数形结合思想专题练习

数形结合思想专题练习
数形结合思想专题练习

数形结合思想单元测试

一、选择题.

1.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。则eU (A∩B)=( ) A .(-∞,1)∪(2,+∞) B .(-∞,1)∪[2,+∞) C .(-∞,1]∪[2,+∞) D .(-∞,1]∪(2,+∞)

解析:涉及数集的运算,画出数轴可求{}A B=/12x x ?<<,进而得eU (A∩B)=(-∞,1]∪[2,+∞); 2.如图,直线A x +B y +C =0(AB ≠0)的右下方有一点(m ,n ),则A m +B n +C 的值( ) A 与A 同号,与B 同号 B 与A 同号,与B 异号 C 与A 异号,与B 同号 D 与A 异号,与B 异号

A,D ,不妨设

A>0, 则B<0,C<0,因为点(m ,n )在直线的下方,所以A m +B n +C>0,故选B.

3.设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β.则a 的取值范围是( ); A (–2,–3)∪(–3,2) B (–2,–3) C (–3,2) D 不确定 解析:作出y =sin(x +

3

π

)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠

2

3

时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2).故选A 。 4.方程sin(x –

4π)=4

1

x 的实数解的个数是( ) A.2 B.3 C.4 D.以上均不对

解析:由函数与方程思想知:方程的根转化为对应函数图像的交点的横坐标,分别作出函数y=sin(x –4

π)和函数y=

4

1

x 的图像,由图像知交点个数为3个,故方程的根有3个。 5.已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )

A.α<a <b <β

B.α<a <β<b

C.a <α<b <β

D.a <α<β<b

解析:令g (x )= f (x ) +2=(x –a )(x –b )(其中a <b ),可知函数f (x )的图像向上平移2个单位可得函数g (x ),而方程g (x )=0的两个跟为a ,b ,结合图像可知α<a <b <β。

6. 椭圆上一点A 看两焦点的视角为直角,设AF 1的延长线交椭圆于B ,又|AB|=|AF 2|,则椭圆的离心率e 为( )

A 1

2

B

C

D

2

B C

A 1

1

F

E B 1

D 1

D

解析:设|AB|

=|AF 2|= x,则由椭圆的定义得224AF AB BF a ++=

,即

)

24x a =

,x =

所以12AF a

=,结合直角三角形,可得方程2

22214AF AF c +=,解得e =,选C 。

7. 把函数4)1(2+--=x y 的图象向左平移2个单位,向下平移3个单位,所得的图象所对应的解析式为

( ) ( ) A .1)1(2++=x y B .1)3(2+--=x y C .4)3(2+--=x y D . 1)1(2++-=x y 评析:图像的左右平移及上下平移实质上是改变的x,y ,规律是“左加右减”,“上加下减”,故选D 。 8. 设x ,y 满足约束条件: ??

?

??≤-≥≥,12,

,0y x y x x 则z =3x +2y 的最大值是( ) A 1 B 2 C 5 D 4

评析:先画出区域,又因为z 的几何意义是直线z =3x +2y 的纵截距的2倍,平移直线3x +2y=0可得z 的最大值为2.

9. 如图,在正方体ABCD -A 1B 1C 1D 1中,点E 在A 1D 上且A 1E =2ED ,点F 在AC 上且CF =2FA ,则EF 与BD 1的位置关系是( )

A 异面

B 相交

C 垂直

D 平行 解析:过

E 点作EG 平行于1DD ,交AD 于1D 点,连接G

F ,由已知可证GF 平行于BD ,所以可得平面EGF 与平面1BDD 平行,故EF 平行于1BD ,选D.

10.(文科做)已知方程

有解,则b 的取值范围是( )

解析:构造函数f (x

, g (x )= x+b,其图像分别为圆的上半部分,及一条动直线,方程有解即为两

时曲线有交点,故选C.

(理科做)集合M={(x,y)|x=3cos θ,y=3sin θ,π≤ },N={ (x,y)| y= x + b},若M ∩N=φ 则b 满 足( )

33Ab b ><-或 B 33b b ≤-≥或 33C b -≤≤ 33D b -<<

解析:消参数后可得集合M 对应的图像同上,故选A. 11. 有两个相同的直三棱柱,高为

a

2

,底面三角形的三边长分别为3a 、4a 、5a(a>0).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a 的取值范围是( ). A 0

3

15

B a >

3b -≤≤3b -<<3b -≤≤

C

0a <≤

D

1a <<评析:本题考查学生的空间想象能力及树形结合的思想方法,可以通

过不同的组合得到不同的几何体,然后分别计算其体积列出不等式可

求得0

15,故选A 。

12. 如图,半径为2的⊙O 切直线MN 于点P ,射线PK

从PN 出发,绕P 点逆时针旋转到PM ,旋转过程中PK 交⊙O 于点Q ,

若∠POQ 为x ,弓形PmQ 的面积为()S f x =,那么()f x 的图象大致是:( )

评析:有已知可得当射线PK 逆时针旋转的过程中,∠POQ 是先迅速增大,到达2π后,角继续增大,但是增加的幅度变慢,有图知C 符合要求。 二、填空题

13. 定义在区间(―1,

1

2

)内的函数a x f x x f 则满足,0)()1(log )(2>

+

=的取值范围是______ 解析:由已知11

112

x x +>??

