论反常积分?+∞ --01dx e x x p 的敛散性 3、讨论函数列),(1 )(22+∞-∞∈+= x n x x S n 的一致收敛性 四、证明题(每小题10分,共20分) 1、设)2,1(11,01 =->>+n n x x x n n n ,证明∑∞=1 n n x 发散 2、证明函数?? ???=+≠++=000),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导,但它在该点不可微。,

参考答案 一、1、设)(x f 在],[b a 连续,)(x F 是)(x f 在],[b a 上的一个原函数,则成立)()()(a F b F dx x f b a -=? 2、,0.0>?>?N ε使得N n m >>?,成立ε<+++++m n n a a a 21 3、设2R D ?为开集,D y x y x f z ∈=),(),,(是定义在D 上的二元函数,),(000y x P 为D 中的一定点,若存在只与点有关而与y x ??,无关的常数A 和B ,使得)(22y x o y B x A z ?+?+?+?=?则称函数f 在点),(000y x P 处是可微的,并称y B x A ?+?为在点),(000y x P 处的全微分 二、1、分子和分母同时求导 316sin 2lim sin lim 5 4060202==→→?x x x x dt t x x x (8分) 2、 、两曲线的交点为(0,0),(1,1)(2分) 所求的面积为: 3 1)(102=-?dx x x (3分) 所求的体积为:103)(105ππ=-?dx x x (3分) 3、 解:设∑∞=+=1) 1()(n n n n x x f ,1) 1(1)2)(1(1 lim =+++∞→n n n n n ,收敛半径为1,收敛域 [-1,1](2分) ),10(),1ln(11)1()(121'<<---=+=∑∞ =-x x x x n x x f n n )10(),1ln(11)()(0 '<<--+==?x x x x dt t f x f x (3分) x =0级数为0,x =1,级数为1,x =-1,级数为1-2ln2(3分) 4、解: y u ??=z x x z y ln (3分)=???y x u 2zx x x x z y z y 1ln 1+-(5分) 三、1、解、有比较判别法,Cauchy,D’Alembert,Raabe 判别法等(应写出具体的内容4分)

大学数学分析试题

五邑大学 试 卷(样题) 学期: 至 学年度 第 三 学期 课程: 数学分析 课程代号: 500063 使用班级: 姓名: 学号: 题号 一 二 三 四 五 六 七 八 总分 得分 求下列极限(每小题5分共10分) 1. 22(,)lim x y → 2. 1 1 lim t →?∫ 证明:含参量反常积分2 x y e dy +∞ ?∫在[,](0)a b a >上一致收敛(10分)。

证明函数2222 0(,)0,............,0 x y f x y x y +≠=+=?在点(0,0)处不可微(10分)。 计算下列曲线积分(每小题8分共16分) 1. 2 2L x y ds +∫v ,其中:cos ,sin (02)L x a t y a t t π==≤≤。 2. ∫?+?L x x dy y e dx y y e )2cos ()2sin (, 其中L 为上半圆周(x ?a )2 +y 2 =a 2 , y ≥0, 沿逆时针方向。 .

计算下列曲面积分(每小题10分共20分)。 1.22 () S x y dS + ∫∫,其中S是:锥面z2=3(x2+y2)被平面z=0及z=3所截得的部分; 2.333 S x dydz y dzdx z dxdy ++ ∫∫w,其中S为球面x2+y2+z2=a2的外侧。 求由平面y=0,y=x,z=0以及球心在原点、半径为R的上半球面所围成的在第一卦限内的立体体积(10分)

七、 计算三重积分V zdxdydz ∫∫∫, 其中V 是由锥面z = 与平面1z = 所围成 的闭区域.(10分) 八. 证明积分 ∫?++) 3 ,2()1 ,1()()(dy y x dx y x 与路线无关,并求其值(14分)

大学《数学分析论文》原创

《函数极限的求法和技巧》论文 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 关键词:函数极限 正文 一、求函数极限的方法 1、运用极限的定义 lim ()0,0,:,x f x b A x x A ε→∞=??>?>?>有()f x b ε-< lim ()0,0,,x f x b A x A ε→-∞ =??>?>?<-有()f x b ε-< lim ()0,0,,x f x b A x A ε→+∞ =??>?>?>有()f x b ε-< lim ()0,0,:0,x a f x b x x a εδδ→=??>?>?<-<有()f x b ε-< lim ()0,0,:,x a f x b x a x a εδδ→+=??>?>?<<+有()f x b ε-< lim ()0,0,:,x a f x b x a x a εδδ→-=??>?>?-<<有()f x b ε-< 例1: 用极限定义证明 1 11lim x x x →+∞ -=+ 证明:不妨设想x>-1,? ε>0 ,要使不等式 12 111 x x x ε--=<++ 成立.解得x> 2 1ε -(限定0< ε<2)取A= 2 1ε -.于是, 2 0,1,,A x A εε ?>?= -?>有 1 11 x x --+< ε,即

山东大学20002007数学分析

2000年试题 一、 填空。 1. 22 2 333 12(1)lim[]?n n n n n →∞-+++= 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ?1x x x dx x -++=+? 5.设r =则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149x y +=正向,则()()?x y dx x y dy Γ-++=? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3. 设 (),() f x g x 在 [0,) +∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 40?x π =?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 0.x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。 1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

相关文档
最新文档