高中数学选择填空压轴题—函数零点问题

高中数学选择填空压轴题—函数零点问题
高中数学选择填空压轴题—函数零点问题

用好零点”,证明函数不等式 高考数学压轴题之函数零点问题

“用好零点”,证明函数不等式 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围;

若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当 时,证明: (其中为自然对数的底数). 4.已知函数f (x )=lnx+a (x ﹣1)2 (a >0). (1)讨论f (x )的单调性; (2)若f (x )在区间(0,1)内有唯一的零点x 0,证明:. 5. 已知函数f (x )=3e x +x 2 ,g (x )=9x ﹣1. (1)求函数φ(x )=xe x +4x ﹣f (x )的单调区间; (2)比较f (x )与g (x )的大小,并加以证明. 6. 已知函数f (x )=lnx ﹣x+1,函数g (x )=ax?e x ﹣4x ,其中a 为大于零的常数. (Ⅰ)求函数f (x )的单调区间; (Ⅱ)求证:g (x )﹣2f (x )≥2(lna ﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数 的最大值 为. (1)求实数的值; (2)若 ,证明: . 8.【山东省日照市2017届高三下学期一模】设(e 为自然对数的底数), . (I)记,讨论函单调性; (II)令 ,若函数G(x )有两个零点. (i)求参数a 的取值范围; (ii)设 的两个零点,证明 . 9.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3 12 0e x e - -<<. 10.已知函数()1x f x e ax =--,其中e 为自然对数的底数, a R ∈

专题03 “用好零点”,证明函数不等式-2019年高考数学压轴题之函数零点问题(原卷版)

专题三“用好零点”,证明函数不等式 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕高考压轴题中已知零点(零点个数),证明函数不等式问题,例题说法,高效训练. 【典型例题】 类型一设而不求,应用函数零点存在定理 例1.【四川省泸州市2019届高三二诊】已知函数. (1)若曲线在点处的切线与轴正半轴有公共点,求的取值范围; (2)求证:时,. 类型二设而不求,应用不等式性质 例2.【广东省揭阳市2019届高三一模】已知函数(,e是自然对数的底,) (1)讨论的单调性; (2)若,是函数的零点,是的导函数,求证:. 类型三代入零点,利用方程思想转化证明零点之间的关系 例3.【湖南师大附中2019届高三月考试题(七)】已知函数,其中为常数. (1)讨论函数的单调性; (2)若有两个相异零点,求证:. 类型四利用零点性质,构造函数证明参数范围 例4.【山东省临沂市2019届高三2月检测】已知函数. (1)判断的单调性; (2)若在(1,+∞)上恒成立,且=0有唯一解,试证明a<1. 【规律与方法】 应用函数的零点证明不等式问题,从已知条件来看,有两类,一类是题目中并未提及函数零点,二一

类是题目中明确函数零点或零点个数;从要求证明的不等式看,也有两种类型,一类是求证不等式是函数值的范围或参数的范围,二一类是求证不等式是零点或零点的函数值满足的不等关系. 1.由于函数零点存在定理明确的是函数值满足的不等关系,所以,通过设出函数的零点,利用函数零点存在定理,可建立不等关系,向目标不等式靠近,如上述类型一;也可以利用不等式的性质,向目标不等式靠近,如上述类型二,这两类问题突出的一点是“设而不求”. 2. 当求证不等式是零点或零点的函数值满足的不等关系时,则注意将零点代入函数式,构建方程(组),进一步确定零点之间的关系,然后在通过求导、分离参数、构造函数等手段. 【提升训练】 1.【广东省揭阳市2019届高三一模】设函数, (1)讨论的单调性; (2)若函数有两个零点、,求证:. 2.【陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考】已知函数有两个零点. 求实数a的取值范围; 若函数的两个零点分别为,,求证:. 3.【宁夏银川市2019年高三下学期检测】已知函数. (1)当时,求函数的单调区间; (2)当时,证明:(其中为自然对数的底数). 4.已知函数f(x)=lnx+a(x﹣1)2(a>0). (1)讨论f(x)的单调性; (2)若f(x)在区间(0,1)内有唯一的零点x0,证明:. 5. 已知函数f(x)=3e x+x2,g(x)=9x﹣1. (1)求函数φ(x)=xe x+4x﹣f(x)的单调区间; (2)比较f(x)与g(x)的大小,并加以证明. 6. 已知函数f(x)=lnx﹣x+1,函数g(x)=ax?e x﹣4x,其中a为大于零的常数. (Ⅰ)求函数f(x)的单调区间; (Ⅱ)求证:g(x)﹣2f(x)≥2(lna﹣ln2). 7.【山东省济南市2019届高三3月模拟】已知函数,其导函数的最大值

