西南大学2002年数学分析考研试题参考解答

西南大学2002年数学分析考研试题参考解答
西南大学2002年数学分析考研试题参考解答

大学数学分析答案

《数学分析》练习题1 一、单项选择题(本大题共4小题,每小题5分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、广义积分dx x ? -2 2 211的奇点的是 【 】 A .0 B .2 C .2 D .2± 2、下列关于定积分的说法正确的是 【 】 A .函数)(x f 在[]b a ,有界,则)(x f 在[]b a ,一定可积; B .函数)(x f 在[]b a ,可积,则)(x f 在[]b a ,一定有界; C .函数)(x f 在[]b a ,不可积,则)(x f 在[]b a ,一定无界; D .函数)(x f 在[]b a ,无界,则)(x f 在[]b a ,可能可积。 3、函数()x f 在闭区间[]b a ,可积是函数()x f 在闭区间[]b a ,连续的__ __条件。 【 】 A .充分非必要 B .必要非充分 C .充分必要 D .即不充分,又非必要 4、若级数∑∞ =1 n n u 收敛,则下列级数中,为收敛级数的是 【 】 A .()∑∞=-1 1n n n u B .()∑∞=-1 1n n n u C .∑∞=+1 1n n n u u D .∑ ∞ =++1 1 2 n n n u u 二、填空题(本大题共4小题,每小题5分,共20分)请在每小题的横线上给出正确的答案. 1、(){}x f n 在X 一致收敛的定义是: . 2、函数2 x e -在0=x 处的幂级数展开式为, . 3、积分()1012 <x 的收敛性。 解: 5、求级数∑ ∞ =1 3n n n n x 的收敛半径与收敛域。 解: 6、求dx e x ?+∞ 1。 解: 四、综合题(本大题共3小题,每小题8分,共24分)请在每小题后的空白处写出必要的 证明过程。 1、证明:积分?+∞ 02cos dx x 收敛。 证: 2、设()x f 在R 上连续,()()()dt t x t f x F x 20 -= ?。 证明:(1)若()x f 为偶函数,则()x F 也是偶函数;(2)若()x f 为单调函数,则()x F 也是单调函数。 证: 3、若{}n na 收敛, ()∑∞ =--1 1n n n a a n 收敛,证明级数∑∞ =1 n n a 收敛。 证:

2018年西南交通大学数学建模竞赛题目——A题:测点分布问题

2018年西南交通大学数学建模竞赛题目 (请先阅读“论文封面及格式要求”) A题:均匀布点问题 均匀布点问题在工程领域里面经常遇到。比如我们在进行天气预报的时候,天气演化的数值计算模型是通过在球面上布置网格进行的。在地球表面布置计算网格时,这些网格点必须是均匀的(图1给出了两种比较均匀的计算网格),才能保证计算是均匀的,进而在此基础上进行数值演化计算。 图1 两种均匀分布的计算网格 在岩土工程领域,在进行地质体的力学计算时,同样需要计算网格是均匀的,这就需要在地质体表面也均匀的分布点。相对于天气预报的球体,地质体一般是不规则的几何体(图2给出了一个不规则几何体的例子),在不规则形体表面均匀分布点会更加复杂一些。 图2 一些不规则形体的例子 除了计算网格的设置,我们在各个工程领域会遇到需要布置测点来测量物理量的问题,这时候常常需要布置的测点也是均匀的,而且很多时候不仅要在空间上是均匀的,对于某些变量来说也是均匀的。比如在布置地震台时,断层附近就要加密,历史上无地震的地区就可以布置的稀疏一些,此时地震台网的分布就应该是在考虑空间位置的同时,对于地震发生概率是均匀的(图3给出了中国国家地震台站分布图);在布置人口监测点时,人口密集的地方就要多布置,人口稀疏的地区就可以少布置一些。当然上述只是举了一些例子,真实的分布时要考虑多重因素,而且均匀性的定义也是不确定的。

图3 中国国家地震台站分布图 请建立数学模型回答以下问题: 1、如何在标准的球面上均匀分布测点?如何度量测点分布的均匀性?请给出球面点分布均匀性的度量标准并给出在此标准下最佳的球面均匀分布点的方法及结果。 2、若为非规则几何体,给出任意几何形体表面均匀分布点的数学模型。 3、在地震及环境工程等领域,在分布监测点时,多考虑一个影响因素(如地震发生概率、人口密度等等),建立数学模型,使测点分布也是“均匀”的。