?-<

14.在(0,2π)内,使sin x >cos x 成立的x 取值范围为______________

解析:在(0,2π)内分别作出正弦函数y=sin x 和余弦函数y=cosx 的图像,要使sin x >cos x ,只需正弦函数的图像在余弦函数图像的上方,再找出x 对应的取值范围为(π4,5π

4

)。

15.过原点的直线与圆x 2+y 2

+4x +3=0相切,若切点在第三象限,则该直线方程是_________ 解析:设直线方程为y=kx ,圆的方程可化为2

2

(2)1x y ++=,因为直线与圆相切,所以d=r,

即1=,解得k =,结合图像,切点在第三象限,所以直线方程为y =33x 。

16. 已知集合A ={x |5–x ≥)1(2-x },B ={x |x 2–ax ≤x –a },当B A 时,则a 的取值范围是 . 解析:化简A={}/3x x ≤,化简B=()(){}

/10x x a x --≤,画出数轴,结合图像得a ≤3。 三、解答题

A B

C O

N

Q m

K

M

P

17. 已知A (1,1)为椭圆5

92

2y x +=1内一点,F 1为椭圆左焦点,P 为椭圆上一动点.求|PF 1|+|P A |的最大值和最小值. 18. 已知函数()sin(

)cos()788

f x x x ππ

=-?+的图象向右平移8π个单位得到函数()g x 的图象.

⑴求函数()g x 的表达式; ⑵证明当(

)3544

x ππ

∈,时,经过函数()g x 图象上任意两点的直线的斜率恒大于零. 19. 设A ={x |–2≤x ≤a },B ={y |y =2x +3,且x ∈A },C ={z |z =x 2,且x ∈A },若C ?B ,求实数a 的取值范围.

20. 为了能更好地了解鲸的生活习性,某动物研究所在受伤的鲸身上安装了电子监测装置,从海岸放归点A 处(如图所示)把它放归大海,并沿海岸线由西到东不停地对鲸进行了40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动)。然后又在观测站B 处对鲸进行生活习性的详细观测。已知AB=15km ,观测站B 的观测半径为5km .

(I )根据表中数据:(1)计算鲸沿海岸线方向运动的速度,(2)写出a 、b 满足的关系式,并画出鲸的运动路线简图;

(II )若鲸继续以(I )-(2)中的运行路线运动,则鲸经过多少分钟(从放归时计时),可进入前方观测站B 的观测范围。(41≈6.4)

21.已知二次函数y=f 1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f 2(x)的图象与直线y=x 的两个交点间距离为8,f(x)= f 1(x)+ f 2(x). (1) 求函数f(x)的表达式;

(2) 证明:当a>3时,关于x 的方程f(x)= f(a)有三个不同的实数解. 22.已知a >1,数列{}n a 的通项公式是2

1n n a a -=

,前n 项和记作n S (n =1,2,…),规定00S =.函数()

f x 在0S 处和每个区间(,)1i i S S +(i =0,1,2,…)上有定义,且()00f S =,()i i f S a =(i =1,2,…).当(,)1i i x S S +∈时,()f x 的图像完全落在连结点i P (i S ,()i f S )与点1i P +(1i S +,()1i f S +)的线段上. (Ⅰ)求()f x 的定义域;

(Ⅱ)设()f x 的图像与坐标轴及直线l :n x S =(n =1,2,…)围成的图形面积为n A , 求n A (Ⅲ)若存在正整数n ,使得2n A a >,求a 的取值范围.

备选题:

1. 曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取值范围 .

解析:曲线y =1+24x - (–2≤x ≤2)对应的图像是上半圆()2

214x y +-=,直线y =r (x –2)+4表示过定点(2,4)的直线系,结合图像得r 的取值范围(

4

3,125]. 2. 已知点P(x ,y )在不等式?????x -2≤0,

y -1≤0,x +2y -2≥0

表示的平面区域上运动,则z =x -y 的取值范围是______________

解析:答案为[-1,2],过程略。

3. .给出下列图象

其中可能为函数f (x )=x 4+ax 3+bx 2+cx +d (a ,b ,c ,d ∈R)的图象的是_____.

4.设A ={(x ,y )|y =222x a -,a >0},B ={(x ,y )|(x –1)2+(y –3)2=a 2,a >0},且A ∩B ≠?,求a 的最大值与最小值.

5. 已知函数2()32f x x x =-+-,试作出函数的图象,并指出它的单调增区间,求出函数在[]1,3x ∈时的最大值.

备选题答案:

1.(

4

3

,125] 2. [-1,2] 3. ①③ 4.∵集合A 中的元素构成的图形是以原点O 为圆心,2a 为半径的半圆;集合B 中的元素是以点O ′(1,3)为圆心,a 为半径的圆.如图所示

∵A ∩B ≠?,∴半圆O 和圆O ′有公共点.显然当半圆O 和圆O ′外切时,a 最小

2a +a =|OO ′|=2,∴a min =22–2

当半圆O与圆O′内切时,半圆O的半径最大,即2a最大.

此时2a–a=|OO′|=2,∴a max=22+2.

2,∞〕;函数在[]

1,3

x∈时的最大值为2.

