1260炼铁高炉本体设计说明书

1260炼铁高炉本体设计说明书
1260炼铁高炉本体设计说明书

高炉本体设计

高炉炼铁综合计算及高炉本体设计

目录 前言3 摘要错误!未定义书签。 第一章高炉炼铁综合计算4 原始条件4 工艺计算6 配料计算6 物料平衡10 热平衡计算15 热平衡表18 m的高炉本体设计 19第二章有效容积12753 技术经济指标确定19 高炉内型尺寸计算19 炉衬材质及厚度22 炉底衬砖的设计22 炉腹、炉腰及炉身下部的砌筑22 炉身上部和炉喉砌筑23 高炉冷却 23 冷却的目的和意义24 高炉冷却介质 24 冷却设备 24 炉体钢结构25 炉体钢结构25 炉壳25 高炉基础25 结论错误!未定义书签。 谢辞26 参考文献 27

前言 高炉炼铁是以铁矿石(天然富矿、烧结矿、球团矿)为原料,以焦炭、煤粉、重油、天然气等为燃料和还原剂,以石灰石等为熔剂,在高炉内通过燃料燃烧、氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程获得生铁。其主要副产品有高炉炉渣和高炉煤气。 为实现优质、低耗、高产和延长炉龄,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。现代化高炉已成为高度机械化、自动化和大型化的一种综合生产装置。高炉车间的设计也必须满足高炉生产的经济技术指标,以期达到最佳的生产效果。 摘要: 高炉炼铁的历史悠久,炼铁技术日臻成熟,是当今主要的炼铁方式。高炉作为炼铁工艺的主体设备,其结构的合理性对炼铁的工艺操作、生产技术指标以及自身的寿命都有十分重要的影响。根据攀枝花钒钛磁铁矿的高炉冶炼特点,通过进行配料计算和物料平衡计算,设计了1700m3高炉本体。设计过程除考虑通常的高炉设计方案外,还考虑了攀枝花钒钛磁铁矿多年高炉冶炼的一些生产实践经验。采用碳砖加高铝砖综合炉底、全碳砖炉缸;冷却设备的设计为水冷炉底、炉缸和炉底采用三段光面冷却壁、炉身采用镶砖冷却壁;高炉钢结构采用炉体框架式结构,最后采用CAD绘制出高炉本体图。 关键词: 高炉炼铁;综合计算,高炉本体设计

2012年高炉炼铁毕业设计

(2012届) 专科毕业设计(论文)资料 湖南工业大学教务处

本次设计是根据娄底地区设计年产量为480万吨的高炉炼铁车间,该地区矿藏丰富,水资源充沛,交通发达,设计炼铁车间比较合理。炼铁方法主要有高炉法、直接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸H 2 造外,绝大部分是作为炼钢原料。虽然现在高炉并不是以后炼钢的发展趋势,但高炉冶金是获得生铁的重要手段。它是以铁矿石是为原料,焦炭煤粉作为燃料和还原剂,在高炉内通过燃料燃烧,氧化物中铁元素的还原以及非铁氧化物造渣等一系列复杂的物理化学过程。随着冶金技术的不断发展,对其冶炼的关键设备——“高炉”。也有了越来越严格的要求。高效率、高质量、高寿命、低能耗、低污染——是本次设计所追求的目标。 在本次设计中翻阅了大量的参考文献,相当于又系统的学习了一遍高炉的有关知识,是对高炉发展的新的具体认识和总结,是本人三年专业知识学习的一个促进过程。本次设计中得到了王建丽老师的悉心指导和帮助,本人表示非常的感谢。然而,由于本人水平有限,设计中难免有不足和纰漏之处。望各位给予指正。

第一章绪论 (1) 1.1 高炉炼铁任务及工艺流程 (1) 1.2 高炉生产的特点及优点 (2) 1.3 设计原则和指导思想 (2) 1.4 厂址及建厂条件论证 (3) 第二章炼铁工艺计算 (4) 2.1 配料计算 (4) 2.2 根据铁平衡求铁矿石需要量 (6) 2.3 渣量及炉渣成分计算 (6) 2.4 物料平衡计算 (7) 2.5 热平衡计算 (8) 第三章高炉本体 (14) 3.1 高炉炉型 (14) 3.2 高炉炉衬 (16) 3.3 炉体冷却方式 (16) 3.4 冷却系统 (19) 3.5 高炉钢结构及高炉基础 (20) 第四章炉顶装料系统 (23) 4.1 串罐式无钟炉顶装料设备 (23) 4.2 串罐式无钟炉顶的特点 (25) 第五章供料系统 (26) 5.1 高炉供料系统 (26) 5.2 储矿(焦)槽及其主要设备 (27)