数学分析课后习题答案(华东师范大学版)

习题 1.验证下列等式 (1) C x f dx x f +='?)()( (2)?+=C x f x df )()( 证明 (1)因为)(x f 是)(x f '的一个原函数,所以?+='C x f dx x f )()(. (2)因为C u du +=?, 所以? +=C x f x df )()(. 2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点 )5,2(. 解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='= ??22)()(. 于是知曲线为C x y +=2 , 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以 有 C +=2 25, 解得1=C , 从而所求曲线为12 +=x y 3.验证x x y sgn 2 2 =是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0

西南大学数学专业历年考研试题数学分析2000-2014;2018年

西南大学2018年研究生入学考试数学分析真题 一、 计算题 1. 设x≥0,求数列极限 lim x →∞ 2. 设()x ? 具有二阶导数,在ⅹ= 0的某去心邻域()x ?≠ 0,且()lim =0x f x x →∞,()04″?= 。 求()2 x 0lim 1+x →??????? x x 3. 设()x ?二阶连续可导。 且()2π?= ,()()0sin dx π??"? ????x+x x =4 求()0? 的值。 4. 设()2,?-2z =x y x y ,其中?具有连续的二阶偏导数,求2 x y ???z 。 5. 设V 是由曲面 22和Z =x+y Z =x +y 所围的立体,求V 的体积 。 6. 设S 是由曲面222242x+y+z= 的外侧,计算曲面积分

()3222s 2z+y z++dyd dxd dxdy ?? x z x y+z 二、 证明题 1. 利用极限的“ εδ- ”定义证明: 2212lim 3x →=--1x 2x x 2. 设n 0n+1n ==1++,x x 1x 1x ()n 0≥ 证明:数列{}n x 收敛,并求其极限。 3. 按数列极限的柯西准则叙述数列发散的充要条件,并用其证明:数列 ()n 111n=1223n ,a =1++++ 发散。 4. 设S 为非空有界数集, sup =a ∈- S,证明:? 严格递增数列{}n x st.∈,S lim n n a →∞ =x 5. 设数列{}n a 单调递减,()n n n=101n ∞≥-∑且a a 发散,证明:n n=1n 11+∞?? ???∑a 收敛 6. 设函数? 在[]01, 上连续,在[]0,1 内可导,且()()0011?=?=, 证明:对 ? 给定的正数a,b 在()0,1内? 不同的两点ζη,

最新2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

西南大学数学分析作业答案

三、计算题 1.求极限 90 20 70) 15() 58()63(lim --++∞ →x x x x . 解: 90 20 70 90 20 70 90 20 70 5 8 3 155863lim ) 15() 58() 63(lim ?= ? ?? ? ? -? ?? ? ? -? ?? ? ?+=--++∞ →+∞ →x x x x x x x x 2.求极限 21 1lim ( ) 2 x x x x +→∞ +-. 解:21 1lim ( ) 2 x x x x +→∞ +=-21111lim 22 11x x x x x x →∞ ? ???++ ? ??= ? ? ? ? --? ? ??211lim 21x x x x →∞? ? + ?= ? ?-?? 2 (4) 2 1[(1)] lim 2[(1) ] x x x x x →∞ - -+ - 2 6 4 e e e -= =. 3. 求极限 1 111lim (1)2 3 n n n →∞ + + ++ 解:由于11 1111(1)2 3 n n n n ≤+ + ++ ≤ , 又lim 1n →∞ =, 由迫敛性定理 1 111lim (1)12 3 n n n →∞ + + ++ = 4.考察函数),(, lim )(+∞-∞∈+-=--∞ →x n n n n x f x x x x n 的连续性.若有间断点指出其类型. 解: 当0x <时,有221()lim lim 11 x x x x x x n n n n n f x n n n --→∞ →∞ --===-++;同理当0x >时,有()1f x =.