试题答案:

1. C

2. B

3. A

4. B

5. A

6. C

7. D

8. C

9. D 10. 文科C 理科A

11. A 12. C

13. )

2

1

,0(14.(

π

4,

4)

15. y=

3

3x16. a≤3

17. 解:由1

5

9

2

2

=

+

y

x

可知a=3,b=5,c=2,左焦点F1(–2,0),右焦点F2(2,0).由椭圆定义,|PF1|=2a–|PF2|=6–|PF2|,

∴|PF1|+|P A|=6–|PF2|+|P A|=6+|P A|–|PF2|

如图:

由||P A|–|PF2||≤|AF2|=2

)1

0(

)1

2(2

2=

-

+

-知

–2≤|P A|–|PF2|≤2.当P在AF2延长线上的P2处时,取右“=”号;

当P在AF2的反向延长线的P1处时,取左“=”号.

即|P A|–|PF2|的最大、最小值分别为2,–2.

于是|PF1|+|P A|的最大值是6+2,最小值是6–2.

18. (I )7()()88x x πππ-++=1()sin()cos()sin(2)8824f x x x x πππ∴=++=+

11

()sin[2()]sin22842

g x x x ππ∴=-+=

(II )证明一:依题意,只需证明函数g(x)当35()44

,x ππ∈时是增函数sin 2x

22222k x k ππ

ππ-<<+即()44

k x k k Z ππππ-<<+∈的每一个区间上是增函数

当1k =时,()sin 2g x x =在35()4

4

,ππ是增函数则当35()44

,x ππ

∈时,经过函数g(x)图像上任意两点的直线的斜率

恒大于零

证明二:设函数

g(x)图像上任意两点11221235()()(

)44

,,,,,,A x y B x y x x ππ

∈不妨设

12121

2

121212

sin 2sin 22cos()sin()

,AB x x x x x x x x K x x x x -+-<=

=

--

1212123535(

)()(0)44222

,,,,,,x x x x x x πππππ∈+∈-∈-…11分1

2

1

2

1

2

cos()0sin()000,,,AB x x x x x x

K +>-<-<>

则当35()4

4

,x ππ

∈时,经过函数g(x)图像上任意两点的直线的斜率恒大于零.

19. ∵y =2x +3在[–2, a ]上是增函数

∴–1≤y ≤2a +3,即B ={y |–1≤y ≤2a +3}

作出z =x 2的图象,该函数定义域右端点x =a 有三种不同的位置情况如下:

①当–2≤a ≤0时,a 2≤z ≤4即C ={z |z 2≤z ≤4}

要使C ?B ,必须且只须2a +3≥4得a ≥2

1

与–2≤a <0矛盾. ②当0≤a ≤2时,0≤z ≤4即C ={z |0≤z ≤4},要使C ?B ,

由图可知:

必须且只需???≤≤≥+2

04

32a a

解得

2

1

≤a ≤2 ③当a >2时,0≤z ≤a 2,即C ={z |0≤z ≤a 2},要使C ?B 必须且只需

??

?>+≤2

3

22a a a 解得2<a ≤3 ④当a <–2时,A =?此时B =C =?,则C ?B 成立.

综上所述,a 的取值范围是(–∞,–2)∪[2

1

,3].

20. (I )由表中数据知(1)鲸沿海岸线方向运行的速度为

110

(km/分钟)。

(2)a 、b

满足的关系式为b 鲸的运动路线图为

(II )以点A 为坐标原点,海岸线AB 为x 轴,建立直角坐标系,如

图,设鲸所在的位置为点P (x ,y ),由(I

)知y .

又B (15,0),依题意知,观测站B 的观测区域为

2

2

(15)25(0)x y y -+≤≥

,又y 2

(15)

25x x -+≤,即2292000

x x -+≤.

∴11.317.7x ≤≤.故鲸从A 点进入前方观测站B 所用的时间为1

10

11.3113=分钟. 答:鲸大约经过113分钟进入B 站的观测范围. 21.(1)由已知,设f 1(x)=ax 2,由f 1(1)=1,得a=1, ∴f 1(x)= x 2. 设f 2(x)=

x

k

(k>0),它的图象与直线y=x 的交点分别为 A(k ,k )B(-k ,-k )

由AB =8,得k=8,. ∴f 2(x)=

x 8.故f(x)=x 2+x

8. (2) 【证法一】f(x)=f(a),得x 2+x 8=a 2+a

8

,

即x 8=-x 2+a 2+a

8.

在同一坐标系内作出f 2(x)=x

8

f 3(x)= -x 2+a 2+a

8

的大致图象,其中f 2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f 3(x)与的图象是以(0, a 2+

a

8

)为顶点,开口向下的抛物线. 因此, f 2(x)与f 3(x)的图象在第三象限有一个交点, 即f(x)=f(a)有一个负数解.

又∵f 2(2)=4, f 3(2)= -4+a 2+

a 8 当a>3时,. f 3(2)-f 2(2)= a 2+a

8

-8>0,

∴当a>3时,在第一象限f 3(x)的图象上存在一点(2,f(2))在f 2(x)图象的上方. ∴f 2(x)与f 3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解. 因此,方程f(x)=f(a)有三个实数解. ………………………………14分 【证法二】由f(x)=f(a),得x 2+

x 8=a 2+a

8, A B

? ?