格栅使用说明书

09(173)GL600 回转式格栅除污机使用说明书09(173)GL600 SM 无锡市通用机械厂有限公司 二OO九年六月

无锡市通用机械厂有限公司09(173)GL600 回转格栅除污机 使用说明书 09(173)GL600SM 共7页第1页目录 一、主要用途与适用范围???????????????2 二、主要规格及技术参数???????????????2 三、工作原理????????????????????2 四、主要结构及特点?????????????????2 五、维修及保养???????????????????3 六、设备安装说明??????????????????4 七、外形图?????????????????????4 八、电气原理图???????????????????4 九、电气互连图???????????????????4 描表 描校 签字 资料来源编制 日期 校对 标准化 提出部门审定标记处数更改文件号签字日期批准文号批准

描表描校签字 一、主要用途与适用范围 回转格栅除污机主要用途为固液筛分,适用于市政污水处理厂预处理工艺,如市政污水处理厂和住宅小区污水处理设施以及市镇渠道的进水口处,也可以用于自来水厂和电厂冷却水进口处进行杂物分离保护水泵叶轮,减轻后续工序的处理负荷,是一种国内先进的固液筛分设备。 二、主要规格及技术参数 产品型号:GL600 机架宽度:600mm 栅条间距:20mm 安装角度:75° 电机功率: 1.1kW 三、工作原理 本设备由驱动装置、机架、耙栅系统、导向装置及电气控制系统等组成。驱动装置采用摆线针轮减速机,结构紧凑,调整维修方便。耙齿系统由一组独特的耙齿、套筒滚子链及栅体组成。耙齿与特制套筒滚子链装配后在减速机驱动下围绕栅体作回转运动。被栅体截留的杂物随耙齿的向上运动而与液体分离,然后耙齿沿滑槽板继续上升,当耙齿运行到设备上部经导向装置后反转,杂物在滑槽板上由耙齿推动继续向前,然后靠自重下落到卸料板上。 四、主要结构及特点 耙栅系统是通过主轴的旋转运动带动链条和耙齿围绕栅体作回转动 , 来清除栅体上的垃圾。耙齿固定在绕栅条回转的板式滚子链随链条从格栅背部( 下游端 ) 返回至格栅前部清理垃圾,不会发生卡死现象。栅条间隔均匀地焊接在栅体上,采用了直线形进口不锈钢栅条 , 日期

高炉炼铁工艺流程(经典)61411

本文是我根据我的上传的上一个文库资料继续修改的,以前那个因自己也没有吃透,没有条理性,现在这个是我在基本掌握高炉冶炼的知识之后再次整理的,比上次更具有系统性。同时也增加了一些图片,增加大家的感性认识。希望本文对你有所帮助。 本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档:

一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

二、高炉炼铁原理 炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、 直接还原法、熔融还原法等,其 原理是矿石在特定的气氛中(还 原物质CO、H2、C;适宜温度 等)通过物化反应获取还原后的 生铁。生铁除了少部分用于铸造 外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主 要方法,钢铁生产中的重要环节。 这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧

化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

机械格栅说明书(细格栅)

回转式细格栅除污机操作规程 宜兴市华电环保设备有限公司

目录 1、工作原理 2、一般性能描述 3、性能和结构 4、主要技术参数: 5、主要材质: 6、现场控制箱 7、设计、制造及质量控制 8、检验与试验要求 9、设备的安装、运行、维修手册 10、注意事项及维护

1、工作原理 回转式机械细格栅是一种用于水源口拦除固体垃圾的专用设备,它可以连续自动地清除污水中的各种形状的漂浮物。当格栅链在减速机驱动机构的驱动下,安工作方向做循环运动,此时水槽中的水流经齿耙栅隙,耙齿格栅对水中的固体杂物进行拦截,并由运动中的耙齿将其捞起,随耙齿链一起向上运行到达顶部后,通过链轮和弯轨的导向,使每组耙齿之间产生相对运动,达到自清目的,致使大部分固态杂物因自身重力而落下,另一些粘附在栅缝中的杂物在反转清洗刷的作用下把耙齿的杂物洗刷干净,并均匀地落入螺旋输送机中。由于耙齿格栅链是一个封闭式循环机构,所以它可以自动连续地工作,对水中漂浮杂物不断地进行清除。 2、一般性能描述 循环耙式清污机适用于原生污水的漂浮物的清除,其主要部件是通常称为“耙齿”或“耙爪”的过滤元件。整个格栅部件直接安装在渠道上,固体物由滤带捕获,通过耙齿送至格栅驱动装置后部的较高位置后排出。格栅支架的二侧均固定有混凝土渠道上,并且拆卸方便,格栅在安装过程中保证渠道内的所有污水能全部流经格栅,并且格栅在除污过程中在格栅两侧无死坑。格栅除污机构在运行中断后一旦恢复运行时,格栅除污机构能在完全阻塞的格栅上去除积聚的栅渣。机械格栅架、支架及各运动构件均为户外型,所有构件的设计保证在最恶劣的环境中使用寿命最长。 3、性能和结构 回转式机械格栅主要由机架、驱动装置(电机减速机)、二侧牵引链、导向链轮、钩形栅片、清扫用转刷及现场控制箱组成。 ◆齿耙 齿耙是由诸多小齿耙相互联接组成一个硕大的旋转面,捞渣彻底、干净、运转灵活可靠。齿耙具有足够的强度和刚度,不会造成连接轴的弯曲或影响耙栅平稳移动或脱链。卸料后的回程耙栅设置实用可靠的卸污吸嘴不会粘附污物。耙齿由采用尼龙材料制造。 ◆机架及机架护罩 格栅机的框架、机架护罩采用相当尺寸的不锈钢焊接而成,形成一个刚性支承结构。机架及护罩为连续焊接,以防止污水向外漏出。设备机架内侧设置牵引链循环运动轨导,机架