西南交通大学数值分析题库

考试目标及考试大纲 本题库的编纂目的旨在给出多套试题,每套试题的考查范围及难度配置均基于“水平测试”原则,按照教学大纲和教学内容的要求,通过对每套试题的解答,可以客观公正的评定出学生对本课程理论体系和应用方法等主要内容的掌握水平。通过它可以有效鉴别和分离不同层次的学习水平,从而可以对学生的学习成绩给出客观的综合评定结果。 本题库力求作到能够较为全面的覆盖教学内容,同时突显对重点概念、重点内容和重要方法的考查。考试内容包括以下部分: 绪论与误差:绝对误差与相对误差、有效数字、误差传播分析的全微分法、相对误差估计的条件数方法、数值运算的若干原则、数值稳定的算法、常用数值稳定技术。 非线性方程求解:方程的近似解之二分法、迭代法全局收敛性和局部收敛定理、迭代法误差的事前估计法和事后估计法、迭代过程的收敛速度、r 阶收敛定理、Aitken加速法、Ne w to n法与弦截法、牛顿局部收敛性、Ne w to n收敛的充分条件、单双点割线法(弦截法)、重根加速收敛法。 解线性方程组的直接法:高斯消元法极其充分条件、全主元消去法、列主元消去法、高斯-若当消元法、求逆阵、各种消元运算的数量级估计与比较、矩阵三角分解法、Doolittle 和Crout三角分解的充分条件、分解法的手工操作、平方根法、Cholesky分解、改进的平方根法(免去开方)、可追赶的充分条件及适用范围、计算复杂性比较、严格对角占优阵。 解线性方程组迭代法:向量和矩阵的范数、常用向量范数的计算、范数的等价性、矩阵的相容范数、诱导范数、常用范数的计算;方程组的性态和条件数、基于条件数误差估计与迭代精度改善方法;雅可比(Jacobi)迭代法、Gauss-Seidel迭代法、迭代收敛与谱半径的关系、谱判别法、基于范数的迭代判敛法和误差估计、迭代法误差的事前估计法和事后估计法;严格对角占优阵迭代收敛的有关结论;松弛法及其迭代判敛法。 插值法:插值问题和插值法概念、插值多项式的存在性和唯一性、插值余项定理;Lagrange插值多项式;差商的概念和性质、差商与导数之间的关系、差商表的计算、牛顿(Newton)插值多项式;差分、差分表、等距节点插值公式;Hermite插值及其插值基函数、误差估计、插值龙格(Runge)现象;分段线性插值、分段抛物插值、分段插值的余项及收敛性和稳定性;样条曲线与样条函数、三次样条插值函数的三转角法和三弯矩法。 曲线拟合和函数逼近:最小二乘法原理和多项式拟合、函数线性无关概念、法方程有唯一解的条件、一般最小二乘法问题、最小二乘拟合函数定理、可化为线性拟合问题的常见函数类;正交多项式曲线拟合、离散正交多项式的三项递推法。最佳一致逼近问题、最佳一致逼近多项式、切比雪夫多项式、切比雪夫最小偏差定理、切比雪夫多项式的应用(插值余项近似极小化、多项式降幂)。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 数值积分与微分:求积公式代数精度、代数精度的简单判法、插值型求积公式、插值型求积公式的代数精度;牛顿一柯特斯(Newton-Cotes)公式、辛卜生(Simpson)公式、几种低价牛顿一柯特斯求积公式的余项;牛顿一柯特斯公式的和收敛性、复化梯形公式及其截断误差、复化Simpson公式及其截断误差、龙贝格(Romberg)求积法、外推加速法、高斯型求积公式、插值型求积公式的最高代数精度、高斯点的充分必要条件。正交多项式的构造方法、高斯公式权系数的建立、Gauss-Legendre公式的节点和系数。本段加黑斜体内容理论推导可以淡化,但概念需要理解。 常微分方程数值解:常微分方程初值问题数值解法之欧拉及其改进法、龙格—库塔法、阿当姆斯方法。