即(x -a)(x+a -ax

8

)=0,得方程的一个解x 1=a. 方程x+a -

ax

8

=0化为ax 2+a 2x -8=0, 由a>3,△=a 4+32a>0,得

x 2=a a a a 23242+--, x 3=a

a a a 23242++-,

∵x 2<0, x 3>0, ∴x 1≠ x 2,且x 2≠ x 3.

若x 1= x 3,即a=a

a

a a 23242++-,则3a 2=a a 324+, a 4=4a,

得a=0或a=34,这与a>3矛盾, ∴x 1≠ x 3.

故原方程f(x)=f(a)有三个实数解.………………………………14分 22.(1)f (x )的定义域是001121{}(](](]

n n S S S S S S S -,,,,由于所有的n a 都是正数,故S n 是

单调递增的.

∴()f x 的定义域是2

[0]1a a -,

(Ⅱ)∵

11

111()()i i PP i i

f S f S k S S +++-=-111i i

i a a a

a -+-==-(i =1,2,…)与i

∴ 所有的1

P ,2

P ,3

P …共线,该直线过点1

(,)P a a ,斜率为1- 当n ≥2时,n

A 是一个三角形与一个梯形面积之和(如上图所示).梯形面积是

111[()()]()2n n f S f S S S +-21

(1)11()[]121n n a a a a a a --=+--22

24

12(1)n n a a a ---=-.于是22224

122(1)

n n

n a a A

a a ---=

+- (Ⅲ)解法一:结合图像,易

见12

11PP k

a =-≤-即a

≥2时,2

a ≥lim n

n n A

A →∞

>,而12

11PP k a =->-,即a <2时,22211

lim 22

n

n A

a a a →∞

>+=

故当1<a <2时,存在正整数n ,使得2

n

A a >

解法二:假设存在正整数

n ,使得

2

n A a >,则应有

2222241

022(1)

n n a a a a a ---+->-2222

24

1

(2)

02(1)

n n n a a a a a ----+?

<-2221

(2)02(1)n a a a a

-?

-+<- ∵ 1a >∴

2

02(1)a a >-?22120n a a --+

n a a

-+<∴1<a <2时,存在正整数n ,使得2

n

A

a >成立.

2020年高考数学二轮复习(上海专版) 专题15 数形结合思想(原卷版)

专题15 数形结合思想 专题点拨 数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合. (1)数形结合思想解决的问题常有以下几种: ①构建函数模型并结合其图像求参数的取值范围; ②构建函数模型并结合其图像研究方程根的范围; ③构建函数模型并结合其图像研究量与量之间的大小关系; ④构建函数模型并结合其几何意义研究函数的最值问题和证明不等式; ⑤构建立体几何模型研究代数问题; ⑥构建解析几何中的斜率、截距、距离等模型研究最值问题; ⑦构建方程模型,求根的个数; ⑧研究图形的形状、位置关系、性质等. (2)数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解填空题、选择题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: ①准确画出函数图像,注意函数的定义域; ②用图像法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图像,由图求解. (3)在运用数形结合思想分析问题和解决问题时,需做到以下四点: ①要彻底明白一些概念和运算的几何意义以及曲线的代数特征; ②要恰当设参,合理用参,建立关系,做好转化; ③要正确确定参数的取值范围,以防重复和遗漏; ④精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解. 例题剖析 一、数形结合思想在求参数、代数式的取值范围、最值问题中的应用

2015高考数学专题十四:数形结合思想教师版含高考试题.docx

2015 高考数学专题十四:数形结合思想 ( 教师版含 14 年高考试题

2015 高考数学专题十四:数形结合思想 (教师版含 13 、 14 年高考题) 数形结合的思想在每年的高考中都有所体现,它常用来:研究方程根的情况,讨论函数的值域 (最值 )及求变量的取值范围等.对这类内容的选择题、填空题, 数形结合特别有效.从今年的高考题来看,数形结合的重点是研究“以形助数”,但“以数定形”在今后的高考中将会有所加强,应引起重视,复习中应提高用数 形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定 图形间的位置关系. 1.应用数形结合的思想应注意以下数与形的转化 (1)集合的运算及韦恩图; (2)函数及其图象; (3)数列通项及求和公式的函数特征及函数图象; (4)方程 ( 多指二元方程 ) 及方程的曲线; (5)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可; (6)对于研究函数、方程或不等式 (最值 )的问题,可通过函数的图象求解 (函数 的零点、顶点是关键点 ),做好知识的迁移与综合运用. 热点一利用数形结合思想讨论方程的根 例 1 (2014 ·山东)已知函数 f(x) =| x- 2| +1 ,g (x) =kx ,若方程 f (x) =g (x) 有两个不相等的实根,则实数k 的取值范围是 () 11 A.(0 , )B.( ,1) 22 C. (1,2) D .(2 ,+∞) 答案B 解析先作出函数 f (x )= |x -2| +1 的图象,如图所示, 当直线 g ( x )= kx 与直线 AB 平行时斜率为 1 ,当直线 g ( x )=kx 过 A 点时斜率