邯钢2000m3高炉设计特点

第19卷第6期2c100年12月 炼铁 IRt)NMAKING V01.19.NL】6 Decembef200.邯钢2000m3高炉设计特点 王学伶焦英占 邯郸钢铁有限责任公司 摘要邯钢2000m’高炉是引进德国二手设备建造的.设计时进行了国内配套,采用丁槽下原 燃料过筛、焦丁与烧结矿混装入炉、井罐无料钟炉顶、“陶瓷杯”炉底炉缸结构、底滤法水冲渣、煤 粉浓相辅送、外燃式热风炉硬出铁场电除尘等多项先进技术。 关键词高炉二手设备设计改进 Designcharacteristicof2000m3BFatHandanIron&SteelCo..Ltd. (HandanIron8SteejCo..Ltd.) WangXuelingJiaoYingzhan AbstractThe2000m’BFatHandanlron&SteelCo..LtdwasconstrucledusingthesecondhandequipmentimportedfromGermany.Duringdesigning,afewofadvancedtechniqueswereadopted,suchasscreeningofrawmaterialunderbins?mixedchargingof15--25mmsizecokenut,K.bell—lesslopwithparallelhoppers,ceramiccup。".OCP”slaggranulation.densephasecoaltransportation.externalc(jrlfmstionhotstoveandcastbouseelectricdustcoltecfor,etc. Keywords bLastfurnacesecond-bandequipmentdesignhnprovement I概况 邯钢2000m3高炉系引进德国多特蒙德克虏伯公司3号高炉的设备和技术建造的。多特蒙德克虏伯公司3号高炉的基本情况如下:高炉f艺布置紧凑,占地面积小;高炉矿槽为钢结构,料坑深度为一】8.5m.槽下设备全部布置在地坑内;料车有效容积为12n13.主卷扬由2台250kW的直流电机驱动,料坑内斜桥角度为44。24’24”.出料坑后斜桥角度为46。28’40”;并罐无料钟炉顶,料罐容积为2×24m3.气密箱采用加压煤气冷却和密封;高炉炉体为框架自立式结构.有效高度为25.55m.高径比为2.27.28个风口. 修同日期r2000—09—05联系人:焦英占高级工程师 :0560151河北省邯郸市邯郸钢铁奇限责任公司设计院?10-2个铁口,炉底、炉缸采用炭砖陶瓷杯结构,炉身为薄壁内衬;炉缸以下采用1二业水喷淋冷却,炉缸以上为“I”’型带勾头冷却壁与不带勾头冷却壁相结合结构,冷却壁采用软水密闭循环,并配有20m3膨胀罐;热风炉为4座马琴式外燃热风炉.高炉熔渣采用火车运输;两出铁场呈90。布置.炉前设备为液压泥炮,液压气动开口机和液压摆动流嘴;煤气清洗采用比肖夫湿法除尘系统.即在洗涤塔内i殳置两级串联喉口,既能除尘又能调节炉顶压力;高炉风机为烧混合煤气的燃气轮机.炉前采用电除尘;各系统均采用计算机控制。 邯钢2000m’高炉设计围绕“高产、优质、低耗、长寿”的方针.结合邯钢的原燃料条件,遵循充分利用国外先进技术和设备的原

高炉设计的基础概念

高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。 /D即高径比缩小,大型随着炉容的扩大,炉型的变化出现以下特征:高炉的H U 高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,

(完整word版)MBR污水处理工艺设计说明书(DOC)