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

专题03 直击函数压轴题中零点问题(解析版)

一、解答题 1.(2020·湖南省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,求实数k 的取值范围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

专题06 重温高考压轴题----函数零点问题集锦-2020年高考数学压轴题之函数零点问题(原卷版)

专题六 重温高考压轴题----函数零点问题集锦 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题精选高考压轴题及最新高考模拟压轴题,形成函数零点问题集锦,例题说法,高效训练,进一步提高处理此类问题的综合能力. 【典型例题】 类型一 已知零点个数,求参数的值或取值范围 例1.【2018年理新课标I 卷】已知函数 .若g (x )存在2个零 点,则a 的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 例2.【2018年理数全国卷II 】已知函数. (1)若,证明:当时, ; (2)若 在 只有一个零点,求. 类型二 利用导数确定函数零点的个数 例3.【2018年全国卷II 文】已知函数. (1)若,求 的单调区间; (2)证明: 只有一个零点. 类型三 挖掘“隐零点”,证明不等式 例4.【2017课标II ,理】已知函数()2 ln f x ax ax x x =--,且()0f x ≥. (1)求a ; (2)证明:()f x 存在唯一的极大值点0x ,且()2 202e f x --<<. 类型四 利用函数单调性,确定函数零点关系 例5.【2016高考新课标1理】已知函数2 ()(2)e (1)x f x x a x =-+-有两个零点. (I )求a 的取值范围;

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

专题3 直击函数压轴题中零点问题

一、解答题1.已知函数()() ()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性;(2)若()f x 在区间()0,1内有唯一的零点0x ,证明:312 0e x e --<<. 2.设函数f (x )=x 2 +bx -1(b ∈R ). (1)当b =1时证明:函数f (x )在区间1,12?? ??? 内存在唯一零点;(2)若当x ∈[1,2],不等式f (x )<1有解.求实数b 的取值范围.3.已知函数()()2 10f x ax mx m a =++-≠. (1)若()10f -=,判断函数()f x 的零点个数; (2)若对任意实数m ,函数()f x 恒有两个相异的零点,求实数a 的取值范围;(3)已知12,x x R ∈R 且12x x <,()()12f x f x ≠,求证:方程()()()121 2f x f x f x ??=+? ?在区间()12,x x 上有实数根. 4.已知函数()2 ln f x a x bx =-图象上一点()() 2,2P f 处的切线方程为32ln22y x =-++. (1)求,a b 的值; (2)若方程()0f x m +=在1,e e ????? ? 内有两个不等实根,求m 的取值范围(其中e 2.71828= 为自然对数的底). 5.已知函数()1x f x e ax =--,其中e 为自然对数的底数,a R ∈(I )若a e =,函数()()2g x e x =-①求函数()()()h x f x g x =-的单调区间②若函数()()(),{ ,f x x m F x g x x m ≤=>的值域为R ,求实数m 的取值范围 (II )若存在实数[] 12,0,2x x ∈,使得()()12f x f x =,且121x x -≥,求证:2 1e a e e -≤≤-6.已知函数()1x x f x ax e = -+.(1)当1a =时,求()y f x =在[] 1,1x ∈-上的值域;(2)试求()f x 的零点个数,并证明你的结论.7.已知函数()1ln f x ax x =-+(1)若不等式()0f x ≤恒成立,则实数a 的取值范围; (2)在(1)中,a 取最小值时,设函数()()() ()122g x x f x k x =--++.若函数()g x 在区间182?? ???? ,上恰有