关于数形结合思想的教学方式浅谈

关于数形结合思想的教学方式浅谈 资料来源:大学生教育资源 我有幸参加了由省教科所组织的四川省教育教学共同体举办的关于“小学生数形结合能力的研究”论坛,全省30个共同体研究单位进行了三年级和六年级数形结合能力调查与分析,共同体学校对此项工作非常重视,都给出了分析报告。论坛中来自7所学校的一线教师带来了七堂精彩的数形结合课,有以形来揭示数的《路程速度时间》、《相遇问题》、《合理安排提高效率》、《比赛场次》,有以数来表示形的《点阵中的规律》、《组合图形》、《方向与位置》等,七节课为此次论坛数形结合能力研究提供了很多研究素材,特别是经过小组讨论、专家点评、专家讲座后,给我的教学方法提供了启发。 通过本次论坛,通过与专家面对面的评课、议课结合自己的教学实际和本次对三、六年级的数形能力的调查与分析,主要对以下问题提出了质疑: ●数形结合中“数”与“形”谁先谁后? ●教师在数学教学中如何充分渗透数形结合的思想? ●通过直观的图形揭示数,是否影响了学生的抽象思维能力? ●如何在教学中很好地通过数抽象出图形,看图提问题、解决问题? ●数学课堂中能否建立一种数一形一数或形一数一形的数

学教学模式? ●在高段教学中,数形怎样结合才能促进学生主动发展? 在这次论坛中,通过专家对课例的点评和对数形结合的理解,结合课例对一线教师提出的质疑作出了解答,使一线教师对数形结合在实际教学中要注意的问题有了更深入的理解和认识,使我由最初的迷茫发展至现在的茅塞顿开,达到了参与这次论坛的目的。 一、数形结合是一种数学思考方法 数形结合是数学思考、数学研究、数学应用、数学教学的基本方式,数形结合是双向过程,要处理好数与形的结合,要根据教材的特点和学生的思维水平而定。 1.就教材内容而言,对于较新、较难的教学内容、对于学习较困难的学生可先形后数,用形来表示数,学生通过形来表示数量之间的关系;对于后继教材和较容易理解的内容可先数后形,通过数来揭示形。 2.就学生的年龄特征而言。中低段学生是以具体形象思维为主,实施先形后数,让学生从形中读懂重要的数学信息,并整理信息,提出数学问题并加以解决,对于逻辑思维能力较强的中高段学生,应该逐步过渡到先数后形,如在教学分数的乘、除法意义,教学长方体、正方体、圆柱体的拼、截引起的面积变化时,让学生通过画出直观图形,能让学生很快找出面的变化,

(完整版)数形结合思想例题分析(可编辑修改word版)

(1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 (1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 y r x 数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例 1 已知 x 、 y 、 z 、 r 均为正数,且 x 2 + y 2 = z 2 , z ? = x 2 求证: rz = xy . C A B z 分析:由 x 2 + y 2 = z 2 , 自然联想到勾股定理。由 z ? = x 2 . 可以联想到 射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例 2 已知:0< a <1,0< b <1. 求证 + + + ≥ 2 2. 证明:如图,作边长为 1 的正方形 ABCD ,在 AB 上取点 E ,使 AE= a ;在 AD 上取点 G ,使 AG= b , 过 E 、G 分别作 EF//AD 交 CD 于 F ;作 GH//AB 交 BC 于 H 。设 EF 与 GH 交于点 O ,连接 AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△ BOE 、△ COF 、△ DOG 均为直角三角形,因此 OA = OB = OC = OD = 且 AC = BD = 由于 OA + OC ≥ AC , OB + OD ≥ BD . 所以: + + + ≥ 2 2. x 2 - r 2 x 2 - r 2 a 2 + b 2 a 2 + b 2 (1- a )2 + b 2 (1- a )2 + (1- b )2 a 2 + (1- b )2 2 a 2 + b 2

高三数学教案 数形结合思想

第十三专题 数形结合思想 考情动态分析: 数形结合就是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维结合,通过“以形助数”或“以数解形”,可使复复杂问题简单化、抽象总是具体化,从而起到优化解题途径的目的. 一般地说,“形”具有形象、直观的特点,易于整体上定性地分析问题.“数形对照”便于寻求思路,化难为易;“数”则具有严谨、准确的特点,能够严格论证和定量求解.“由数想形”可以弥补“形”难以精确的弊端.恰当地应用数形结合是提高解题速度、优化解题过程的一种重要方法. 纵观多年来的高考试题,巧妙运用数形结合的数学思想方法来解决一些抽象数学问题,可起到事半功倍的效果. 数形结合的重点是研究“以形助数”,但以数解形在近两年高考试题中也得到了加强,其发展趋势不容忽视. 数形结合在解题过程中应用十分广泛,如在解方程和解不等式问题中,在求函数的值域和最值问题中,在三角函数问题中都有充分体现.运用数形结合思想解题,不仅直观易于寻找解题途径,而且能避免繁杂的计算和推理,简化解题过程,这在选择题、填空题解答中更显优越. 第一课时 方程、函数中数形结合问题 一、考点核心整合 利用“形”的直观来研究方程的根的情况,讨论函数的值域(或最值),求解变量的取值范围,运用数形结合思想考查化归转化能力、逻辑思维能力,能使烦琐的数量运算变得简捷. 二、典例精讲: 例1 方程的实根的个数有( ) A 、1个 B 、2个 C 、3个 D 、无穷多个 例 2 已知函数x x x g x x f 2)(|,|23)(2 -=-=,构造函数)(x F ,定义如下:当)()(x g x f ≥时,)()(x g x F =;当)()(x g x f <时,)()(x f x F =.那么)(x F ( ) A 、有最大值3,最小值1- B 、有最大值727-,无最小值 C 、有最大值,无最小值 D 、无最大值,也无最小值 例3 已知0>x ,设:P 函数x c y =在R 上单调递减;:Q 不等式1|2|||>-+c x x 的解集为R .如果P 和Q 有且仅有一个正确,试求c 的取值范围. 例 4 已知0>a ,且方程022 =++b ax x 与方程022 =++a bx x 都有实数根,求b a +的最小值. 三、提高训练: (一)选择题: 1.函数||x a y =和a x y +=的图象恰有两个公共点,则实数a 的取值范围是( ) A 、),1(+∞ B 、)1,1(- C 、),1[]1,(+∞--∞ D 、),1()1,(+∞--∞ 2.已知],0(π∈x ,关于x 的方程a x =+)3 sin(2π 有两个不同的实数解,则实数a 的 取值范围为( )