MBR污水处理工艺设计 一、课程设计题目 度假村污水处理工程设计 二、课程设计的原始资料 1、污水水量、水质 (1)设计规模 某度假村管理人员共有200人,另有大量外来人员和游客,由于旅游区污水水量季节性变化大,初步统计高峰期水量约为300m3/d,旅游淡季水量低于70m3/d,常年水量为100—150m3/d,自行确定设计水量。 (2)进水水质 处理的对象为餐饮废水和居民区生活污水。进水水质: 项目COD BOD5SS pH NH3-N TP 含量/(mg/L) 150-250 90-150 200-240 7.0-7.5 35-55 4-5 2、污水处理要求 污水处理后水质应优于《城市污水再生利用景观环境用水水质》(GB18921-2002) 项目BOD5SS pH NH3-N TP 含量/(mg/L) 6 10 6.0-9.0 5 0.5 3、处理工艺 污水拟采用MBR工艺处理 4、气象资料 常年主导风向为西南风 5、污水排水接纳河流资料 该污水处理设施的出水需要回用于度假村内景观湖泊,最高水位为103米,常年水位为100米,枯水位为98米 6、厂址及场地现状 进入该污水处理设施污水管端点的地面标高为109米

三、工艺流程图 图1 工艺流程图 四、参考资料 1.《水污染控制工程》教材 2. 《城市污水再生利用景观环境用水水质》(GB18921-2002) 3.《给排水设计手册》 4、《给水排水快速设计手册》 5.《给水排水工程结构设计规范》(GB50069-2002) 6.《MBR设计手册》 7.《膜生物反应器——在污水处理中的研究和应用》顾国维、何义亮编著8.《简明管道工手册》第2版 五、细格栅的工艺设计 1.细格栅设计参数 (1)栅前水深h=0.1m; (2)过栅流速v=0.6m/s; (3)格栅间隙b 细=0.005m; (4)栅条宽度s=0.01m; (5)格栅安装倾角α=60?。 2.细格栅的设计计算 本设计选用两细格栅,一用一备 1)栅条间隙数:

毕业设计—高炉炉型设计

目录 中文摘要 (Ⅰ) 英文摘要 (Ⅱ) 1 绪论 (4) 1.1砖壁合一薄壁高炉炉型的发展和现状 (4) 1.2砖壁合一薄壁高炉炉型的应用 (4) 2 高炉能量利用计算 (6) 2.1高炉能量利用指标与分析方法 (6) 2.2直接还原度选择 (7) 2.3配料计算 (8) 2.4物料平衡 (13) 2.5 热平衡 (17) 3 高炉炉型设计 (23) 3.1 炉型设计要求 (23) 3.2 炉型设计方法 (24) 3.3炉型设计与计算 (24) 4 高炉炉体结构 (28) 4.1 高炉炉衬结构 (28) 4.2高炉内型结构 (29) 4.3 炉体冷却 (30) 4.4 炉体钢结构 (31) 4.5风口、渣口及铁口设计 (31) 5砖壁合一的薄壁炉衬设计 (33) 5.1砖壁合一的薄壁炉衬结构的布置形式 (33) 5.2砖壁合一的薄壁炉衬高炉的内型 (33) 5.3砖壁合一的薄壁炉衬高炉的内衬 (34) 5.4薄壁高炉的炉衬结构和冷却形式 (34) 6结束语 (36) 参考文献 (37)

摘要 近年来, 炼铁技术迅猛发展, 总的发展趋势是建立精料基础, 扩大高炉容积, 减少高炉数目, 延长高炉寿命, 提高生产效率,控制环境污染, 持续稳定地生产廉价优质生铁, 增加钢铁工业的竞争力。现代高炉的冶炼特征是, 低渣量, 大喷煤, 低焦比, 高利用系数;高炉结构的特征是,采用软水冷却、全冷却壁、薄壁炉衬、操作炉型的薄壁高炉。高炉采用大喷煤、高利用系数冶炼, 要求改善高炉的料柱透气性和延长高炉寿命高炉精料、布料、耐火材料、冷却等技术的进步,不断促进长寿的薄壁高炉发展。 高炉的炉型随着高炉精料性能、冶炼工艺、高炉容积、炉衬结构、冷却形式的发展而演变, 高炉设计的理念也随着科学技术的进步和生产实践的进展而更新。 薄壁高炉的设计炉型就是高炉的操作炉型, 在生产中几乎始终保持稳定, 消除了畸形炉型。长期稳定而平滑的炉型, 有利于高炉生产的稳定和高效长寿。高炉操作炉型的显著特征是, 炉腰直径扩大, 高径比减小, 炉腹有、炉身角缩小。这种炉型发展趋势是炼铁技术进步的反, 它有利于改善高炉料柱透气性, 稳定炉料和煤气流的合理分布, 延长高炉寿命, 对大型高炉采用大喷煤、低焦比、高利用系数冶炼更有意义。 关键词:高炉炉型砖壁合一设计 ABSTRACT In recent years, the rapid development of iron technology, the overall trend is expected to establish a fine basis for the expansion of blast furnace capacity, reduce the number of blast furnace, blast furnace to extend life, increase productivity, control of environmental pollution, continuous and stable production of low-cost high-quality pig iron, iron and steel industry increased competitiveness. Characteristics of a modern blast furnace smelting, the low amount of slag, the pulverized coal injection and low coke rate, high utilization factor; blast furnace structure is characterized by the use of soft water cooling, cooling the whole wall, thin lining, the thin-walled blast furnace operation. Large blast furnace pulverized coal injection, high utilization factor smelting, blast furnace to improve permeability of the material column and extend the