华中科技大学考研数学分析真题答案

2008年华中科技大学招收硕士研究生. 入学考试自命题试题数学分析 一、 求极限1 111lim(1...)23n n I n →∞=++++ 解: 一方面显然1I ≥ 另一方面111 1...23n n ++++≤,且1lim 1n n n →∞= 由迫敛性可知1I =。 注:1 lim 1n n n →∞ =可用如下两种方式证明 1) 1n h =+,则22 (1)2(1)1(2)2n n n n n n n h h h n n -=+≥+ ?≤≥ 即lim 0n n h →∞ =,从而1lim 1n n n →∞ = 2) =有lim 11n n n n →∞==-。 二、证明2232(38)(812)y x y xy dx x x y ye dy ++++为某个函数的全微分,并求它的原函数。 证明:记22(,)38P x y x y xy =+,32(,)812y Q x y x x y ye =++,则 2316P x xy y ?=+?,2316Q x xy x ?=+?? P Q y x ??=?? Pdx Qdy ∴+是某个函数的全微分 设原函数为(,)x y Φ,则x y d dx dy Pdx Qdy Φ=Φ+Φ=+ 2232238(,)4()x x y xy x y x y x y y ?∴Φ=+?Φ=++ 32328()812y y x x y y x x y ye ?'?Φ=++=++ ()12()12(1)y y y ye y y e C ??'?=?=-+ 322(,)412(1)y x y x y x y y e C C ∴Φ=++-+所求原函数为(为常数) 三、设Ω是空间区域且不包含原点,其边界∑为封闭光滑曲面:用n 表示∑的单位外法向量,(,,)r x y z =和2r r x y ==+,证明:

山东大学数学分析

2005年试题 一、1.求极限1222lim n n a a na n →∞ ++L ,其中lim .n n a a →∞= 2.求极限21lim (1).x x x e x -→+∞+ 3.证明区间(0,1)和(0,)+∞具有相同的基数(势)。 4.计算积分:21,D dxdy y x +??其中D 是由0,1,x y y x ===所围成的区域。 5.计算:2222,:21C ydx xdy I C x y x y -+=+=+?方向为逆时针。 6.设0,0,a b >>证明:11()().1b b a a b b ++≥+ 二、设()f x 为[,]a b 上的有界可测函数且 2[,]()0,a b f x dx =?证明: ()f x 在 [,]a b 上几乎处处为零。 三、设()f x 在(0,)+∞内连续且有界,试讨论()f x 在(0,)+∞内的一致连续性。 四、 设222220(,)0,0 x y f x y x y +>=+=?,讨论(,)f x y 在原点的连续性,偏导数存在性及可微性。 五、设()f x 在(,)a b 内二次可微,求证: 2 ()(,),..()2()()().24a b b a a b s t f b f f a f ξξ+-''?∈-+= 六、()f x 在R 上二次可导,,()0,x f x ''?∈>R 又00,()0,lim ()0,lim ()0.x x x f x f x f x αβ→-∞→+∞''?∈<=<=>R 证明:()f x 在R 上恰有两个零点。 七、设()f x 和()g x 在[,]a b 内可积,证明:对[,]a b 的任意分割

西南交通大学2018-2019数值分析Matlab上机实习题

数值分析2018-2019第1学期上机实习题 f x,隔根第1题.给出牛顿法求函数零点的程序。调用条件:输入函数表达式() a b,输出结果:零点的值x和精度e,试取函数 区间[,] ,用牛顿法计算附近的根,判断相应的收敛速度,并给出数学解释。 1.1程序代码: f=input('输入函数表达式:y=','s'); a=input('输入迭代初始值:a='); delta=input('输入截止误差:delta='); f=sym(f); f_=diff(f); %求导 f=inline(f); f_=inline(f_); c0=a; c=c0-f(c0)/f_(c0); n=1; while abs(c-c0)>delta c0=c; c=c0-f(c0)/f_(c0); n=n+1; end err=abs(c-c0); yc=f(c); disp(strcat('用牛顿法求得零点为',num2str(c))); disp(strcat('迭代次数为',num2str(n))); disp(strcat('精度为',num2str(err))); 1.2运行结果: run('H:\Adocument\matlab\1牛顿迭代法求零点\newtondiedai.m') 输入函数表达式:y=x^4-1.4*x^3-0.48*x^2+1.408*x-0.512 输入迭代初始值:a=1 输入截止误差:delta=0.0005 用牛顿法求得零点为0.80072 迭代次数为14 精度为0.00036062 牛顿迭代法通过一系列的迭代操作使得到的结果不断逼近方程的实根,给定一个初值,每经过一次牛顿迭代,曲线上一点的切线与x轴交点就会在区间[a,b]上逐步逼近于根。上述例子中,通过给定初值x=1,经过14次迭代后,得到根为0.80072,精度为0.00036062。