2018版高考数学二轮复习特色专题训练专题03直击函数压轴题中零点问题理

专题03 直击函数压轴题中零点问题 一、解答题 1.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明: 3 12 e x e --<<. 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)依题可知()10f =,若()f x 在区间()0,1内有唯一的零点0x ,由(1)可知2a >, 且0110, 2x x ??=∈ ??? ,于是: ()2 0010lnx a x +-= ①,2002210ax ax -+= ② 由①②得0001ln 02x x x --=,设g (x )=lnx ?1 2x x -,(x ∈(0,1)),求出函数的导数,根据函数的单调性证明即可. (2)依题可知()10f =,若()f x 在区间()0,1内有唯一的零点0x ,由(1)可知2a >,

且0110, 2x x ?? =∈ ??? . 于是: ()2 0010lnx a x +-= ① 2002210ax ax -+= ② 由①②得0001ln 02x x x -- =,设()()()1 ln ,0,12x g x x x x -=-∈, 则()2212x g x x '-= ,因此()g x 在10,2?? ??? 上单调递减, 又3 32 2 402e g e -??-=> ??? , ()11 302e g e ---=< 根据零点存在定理,故3 12 0e x e --<<. 点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分类讨论思想,转化思想,构造函数的解题方法. 2.设函数f (x )=x 2 +bx -1(b ∈R ). (1)当b =1时证明:函数f (x )在区间1,12?? ??? 内存在唯一零点; (2)若当x ∈[1,2],不等式f (x )<1有解.求实数b 的取值范围. 【答案】(1)见解析;(2)(),1-∞ 【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数f (x )在区间1,12?? ??? 单调性,再根据区间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为对应函数最值问题: 2 b x x <- ,再根据函数单调性确定函数最小值,即得实数b 的取值范围.

【通用版】2020高考数学突破专题《直击函数压轴题中零点问题》

2020【通编版】高考数学专题突破 《直击函数压轴题中零点问题》 一、解答题 1.已知函数()()()2 ln 10f x x a x a =+->. (1)讨论()f x 的单调性; (2)若()f x 在区间()0,1内有唯一的零点0x ,证明:3 12 0e x e --<<. 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可; (2)依题可知 ()10 f =,若 () f x 在区间 ()0,1内有唯一的零点0x ,由(1)可知2a >, 且0110,2x x ?? =∈ ???,于是:()2 0010lnx a x +-=①,2002210ax ax -+=② 由①②得 000 1ln 0 2x x x -- =,设g(x)=lnx ?12x x -,(x∈(0,1)),求出函数的导数,根据函 数的单调性证明即可. (2)依题可知 ()10 f =,若 () f x 在区间 ()0,1内有唯一的零点0x ,由(1)可知2a >, 且 0110,2x x ?? =∈ ? ?? Z&X&X&K]

于是: ()2 0010 lnx a x +-=① 2002210 ax ax -+= ② 由①②得 0001ln 02x x x -- =,设()()()1ln ,0,12x g x x x x -=-∈, 则 ()221 2x g x x '-= ,因此()g x 在10,2?? ???上单调递减, 又3 3 2 2 402e g e -??-=> ???,()11302e g e ---=< 根据零点存在定理,故 31 2 0e x e - -<<. 点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分类讨论思想,转化思想,构造函数的解题方法. 2.设函数f(x)=x2+bx -1(b ∈R). (1)当b =1时证明:函数f(x)在区间1,12?? ? ??内存在唯一零点; (2)若当x ∈[1,2],不等式f(x)<1有解.求实数b 的取值范围. 【答案】(1)见解析;(2) (),1-∞ 【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数f(x)在区间1,12?? ? ??单 调性,再根据区间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为 对应函数最值问题:2 b x x < - ,再根据函数单调性确定函数最小值,即得实数b 的取值范 围.