高炉设计的基础概念

文献综述 高炉炉型概述 高炉炉型的发展 高炉是一种竖炉型的冶炼炉,它由炉体内耐火材料砌成的工作空间、炉体设备、炉体冷却设备、炉体钢结构等组成。 高炉生产实践表明:合理的炉体结构,对高炉一代炉龄的高产、优质、低耗和长寿起到保证作用,由此可以看出高炉的炉型应该有炉型和炉龄两个方面阐述。 近代高炉,由于鼓风机能力进一步提高,原料燃料处理更加精细,高炉炉型向着“大型横向”发展。对于炉型而言,从20世纪60年代开始,高炉逐步大型化,大型高炉的容积由当时的1000~1500m3逐步发展到现在的4000~5500m3。随着炉容的扩大,炉型的变化出现以下特征:高炉的H U/D即高径比缩小,大型高炉的比值已降到,1000m3级高炉降到,300m3级高炉也降到左右。和大小同步的还有高炉矮胖炉型发展,矮胖高炉的特征是炉子下部容积扩大,在适当的配合条件下利于增加产量,提高利用系数.但如矮胖得过分,易导致上部煤气利用差,使燃料比升高.此外,从全国节能要求出发,在高炉建设和炼铁生产经营管理中,应既抓产量,又抓消耗、质量和寿命的优秀实例进行总结推广,提倡全面贯彻“高产、优质、低耗、长寿,”八字方针。与盛高炉型相比,矮胖炉型的主要优点是:与炉料性能相适应,料柱阻力减小;风口增多,利于接受风量;高护更易顺行稳定。这些优点,给高炉带来了多产生铁,改进生铁质量,降低燃料消耗和延长寿命的综合效果。通过研究发现,当今用于炼铁的高炉炉喉直径均偏小,其炉喉直径与炉缸直径的比值均小于。通过研究发现,炉喉直径偏小影响炉身的间接还原效率,致使高炉能耗较高,影响高炉经济效益,因此,为了提高高炉炉身的间接还原效率,改善高炉产生技术指标和进行节能减排,特别推出一种扩大炉喉直径的新炉型高炉。采用的技术方案是:它包含炉缸、炉腹、炉腰、炉身、炉喉五部分,其中炉缸在炉腹的下面,炉缸上面连接炉腹,炉腹上面连接炉腰,炉腰上面连接炉身,炉身上面连接炉喉;由上述5部分组成的高炉内型,5个部分的横截面均呈圆形,其中炉缸直径用d表示,炉腰直径用D表示,炉喉直径用d表示,炉喉直径d1与炉缸直径d之比在~之间。从而炉型能够充分发挥炉身的间接还原作用,使高炉节约焦炭,降低消耗,减少二氧化碳排放,能够使钢铁企业降低生产成本。 高炉炉龄及其影响因素

机械格栅说明书细格栅

回转式细格栅除污机 操作规程 宜兴市华电环保设备有限公司 目录 1、工作原理 2、一般性能描述 3、性能和结构 4、主要技术参数: 5、主要材质: 6、现场控制箱 7、设计、制造及质量控制 8、检验与试验要求 9、设备的安装、运行、维修手册 10、注意事项及维护