南京大学数学分析

南京大学1992年数学分析试题 一、定0a ,0a ≠k π(k ∈Z ),设1+n a =sin n a (n=0,1,2,…). 1) 求∞→n lim n a ;2)求lim ∞→n 21n na . 二、设f(x) ∈]1,0[C ,在}0{\)1,1(- 内可微,且)0(+'f 及)0(-'f 存在有限,而数列}{},{n n b a 满足条件,101<<<<-n n b a 且∞→n lim n a =∞ →n lim n b =0,求证存在子序列}{},{k k n n b a 及正数p,q,p+q=1,使 ∞→n lim )0()0() ()(-+'+'=--f q f p a b a f b f k k k k n n n n 三、设)(x f 在]1,1[-上(R )可积,令 ?????≤≤-≤≤-=0 1,10,)1()(x e x x x nx n n 当当? 1) 证明函数)()(x x f n ?在]1,1[-上(R )可积; 2) 又若)(x f 在x=0还是连续的,求证 ∞→n lim ?-=11)0()()(2f dx x x f n n ? 四、证明?∑∞=+-=101 1 )1(n n n x n dx x . 五、试以u 为因变量,ηξ,为自变量,对方程 y z x z ??=??22 进行变量代换z y x y u y y x ???? ??=-==4exp ,1,2ηξ. 六、已知?∞+-=02 12 πdx e x ,求()?+∞->00cos 2a bxdx e ax 之值. 七、计算()()()??++++++++=S dxdy b a z dzdx a c y dydz c b x I 222,其中S 为半球面 ()()()c z R c z b y a x ≥=-+-+-,2222的上侧. 八、设)(),(),(t t t p ψ?是区间],[b a 上的连续函数,)(),(t t ψ?单调增加,0)(>t p ,试证

浙江大学数学分析试题答案

2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列 }{k n a ,a a k n k =∞ →lim , 所以, ε 2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>?>?δε2'''δ<-x x 时 ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所以 )(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?== 1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <, ??--+--= 1 111)(2)(2])1[(])1[(! !21)()(dx x x k m dx x P x P k k m m k m k m = --? -dx x x k k m m 1 1 )(2)(2])1[(])1[(dx x x x x m m k k k k m m ?-+--------1 1 )1(2)1(211 ) 1(2) (2 ])1[(])1[(] )1[(])1[(=

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

大学数学分析试题

五邑大学 试 卷(样题) 学期: 至 学年度 第 三 学期 课程: 数学分析 课程代号: 500063 使用班级: 姓名: 学号: 题号 一 二 三 四 五 六 七 八 总分 得分 求下列极限(每小题5分共10分) 1. 22(,)lim x y → 2. 1 1 lim t →?∫ 证明:含参量反常积分2 x y e dy +∞ ?∫在[,](0)a b a >上一致收敛(10分)。

证明函数2222 0(,)0,............,0 x y f x y x y +≠=+=?在点(0,0)处不可微(10分)。 计算下列曲线积分(每小题8分共16分) 1. 2 2L x y ds +∫v ,其中:cos ,sin (02)L x a t y a t t π==≤≤。 2. ∫?+?L x x dy y e dx y y e )2cos ()2sin (, 其中L 为上半圆周(x ?a )2 +y 2 =a 2 , y ≥0, 沿逆时针方向。 .

计算下列曲面积分(每小题10分共20分)。 1.22 () S x y dS + ∫∫,其中S是:锥面z2=3(x2+y2)被平面z=0及z=3所截得的部分; 2.333 S x dydz y dzdx z dxdy ++ ∫∫w,其中S为球面x2+y2+z2=a2的外侧。 求由平面y=0,y=x,z=0以及球心在原点、半径为R的上半球面所围成的在第一卦限内的立体体积(10分)

七、 计算三重积分V zdxdydz ∫∫∫, 其中V 是由锥面z = 与平面1z = 所围成 的闭区域.(10分) 八. 证明积分 ∫?++) 3 ,2()1 ,1()()(dy y x dx y x 与路线无关,并求其值(14分)