专题04 “用好零点”,确定参数的最值或取值范围-2121年高考数学压轴题之函数零点问题(原卷版)

专题四“用好零点”,确定参数的最值或取值范围 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数零点,确定参数的最值或取值范围问题,例题说法,高效训练. 【典型例题】 例1.【山东省淄博市2019届高三3月模拟】已知函数. (1)若是的极大值点,求的值; (2)若 在 上只有一个零点,求的取值范围. 例2.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数(为自然对数的底数),. (1)当时,求函数的极小值; (2)若当 时,关于的方程 有且只有一个实数解,求的取值范围. 例3.已知函数()()ln 1ax f x e x =+,其中a R ∈.(1)设()()ax F x e f x -=',讨论()F x 的单调性; (2)若函数()()g x f x x =-在()0,+∞内存在零点,求a 的范围.例4.【广东省广州市天河区2019届高三综合测试(一)】设函数. 若函数在 处的切线与直线 垂直,求实数a 的值; 讨论函数的单调区间与极值; 若函数 有两个零点,求满足条件的最小整数a 的值. 【规律与方法】 根据函数零点求参数取值,也是高考经常涉及的重点问题,(1)利用零点存在的判定定理构建不等式求解; (2)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;

专题:函数隐性零点问题

函数隐性零点问题 近年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。 函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的, 不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 1.不含参函数的隐性零点问题 已知不含参函数)(x f ,导函数方程0)('=x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,②注意确定0x 的合适范围. 2.含参函数的隐性零点问题 已知含参函数),(a x f ,其中a 为参数,导函数方程0),('=a x f 的根存在,却无法求出,设方程0)('=x f 的根为0x ,则:①有关系式0)('0=x f 成立,该关系式给出了a x ,0的关系,②注意确定0x 的合适范围,往往和a 的范围有关. 题型一 求参数的最值或取值范围 例1(2012年全国I 卷)设函数f (x )=e x ﹣ax ﹣2. (1)求f (x )的单调区间; (2)若a=1,k 为整数,且当x >0时,(x ﹣k )f ′(x )+x+1>0,求k 的最大值. 解析:(1)(略解)若a≤0,则f ′(x )>0,f (x )在R 上单调递增; 若a >0,则f (x )的单调减区间是(﹣∞,lna ),增区间是(lna ,+∞). (2)由于a=1,所以(x ﹣k )f′(x )+x+1=(x ﹣k )(e x ﹣1)+x+1. 故当x >0时,(x ﹣k )f ′(x )+x+1>0等价于k < 1 1 -+x e x +x (x >0)(*), 令g (x )=1 1-+x e x +x ,则g′(x )=2 )1()2(---x x x e x e e ,而函数f (x )=e x ﹣x ﹣2在(0,+∞)

函数压轴题中的零点问题

函数压轴题中的零点问题 【真题感悟】 例1.(2015年江苏高考)已知函数 . (1)试讨论 的单调性; (2)若 (实数c 是a 与无关的常数),当函数有三个不同的零点时,a 的取值范围恰好是 ,求c 的值. 例2. (2013年江苏高考)设函数()ln f x x ax =?,()x g x e ax =?,其中a 为实数. (1)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求的取值范围; (2)若在上是单调增函数,试求的零点个数,并证明你的结论. 例3. (2012年江苏高考)若函数 在处取得极大值或极小值,则称为函数 的极值点。已知是实数,1和是函数的两个极值点. (1)求和的值; (2)设函数()g x 的导函数()()2g x f x '=+,求()g x 的极值点; (3)设,其中,求函数的零点个数. a ()g x (1,)?+∞()f x a b ,1?()32f x x ax bx =++a b ()()()h x f f x c =?[]22c ∈?, ()y h x =