七年级数形结合数学专题训练

平面直角坐标系------数形结合思想的平台 一、知识点: 1.平面直角坐标系的定义; 2.坐标平面内点的坐标的定义; 3.各象限内及坐标轴上点的坐标的特征; 4.一三(二四)象限角平分线上的坐标特点; 5.与坐标轴平行的直线上的点的坐标的特征; 6.一维、二维坐标; 7、点的坐标与点到坐标轴的距离之间的关系, 8、坐标平面内线段长度与线段两端点坐标之间的关系; 9、面积割补法; 10、绝对值的性质; 11、图形面积公式; 12、平移的性质; 二、基本思想方法: 1、思想:数形结合思想、分类讨论思想、方程思想、算术法。 2、方法:画示意图、平移。 三、典型题目 (一)基础知识训练 称点是点C,则点C所表示的数是.在x轴上,到原 2.(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2); (2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM. ①写出点C的坐标; ②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) 3.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B向上平移5个单位到达点C,求: (1)A、B两点间的距离; (2)写出点C的坐标; (3)四边形OABC的面积. 4.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B (5,0),C(3,3),D(2,4),求四边形ABCD的面积

5.计算图中四边形ABOD的面积. 6.已知点A(-4,-1),B(2,-1) =12.求点C的坐标(写必要的(1)在y轴上找一点C,使之满足S △AB C 步骤); =12的点C有多少个?这些(2)在直角坐标系中找一点C,能满足S △AB C 点有什么特征? 7.如图,每个小正方形的边长为单位长度1. (1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标,说出各点到两坐标轴的距离;并总结坐标平面内的点到坐标轴距离公式。(2)点C与E的坐标什么关系? (3)直线CE与两坐标轴有怎样的位置关系? (4)你能求出图中哪些线段的长度?(总结公式)哪些图形的面积? 8.如图,在△ABC中,已知点A(0,3),B(-2,-3),C(3,-5).(1)在给出的平面直角坐标系中画出△ABC; (2)将△ABC向左平移4个单位,作出平移后的△A′B′C′; (3)点B′到x、y轴的距离分别是多少? 9.如,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a-4|+(b-2)2=0,c=a+b. (1)求A、B、C三点的坐标,并在坐标系中描出各点; (2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由; (3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.

数形结合思想数形结合思想数形结合

数 形 结 合 ———高考解题的一把利刃 山东 胡大波 数形结合思想的实质是将抽象的数量关系与直观的图形结合起来,具有直观、明了、易懂等优越性,如能准确把握,威力巨大.这也是高考考查的重点,让我们看看其在函数中的神奇效果. 一、研究函数的性质 例1 (2005年北京卷13题)对于函数()f x 定义域中任意的1212()x x x x ≠,,有如下结论: ①1212()()()f x x f x f x +=g ;②1212()()()f x x f x f x =+g ; ③1212()()0f x f x x x ->- ;④1212()()22x x f x f x f ++??< ??? . 当()lg f x x =时,上述结论中正确结论的序号是___. 解析:作出图象如图1,由图可知④不正确;而①显然不成立;②为运算律,成立;③表示12x x -与12()()f x f x -同号,由增函数的定义知:()lg f x x =在其定义域上为增函数成立.所以答案为:②③. 点评:本题综合考查函数的概念、图象及性质,选项③侧重考查单调性,选项④考查函数图象,若用代数方法研究,难度较大,通过图象的特征及其变化趋势则容易判断. 二、研究函数的最值 例2 (2006年全国Ⅱ理科12题)函数19 1()n f x x n ==-∑的最小值为( ) . (A)190 (B)171 (C)90 (D)45 解析:绝对值往往是使试题增加难度的“添加剂”.如果试图进行分类讨论,几乎不可能完成,必须另寻妙法!1x -的几何意义是什么?是数轴上的点 x 到点1的距离,那么 12x x -+-就是点x 到点1与到点2的距离之和,如图2,当[1 2]x ∈,时,12x x -+-的最小值为1;又当x =2时,123x x x -+-+-的最小值为2;…,依次类推,当x =10