1、工作原理 回转式机械细格栅是一种用于水源口拦除固体垃圾的专用设备,它可以连续自动地清除污水中的各种形状的漂浮物。当格栅链在减速机驱动机构的驱动下,安工作方向做循环运动,此时水槽中的水流经齿耙栅隙,耙齿格栅对水中的固体杂物进行拦截,并由运动中的耙齿将其捞起,随耙齿链一起向上运行到达顶部后,通过链轮和弯轨的导向,使每组耙齿之间产生相对运动,达到自清目的,致使大部分固态杂物因自身重力而落下,另一些粘附在栅缝中的杂物在反转清洗刷的作用下把耙齿的杂物洗刷干净,并均匀地落入螺旋输送机中。由于耙齿格栅链是一个封闭式循环机构,所以它可以自动连续地工作,对水中漂浮杂物不断地进行清除。 2、一般性能描述 循环耙式清污机适用于原生污水的漂浮物的清除,其主要部件是通常称为“耙齿”或“耙爪”的过滤元件。整个格栅部件直接安装在渠道上,固体物由滤带捕获,通过耙齿送至格栅驱动装置后部的较高位置后排出。格栅支架的二侧均固定有混凝土渠道上,并且拆卸方便,格栅在安装过程中保证渠道内的所有污水能全部流经格栅,并且格栅在除污过程中在格栅两侧无死坑。格栅除污机构在运行中断后一旦恢复运行时,格栅除污机构能在完全阻塞的格栅上去除积聚的栅渣。机械格栅架、支架及各运动构件均为户外型,所有构件的设计保证在最恶劣的环境中使用寿命最长。 3、性能和结构 回转式机械格栅主要由机架、驱动装置(电机减速机)、二侧牵引链、导向链轮、钩形栅片、清扫用转刷及现场控制箱组成。 ◆齿耙 齿耙是由诸多小齿耙相互联接组成一个硕大的旋转面,捞渣彻底、干净、运转灵活可靠。齿耙具有足够的强度和刚度,不会造成连接轴的弯曲或影响耙栅平稳移动或脱链。卸料后的回程耙栅设置实用可靠的卸污吸嘴不会粘附污物。耙齿由采用尼龙材料制造。 ◆机架及机架护罩 格栅机的框架、机架护罩采用相当尺寸的不锈钢焊接而成,形成一个刚性支承结构。机架及护罩为连续焊接,以防止污水向外漏出。设备机架内侧设置牵引链循环运动轨导,机架两侧为不锈钢板,构成回转式机械格栅的框架,其断面尺寸足够最大工作截荷的要求。机架的两侧与格栅井之间间隙通过机架两侧的橡胶封板来防止垃圾。 ◆耙齿链

高炉炉体设计

课程设计说明书 题 目:年产炼钢生铁220万吨的高 炉车间的高炉炉体设计 学生姓名:王志刚 学 院:材料科学与工程 班 级:冶金08—2 指导教师:代书华、李艳芬 2011年 12 月 25日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工艺课程设计学院:材料科学与工程班级:冶金08- 2 班学生姓名:王志刚学号:200820411043 指导教师:代书华李艳芬

本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁场的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁场进行合理的设计。

第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 第二章高炉炉衬耐火材料 (3) 2.1高炉耐火材料性能评价方法的进步 (3) 2.2高炉炉衬用耐火材料质量水平分析 (3) 2.3陶瓷杯用砖 (5) 2.4炉腹、炉身和炉腰用砖 (5) 第三章高炉炉衬 (6) 3.1炉衬破坏机理 (6) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (7) 第四章高炉各部位冷却设备的选择 (9) 4.1冷却设备的作用 (9) 4.2炉缸和炉底部位冷却设备选择 (9) 4.3炉腹、炉腰和炉身冷却设备选择 (9) 第五章高炉炉型设计 (11) 5.1主要技术经济指标 (11) 5.2设计与计算 (11) 5.3校核炉容 (13) 参考文献 (14)

高炉钢结构设计

高炉钢结构设计 (steel structure design of blast furnace) 炼铁高炉专用钢结构的设计。高炉钢结构设计主要内容包括高炉本体和炉顶、上料系统、热风炉系统、粗煤气除尘系统、出铁场和辅助设施钢结构的设计,做好系统间整体配合联系、进行结构的材料选择和采取安全防护措施。高炉系统钢结构见图1。 设计时要进行结构形式的选择,构件强度稳定性、变形的计算和合理的构造处理,以保证结构安全使用与经济合理。设计应按《钢结构设计规范》及其它有关规范规定进行。对于地震区的高炉钢结构,其抗震设计要求还要符合抗震设计规范规定。 高炉钢结构的大部分是高炉生产设备的主要组成部分,其特点是:(1)种类繁多,形式特殊。有多层空间框架的炉体框架、多折点壳体的炉壳、异形壳体组成的热风炉壳、圆或椭圆形筒壳的通廊等。(2)结构尺寸及构件断面较大。如:5000m3 左右高炉全高可达120m,炉壳直径为20m,炉壳厚度可达90~120mm,炉体框架箱形柱的断面尺寸达2.0m×4.0m。(3)钢材用量多,如5000m3 高炉,包括运输、动力、管线在内钢结构用量近9万t。(4)工作条件较苛刻。如:炉体及周围结构受高温影响及水气锈蚀作用,热风炉外壳上部有时受晶间应力腐蚀开裂作用,上料料车卷扬机的作业率高达80%,壳体构件还要承受煤气爆炸等事故性内压力和砖衬被侵蚀后高炉外壳局部温度过热的作用。(5)各系统间结构穿插交错,荷载辗转传递。要控制其变形,使其相互协调。 高炉本体和炉顶钢结构高炉本体结构形式主要有自立式和非自立式两种(图2),也有介于两者之间的过渡形式。自立式高炉包括高炉外壳、炉体框架和炉顶刚架。炉壳独自承受炉内有关全部竖向荷载,而在炉周设炉体框架支承上部设备及平台。大中型高炉多用此种形式。非自立式高炉在炉壳下部设托圈和炉缸支柱,以支持炉内荷载,且多不设炉体框架,而将炉身平台及炉顶刚架支承在炉壳上,小型高炉多用此种形式。