大学《数学分析论文》原创

《函数极限的求法和技巧》论文 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 关键词:函数极限 正文 一、求函数极限的方法 1、运用极限的定义 lim ()0,0,:,x f x b A x x A ε→∞=??>?>?>有()f x b ε-< lim ()0,0,,x f x b A x A ε→-∞ =??>?>?<-有()f x b ε-< lim ()0,0,,x f x b A x A ε→+∞ =??>?>?>有()f x b ε-< lim ()0,0,:0,x a f x b x x a εδδ→=??>?>?<-<有()f x b ε-< lim ()0,0,:,x a f x b x a x a εδδ→+=??>?>?<<+有()f x b ε-< lim ()0,0,:,x a f x b x a x a εδδ→-=??>?>?-<<有()f x b ε-< 例1: 用极限定义证明 1 11lim x x x →+∞ -=+ 证明:不妨设想x>-1,? ε>0 ,要使不等式 12 111 x x x ε--=<++ 成立.解得x> 2 1ε -(限定0< ε<2)取A= 2 1ε -.于是, 2 0,1,,A x A εε ?>?= -?>有 1 11 x x --+< ε,即

山东大学20002007数学分析

2000年试题 一、 填空。 1. 22 2 333 12(1)lim[]?n n n n n →∞-+++= 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ?1x x x dx x -++=+? 5.设r =则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149x y +=正向,则()()?x y dx x y dy Γ-++=? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3. 设 (),() f x g x 在 [0,) +∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 40?x π =?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 0.x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。 1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

大学数学分析答案

大学数学分析答案 【篇一:2014中山大学数学分析考研真题与答案】 学分析考研复习精编》 《复习精编》是博学中大精品考研专业课系列辅导材料中的核心产品。本书严格依据学校官方最新指定参考书目,并结合考研的精华 笔记、题库和内部考研资讯进行编写,是博学中大老师的倾力之作。通过本书,考生可以更好地把握复习的深度广度,核心考点的联系 区分,知 识体系的重点难点,解题技巧的要点运用,从而高效复习、夺取高分。 考试分析——解析考题难度、考试题型、章节考点分布以及最新试题,做出考试展望等;复习之初即可对专业课有深度把握和宏观了解。 复习提示——揭示各章节复习要点、总结各章节常见考查题型、提 示各章节复习重难点与方法。 知识框架图——构建章节主要考点框架、梳理全章主体内容与结构,可达到高屋建瓴和提纲挈领的作用。 核心考点解析——去繁取精、高度浓缩初试参考书目各章节核心考 点要点并进行详细展开解析、以星级多寡标注知识点重次要程度便 于高效复习。 历年真题与答案解析——反复研究近年真题,洞悉考试出题难度和 题型;了解常考章节与重次要章节,有效指明复习方向。 《复习精编》具有以下特点: (1)立足教材,夯实基础。以指定教材为依据,全面梳理知识,注意知识结构的重组与概括。让考生对基本概念、基本定理等学科基 础知识有全面、扎实、系统的理解、把握。 (2)注重联系,强化记忆。复习指南分析各章节在考试中的地位和作用,并将各章节的知识体系框架化、网络化,帮助考生构建学科 知识网络,串联零散的知识点,更好地实现对知识的存储,提取和应用。 (3)深入研究,洞悉规律。深入考研专业课考试命题思路,破解考研密码,为考生点拨答题技巧。 1、全面了解,宏观把握。

西南交通大学研究生数值分析作业

数值分析上机报告 指导教师:赵海良 班级: 姓名: 学号: 电话: 2011年12月

序 随着计算机技术的迅速发展,数值分析在工程技术领域中的应用越来越广泛,并且成为数学与计算机之间的桥梁。要解决工程问题,往往需要处理很多数学模型,不仅要研究各种数学问题的数值解法,同时也要分析所用的数值解法在理论上的合理性,如解法所产生的误差能否满足精度要求:解法是否稳定、是否收敛及熟练的速度等。 由于工程实际中所遇到的数学模型求解过程迭代次数很多,计算量很大,所以需要借助如MATLAB,C++,VB,JA V A的辅助软件来解决,得到一个满足误差限的解。本文所计算题目,均采用C++编程。C++是一种静态数据类型检查的、支持多重编程范式的通用程序设计语言。它支持过程化程序设计、数据抽象、面向对象程序设计、制作图标等等泛型程序设计等多种程序设计风格,在实际工程中得到了广泛应用,对解决一些小型数学迭代问题,C++软件精度已满足相应的精度。 本文使用C++对牛顿法、牛顿-Steffensen法对方程求解,对雅格比法、高斯-赛德尔迭代法求解方程组迭代求解,对Ru n ge-Kutt a 4阶算法进行编程,并通过实例求解验证了其可行性,并使用不同方法对计算进行比较,得出不同方法的收敛性与迭代次数的多少,比较不同方法之间的优缺性,比较各种方法的精确度和解的收敛速度。