数形结合思想例题选讲

数形结合思想例题选讲 数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象 (3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线 以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方 法; 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。 例题选讲 类型一:集合的运算及韦恩图 利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。 例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S ().I C M P S e ().I D M P S e 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),且在 S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵 涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。 类型二:图表信息题 此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解 决问题的关键是从已知图形(图表)中挖掘信息. 例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路 程为x ,ABP ?的面积为 )(x f .如果函数)(x f y =的图象如图(2),则ABC ?的面积为( ) A .10 B .16 C . 解:由)(x f y = 图象可知,当04()0x f x →由时由由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即所以AD=14-9=5,过D 作DG AB ⊥ 则DG=BC=4 3=∴AG ,由此可求出AB=3+5=8. 16482 1 21=??=?=?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据: 现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 A .y =2x -2 B.y = 21(x 2 -1) C.y =log 2x D.y =log 2 1x A B C D P 图(1)

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

广东高考理数大二轮专项训练专题 数形结合思想(含答案)

2016广东高考理数大二轮专项训练 第2讲数形结合思想 1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线. 3.数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围. (2)构建函数模型并结合其图象研究方程根的范围. (3)构建函数模型并结合其图象研究量与量之间的大小关系. (4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式. (5)构建立体几何模型研究代数问题. (6)构建解析几何中的斜率、截距、距离等模型研究最值问题. (7)构建方程模型,求根的个数. (8)研究图形的形状、位置关系、性质等. 4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: (1)准确画出函数图象,注意函数的定义域.

数形结合思想方法

八、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合一是一个数学思想方法,应用主要是借助形的直观性来阐明数之间的联系,其次是借助于数的精确性来阐明形的某些属性。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化。 Ⅰ、再现性题组: 1. 设命题甲:0b>1 D. b>a>1 3. 如果|x|≤π4 ,那么函数f(x)=cos 2x +sinx 的最小值是_____。 (89年全国文) A. 212- B. -212+ C. -1 D. 122 - 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 5. 设全集I ={(x,y)|x,y ∈R},集合M ={(x,y)| y x --32 =1},N ={(x,y)|y ≠x +1},那么M N ∪等于_____。 (90年全国) A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y =x +1 6. 如果θ是第二象限的角,且满足cos θ2-sin θ2=1-sin θ,那么θ2 是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7. 已知集合E ={θ|cos θ-+-=-???x x x m x 即:30212->-=-???x x m () 设曲线y 1=(x -2)2 , x ∈(0,3)和直线y 2=1-m ,图像如图所示。由图 可知:① 当1-m =0时,有唯一解,m =1; ②当1≤1-m<4时,有唯一解,即-3

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

七年级(下)数形结合数学专题训练

平面直角坐标系------数形结合思想的平台
一、知识点: 1. 平 面 直 角 坐 标 系 的 定 义 ; 2. 坐 标 平 面 内 点 的 坐 标 的 定 义 ; 3. 各 象 限 内 及 坐 标 轴 上 点 的 坐 标 的 特 征 ; 4. 一 三 ( 二 四 ) 象 限 角 平 分 线 上 的 坐 标 特 点 ; 5. 与 坐 标 轴 平 行 的 直 线 上 的 点 的 坐 标 的 特 征 ; 6. 一 维 、 二 维 坐 标 ; 7、 点 的 坐 标 与 点 到 坐 标 轴 的 距 离 之 间 的 关 系 , 8、 坐 标 平 面 内 线 段 长 度 与 线 段 两 端 点 坐 标 之 间 的 关 系 ; 9、 面 积 割 补 法 ; 10 、 绝 对 值 的 性 质 ; 11 、 图 形 面 积 公 式 ; 12 、 平 移 的 性 质 ; 二、基本思想方法: 1、 思 想 : 数 形 结 合 思 想 、 分 类 讨 论 思 想 、 方 程 思 想 、 算 术 法 。 2、 方 法 : 画 示 意 图 、 平 移 。 三、典型题目 (一)基础知识训练 1 .如 图 ,数 轴 上 A , B 两 点 表 示 的 数 分 别 是 1 和 2 ,点 A 关 于 点 B 的 对 称 点 是 点 C ,则 点 C 所 表 示 的 数 是 点距离为 5 的坐标 分 别 为 ( 4, 1) , ( 1 , -2 ) ; ( 2 )在( 1 )的 条 件 下 ,过 点 B 作 x 轴 的 垂 线 ,垂 足 为 点 M ,在 BM 的 延 长 线 上 截 取 MC=BM . ①写出点 C 的坐标; ② 平 移 线 段 AB 使 点 A 移 动 到 点 C , 画 出 平 移 后 的 线 段 CD , 并 写 出 点 D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) . .在 x 轴 上 ,到 原
2.( 1 )请 在 下 面 的 网 格 中 建 立 平 面 直 角 坐 标 系 ,使 得 A , B 两 点 的 坐 标
1

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

中考数学专题复习_数形结合思想

中考数学专题复习——数形结合思想 一、知识梳理 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。 华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。 二、典型例题 (一)在数与式中的应用 例1、实数a 、b 在数轴上的位置如图所示,化简2 ||a a b +-=_________。 (二)在方程、不等式中的应用 例2、已知关于x 的不等式组0 20x a x ->?? ->? 的整数解共有2个,则a 的取值范围是____________。 例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=??--=?, B .2103210x y x y --=??--=? , C .2103250x y x y --=?? +-=? , D .20210x y x y +-=?? --=? , (三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2 1 ,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这 样的三角形可以画_______个。 (四)在函数中的应用 例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大. a b 0 · P (1,1) 1 1 2 2 3 3 -1 -1 O x y x y O 3 -1