【典题导引】 命题规律:函数的零点问题是高考的重点和难点内容,题型以解答题为主,有时也在填空题中出现。和函数、方程有着密切的联系,需要我们熟悉函数的图象与性质,需要我们理解函数与方程等思想。其中函数的零点、方程的根、曲线的交点三个问题可以互相转化。 主要有以下命题角度: (1)判断函数零点个数或方程解的个数; (2)根据函数零点个数或方程解的个数求解参数; (3)已知函数零点范围或整数零点等求解参数。 方法总结:在使用函数零点存在性定理时要注意两点:一是当函数值在一个区间上不变号,无论这个函数单调性如何,这个函数在这个区间上都不会有零点;二是此定理只能判断函数在一个区间上是否存在零点,而不能判断这个区间上零点的个数。 研究函数零点的本质就是研究函数的极值的正负,其主要考查方式: (1) 确定函数的零点、图象交点的个数; (2) 由函数的零点、图象交点的情况求参数的取值范围. (1) 当a =2时,求函数f(x)的零点; (2) 当a >0时,求证:函数f(x)在内有且仅有一个零点; (3) 若函数f(x)有四个不同的零点,求a 的取值范围。 2. 已知函数f(x)=a x 2-x -ln x ,a ∈R . (1) 若-1≤a ≤0,求证:函数f(x)有且只有一个零点; (2) 若函数f(x)有两个零点,求实数a 的取值范围. ),(∞+0

专题03直击函数压轴题中零点问题(教师用) 高三数学(理)特色强化训练

一、解答题 1.(2020·湖南省高三考试)设函数()()21f x x bx b R =-+∈,()()(),0,0f x x F x f x x ?>?=?->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,求实数k 的取值范围. 【答案】(1)()2221,021,0 x x x F x x x x ?-+>=?-+-=?-+-

高中数学压轴题系列——导数专题——隐零点问题.docx

高中数学压轴题系列——导数专题——隐零点问题 1.(2012?新课标)设函数 f (x) =e x﹣ ax﹣2. (Ⅰ)求 f (x)的单调区间; (Ⅱ)若 a=1, k 为整数,且当 x> 0 时,(x﹣k)f ′(x)+x+1>0,求 k 的最大 值.解:(I)函数 f( x)=e x﹣ax﹣2 的定义域是 R,f ′(x)=e x﹣a, 若a≤0,则 f ′(x)=e x﹣a≥0,所以函数 f(x)=e x﹣ax﹣ 2 在(﹣∞, +∞)上单调递增. 若a>0,则当 x∈(﹣∞, lna)时, f ′( x) =e x﹣ a< 0; 当 x∈(lna,+∞)时, f ′(x)=e x﹣a>0; 所以, f( x)在(﹣∞, lna)单调递减,在( lna ,+∞)上单调递 增.(II)由于 a=1,所以,(x﹣k) f ′( x)+x+1=(x﹣k)(e x﹣1) +x+1 故当 x> 0 时,(x﹣k) f ′( x)+x+1>0 等价于 k<(x>0)① 令 g(x)=,则g′(x)= 由( I)知,当 a=1 时,函数 h(x)=e x﹣x﹣2 在( 0,+∞)上单调递增, 而 h( 1)< 0, h(2)> 0, 所以 h(x) =e x﹣ x﹣ 2 在( 0,+∞)上存在唯一的零点, 故 g′( x)在( 0,+∞)上存在唯一的零点,设此零点为α,则有α∈(1,2) 当 x∈(0,α)时, g′(x)< 0;当 x∈(α,+∞)时, g′(x)> 0; 所以 g( x)在( 0,+∞)上的最小值为g(α). 又由 g′(α)=0,可得 eα=α+2 所以 g(α)=α+1∈(2, 3) 由于①式等价于k<g(α),故整数 k 的最大值为 2. 2.(2013?新课标Ⅱ)已知函数 f(x)=e x﹣ln( x+m) (Ι)设 x=0 是 f (x)的极值点,求 m,并讨论 f( x)的单调性; (Ⅱ)当 m ≤2 时,证明 f (x)> 0. 【解答】(Ⅰ)解:∵,x=0 是 f(x)的极值点,∴,解得 m=1.所以函数 f (x)=e x﹣ln(x+1),其定义域为(﹣ 1,+∞). ∵. 设 g(x)=e x(x+1)﹣ 1,则 g′( x) =e x( x+1)+e x>0,所以 g(x)在(﹣ 1,+∞)上为增函数,

相关文档
最新文档