目录 第一章牛顿法和牛顿-Steffensen法迭代求解的比较 (1) 1.1 计算题目 (1) 1.2 计算过程和结果 (1) 1.3 结果分析 (2) 第二章 Jacobi迭代法与Causs-Seidel迭代法迭代求解的比较 (2) 2.1 计算题目 (2) 2.2 计算过程与结果 (2) 2.3 结果分析 (3) 第三章 Ru n ge-Kutt a 4阶算法中不同步长对稳定区间的作用 (4) 3.1 计算题目 (4) 3.2 计算过程与结果 (4) 3.3 结果分析 (4) 总结 (5) 附件 (6) 附件 1(1.1第一问牛顿法) (6) 附件 2(1.1第一问牛顿-Steffensen法) (6) 附件 3(1.1第二问牛顿法) (6) 附件 4(1.1第二问牛顿-Steffensen法) (7) 附件 5(2.1 Jacobi迭代法) (7) 附件 6(2.1Causs-Seidel迭代法) (8) 附件 7(3.1 Ru n ge-Kutt a 4阶算法) (9)

武汉大学2005数学分析试题解答

2005 年攻读硕士学位研究生入学考试试题解答(武 汉 大 学) 一、设{}n x 满足: 11||||||n n n n n x x q x x +--=-,||1n q r ≤< ,证明{}n x 收敛。 证明:(分析:压缩映像原理) 1111 11 11 11 2121211,|12 ||||||||, ||||(1...)|| ||1||111ln || l n n n n n n n n n p p n p n i i n n i n n p n r m q m x x q x x m x x Cauchy x x x x m m x x m x x m m x x m m m x x N εε+--+--+-+=+--+= <<-=-<-?-≤ -<+++---=-<----=∑令:则显然|(此即压缩映像原理证明)以下证明压缩映像原理利用收敛准则,对取n ||n p n n N m x x ε+>-≤+1,对任意的。从而知命题收敛 二、对任意δ > 0。证明级数01 n n x +∞ =∑ 在(1,1+δ)上不一致收敛。 证明:(利用反证法,Cauchy 收敛准则和定义证明。) 10,(1,1),,,1 1()11111(1,{1(1,1),M N M n n n n N x N n M N x x x x x x min εδεδδ-+=?>?∈+?>->=>-∈+?+∑如果级数收敛, 那么对于当时 只需令代入上式,矛盾 从而知非一致收敛 三、设1 ()||,"()f x x y f x =-?求 解,(本题利用莱布尼兹求导法则:)

() () ()()1 10 1 01 0()()()()()(())(())()||sin ()sin ()sin ,[0,1] ()()sin ,(1,) ()sin ,(,0)'(b x a x b a x x F x f x dx F f x b a dx f b f a f x x y x y y x x f x x y x y x x f ααααααααααααααα =????=+-????=-?-+-∈??=-∈+∞???-∈-∞?? ??????,,,, ,10 1 01 ,[0,1] ),(1,) sin ,(,0)2sin [0,1]"()0,(1,) 0,(,0)x x x x x x x x f x x x ?-∈??=∈+∞???-∈-∞??∈? =∈+∞??∈-∞? ???? 四、判断级数2 ln ln sin ln n n n n +∞ =∑ 的绝对收敛性和相对收敛性 解:(1)绝对收敛性:(主要使用放缩法) 2 1 ,|sin ||sin(1)|2sin 2 ,ln ln 1 ln ln ln ln ln ln |sin ||sin ||sin |ln ln ln ln 2n M n M n M M n n N n n A M M n n n n n n n n n A n +∞ +∞+∞ ===+∞ = ?∈++≥=>=>> ∑∑∑∑首先,不难证明对于当足够大的时候。显然,该级数发散。即不绝对收敛 (2)相对收敛性:(A-D 判别法) {}0{}n n n n n n a b a a a b ∑∑∑<1>收敛于,有界 <2>有界,收敛 满足上述任意一个条件收敛

相关文档
最新文档