中考总复习数学专题优化训练数形结合思想

专题训练五 数形结合思想 一、选择题 1.已知在第二象限内,点P 到x 轴的距离是2,到y 轴的距离是3,则P 点的坐标是 A.(2,3) B.(-2,3) C.(-3,2) D.(3,2) 2.把不等式组? ??≤->+01,01x x 的解集表示在数轴上,正确的是 图2-3 3.若M(-21,y 1)、N(-41,y 2)、P(21,y 3)三点都在函数y=x k (k <0)的图象上,则y 1、y 2、y 3的大小关系为 A.y 2>y 3>y 1 B.y 2>y 1>y 3 C.y 3>y 1>y 2 D.y 3>y 2>y 1 4.已知二次函数y=ax 2+bx+c 的图象如图2-4所示,则a 、b 、c 满足 图2-4 A.a <0,b <0,c >0 B.a <0,b <0,c <0 C.a <0,b >0,c >0 D.a >0,b <0,c >0 5.已知二次函数y=x 2-2x-3,当_______________时,y 随x 的增大而增大;当_______________时,y 的值小于0 A.x <1;-1<x <3 B.x >1;x <-1或x >3 C.x >1;-1<x <3 D.x <-1;x <-1或x >3 二、填空题 6.实数a 、b 在数轴上的位置如图2-5所示,化简2a +∣a-b ∣=__________________. 图2-5 7.若不等式组???->+<1 2,1m x m x 无解,则m 的取值范围是________________.

8.青岛市是严重缺水地区,自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费是用水量的函数,其图象如图2-6所示: 观察函数图象,回答自来水公司采取的收费标准______________________________________ _______________________________________________________________________________ . 图2-6 9.观察下面的点阵图和相应的等式,探究其中的规律: (1)在④和⑤后面的横线上分别写出相应的等式; 图2-7 (2)通过猜想写出与第n个点阵相对应的等式为___________________. 10.如图2-8,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A(-1,0)、B(3,0)和C(0,-3),一次函数的图象与抛物线交于B、C两点. 图2-8 (1)二次函数的解析式为_______________________. (2)当自变量x_______________时,两函数的函数值都随x增大而增大. (3)当自变量_______________时,一次函数值大于二次函数值. (4)当自变量x_______________时,两函数的函数值的积小于0. 三、解答题 11.某广电局与长江证券公司联合推出广电宽带网业务,用户通过宽带网可以享受新闻点播、影视欣赏、股市大户室等项服务,用户交纳上网费的方式有:方式一,每月80元包干;方式二,每月上网时间x(小时)与上网费y(元)的函数关系用图2-9中的折线表示;方式三,以0小时为起点,每小时收费1.6元,月收费不超过120元.若设一用户每月上网x小时,月上网费为y元.

数形结合思想

数形结合思想 数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题,几何问题相互转化,使抽象思维与形象思维有机结合。应用数形结合思想,就是充分考查数学问题的条件与结论之间的内在联系,既分析其代数意义又提示其几何意义,将数量关系和空间形式巧妙结合,寻求解题思路,使问题得到解决。运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征。 一、选择题 1.设()y f x = 的图象经过点(1,2)--( ) A.(2,1)- B .(8,1)-- C.(4,-解:已知得(1)2f -=-,∴1(2)1f --=- 令1 222 x -= +,得8x =-,故选答案 2.已知函数32 ()f x ax bx cx d =+++A.(,0)b ∈-∞ B.(0,1)b ∈ C.b 解:根据图象可知()(1)(2)f x ax x x =--展开得32()32f x ax ax ax =-+ 与32()f x ax bx cx d =+++比较系数知b 3.方程1 sin()44 x x π-=的实根个数是( ) A .2 B.3 解:分别作出sin(y x =

与直线1 :4 l y x =的图象如下 只须考虑[4,4]x ∈-时交点个数,得答案 B. 4.设P (,) x y 是圆22(1)1x y +-=上的任意一点,欲使不等式 0x y c ++≥恒成立,则c 的取值范围是( ) A.[11]-- B.1,)+∞ C.(1) D.(,1]-∞ 解:由线性规划知识知0x y c ++≥表示点P 在直线:0l x y c ++=的上方 ∴圆在l 上方,即圆心(0,1)到l 的距离大于(或等于)1 1, ∴1c (舍去)或1c ≤,得答案D. 5.已知()()()2f x x a x b =---(其中a b <)且α、β是方程()0f x =的两根(αβ<),则实数,,,a b αβ的大小关系是( ) A.a b αβ<<< B.a b αβ<<< C.a b αβ<<< D.a b αβ<<< 解:易知,a b 是()()()0g x x a x b =--= ∵()()2f x g x =-,作(),()f x g x 得答案A. 6.平面上整点(横、纵坐标都是整数的点)到直线54 35 y x =+的最小值是( ) A. 170 B.85 C. 120 D .1 30 解:直线方程化为2515120x y -+=,设整点坐标为(,)m n ,则距离 d = = ∵5(53)051015m n -=±±±或或或 ∴min |5(53)12|2m n -+=,此时2,4m n == ∴min 85 d ==,此时整点为(2,4),选答案B . )

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

相关文档
最新文档