2000m3高炉炉型设计及物料平衡计算

2000m3高炉炉型设计及物料平衡计算 摘要:本设计要求建2000m3炼铁高炉。设计主要内容包括高炉炉型设计计算及高炉本体立剖图,同时对所设计高炉的特点进行简述。设计高炉有效容积为2000m3,高径比取,高炉利用系数取值为,据此设计高炉炉型。设计本着优质、高产、低耗和对环境污染小的宗旨,为日产生铁4000t的高炉提供高炉内型设计。并对2000m3炼铁高炉进行物料平衡计算,物料平衡计算是炼铁工艺计算中重要组成部分,它是在配料计算的基础上进行的。整个物料平衡计算有配料计算和物料衡算两部分构成。在配料计算过程中,进行了原料和燃料的全分析,渣铁成分及含量分析;在物料衡算过程中计算了包括鼓风量、煤气量以及物料收支总量等项内容的计算,并制作物料平衡表。 关键词:高炉发展;高炉炉型;炉型计算;物料平衡配料计算物料衡算物料平衡表 绪论 最近二十年来,日本和欧盟区的在役高炉座数由1990年的65座和92座下降到28座和58座,下降幅度分别为%和37%,但是高炉的平均容积却分别由1558m3和1690m3上升到4157m3和2063m3,上升幅度为%和22%,这基本代表了国外高炉大型化的发展状况。 高冶炼强度、高富氧喷煤比和长寿命化作为大型高炉操作的主要优势受到大家越来越高的关注和青睐,但是高炉大型化作为一项系统工程,它在立足自身条件的基础上仍须匹配的炼钢、烧结和炼焦能力。我国近年推出的《钢铁产业发展政策》中规定高炉炉容在300m3以下归并为淘汰落后产能项目,且仍存在扩大小高炉容积的淘汰范围的趋势。同时国内钢铁产业的快速发展均加速了世界和我国高炉大型化的发展进程。由于大型化高炉具备的单位投资省、效能高和成本低等特点,从而有效地增强了其竞争力。 20世纪高炉容积增长非常快。20世纪初,高炉炉缸直径4-5m,年产铁水约100000吨左右,原料主要是块矿和焦炭。20世纪末,最大高炉的炉缸直径达到14-15m,年产铁水300-400万吨。目前,特大型高炉的日产量能够达到甚至超过12000吨。例如,大分厂2号高炉(日本新日铁)炉缸直径,生产能力为13500吨铁/天。蒂森-克虏伯公司施韦尔格恩2号高炉炉缸直径,生产能力为12000吨铁/天。70年代末全世界2000立方以上高炉已超过120座,其中日本占1/3,中国有四座。全世界4000立方以上高炉已超过20座,其中日本15座,中国有1座在建设中。 我国高炉大型化的发展模式与国外基本相近,主要是采取新建大型高炉、以

MBR污水处理工艺设计说明书

MBR亏水处理工艺设计 一、课程设计题目 度假村污水处理工程设计 二、课程设计的原始资料 1、污水水量、水质 (1)设计规模 某度假村管理人员共有200人,另有大量外来人员和游客,由于旅游区污水水量季节性变化大,初步统计高峰期水量约为300m3/d,旅游淡季水量低于 70m3/d,常年水量为100—150m3/d,自行确定设计水量。 (2)进水水质 处理的对象为餐饮废水和居民区生活污水。进水水质: 2、污水处理要求 污水处理后水质应优于《城市污水再生利用景观环境用水水质》 (GB18921-2002 3、处理工艺 污水拟采用MBRT艺处理 4、气象资料 常年主导风向为西南风 5、污水排水接纳河流资料 该污水处理设施的出水需要回用于度假村内景观湖泊,最高水位为103 米, 常年水位为100米,枯水位为98米 6厂址及场地现状

进入该污水处理设施污水管端点的地面标高为109米 三、工艺流程图 图1工艺流程图 四、参考资料 1. 《水污染控制工程》教材 2. 《城市污水再生利用景观环境用水水质》(GB18921-2002 3?《给排水设计手册》 4、《给水排水快速设计手册》 5 ?《给水排水工程结构设计规范》(GB50069-2002 6. 《MBR设计手册》 7 ?《膜生物反应器一一在污水处理中的研究和应用》顾国维、何义亮编著 8 ?《简明管道工手册》第2版 五、细格栅的工艺设计 1. 细格栅设计参数 ⑴栅前水深h=0.1m; (2) 过栅流速v=0.6m/s; (3) 格栅间隙b细=0.005m; (4) 栅条宽度s=0.01m; (5) 格栅安装倾角a =6?。 2. 细格栅的设计计算 本设计选用两细格栅,一用一备 1)栅条间隙数:

机械格栅说明书(粗格栅).docx

回转式粗格栅除污机操作规程

宜兴市华电环保设备有限公司

目录 1、概述: 2、性能参数: 3、设备技术性能和结构特点: 4、主要零部件材质 5、控制系统 6、设备制造标准 7、设备测试: 8、主要技术参数控制 9、设备外观检测 10、检验与试验要求 10.1 、试验要求: 10.2 、检验: 11、设备的安装、运行、维修手册 11.1 、安装与操作 11.2 、注意事项及维护

1、概述: 我公司提供的回转式机械格栅为成套设备。主要用于城镇污水处理厂、住宅小区 预处理装置、市政污水管道、自来水厂和电厂冷却水等进水口处进行杂物分离的设备, 还可用于纺织、水果、水产、造纸、酿酒、屠宰、制革等行业的生产工艺中进行水洗 或预处理筛分,是种理想的固液筛分设备。 回转式格栅除污机由驱动机构驱动主轴旋转,主轴两侧的链轮使牵引链条作回转运动, 在环形链条上均布齿耙,齿耙间距与格栅栅距交错并列。回转运动时移动齿耙插入固定栅条 间隙中上行,将格栅截留下的悬浮物(栅渣)刮至平台上端的卸料处,并由卸污机构将栅渣 卸至输送机或贮渣车内。 2 、性能参数: 设备名称回转式粗格栅除污机 设备型号SGL-800 数量 1 台 排渣高度1000mm 渠道宽度900mm 格栅宽度800mm 渠道深度6650mm 栅距20mm 安装角度70 ° 电机功率 1.5KW 减速机SEW 电源、防护及绝缘等级50HZ 3 相 380V IP55 F级 工作方式间歇或连续运行 3、设备技术性能和结构特点: A 、格栅采用间距相等的直线形栅条,以倾斜方式安装,安装角度为70 °,并在栅前采用循 环链条牵引的前置式耙污机构进行除污。 B、格栅能根据时间或栅前后水位差启动,能满足截留和耙除水中较大颗粒的垃圾等杂物。

高炉炉体设计说明书

学校代码: 10128 学号: 2 课程设计说明书 题目:年产炼钢生铁550万吨的高 炉车间的高炉炉体设计 学生姓名:王卫卫 学院:材料科学与工程 班级:冶金11—2 指导教师:代书华 2014年12 月29日

内蒙古工业大学课程设计(论文)任务书 课程名称:冶金工程课程设计学院:材料科学与工程班级:冶金11-2 学生姓名:王卫卫学号: 2 指导教师:代书华

摘要 本设计主要从高炉炉型设计、炉衬设计、高炉冷却设备的选择、风口及出铁口的设计。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹、炉缸五部分。高炉的横断面为圆形的炼铁竖炉,用钢板作炉壳,高炉的壳内砌耐火砖内衬。同时为了实现优质、低耗、高产、长寿炉龄和对环境污染小的方针设计高炉,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。在设计高炉炉体时,根据技术经济指标对高炉炉体尺寸进行计算确定炉型。对耐火砖进行合理的配置,对高炉冷却设备进行合理的选择、对风口及出铁口进行合理的设计。

目录 第一章文献综述 (1) 1.1国内外高炉发展现状 (1) 1.2我国高炉发展现状 (1) 1.3 高炉发展史 (2) 1.4五段式高炉炉型 (4) 第二章高炉炉衬耐火材料 (5) 2.1高炉耐火材料性能评价方法的进步 (5) 2.2高炉炉衬用耐火材料质量水平分析 (5) 2.3陶瓷杯用砖 (7) 2.4炉腹、炉身和炉腰用砖 (7) 第三章高炉炉衬 (8) 3.1炉衬破坏机理 (8) 3.2高炉炉底和各段炉衬的耐火材料选择和设计 (9) 第四章高炉各部位冷却设备的选择 (11) 4.1冷却设备的作用 (11) 4.2炉缸和炉底部位冷却设备选择 (11) 4.3炉腹、炉腰和炉身冷却设备选择 (11) 第五章高炉炉型设计 (13) 5.1炉型设计要求 (13) 5.2炉型设计方法 (13) 5.3主要技术经济指标 (14) 5.4设计与计算 (14) 5.5校核炉容 (16) 参考文献 (17)

炼铁高炉本体安全要求

炼铁高炉本体安全要求 1高炉内衬耐火材料、填料、泥浆等,应符合设计要求,且不得低于国家标准的有关规定。 2风口平台应有一定的坡度,并考虑排水要求,宽度应满足生产和检修的需要,上面应铺设耐火材料。 3炉基周围应保持清洁干燥,不应积水和堆积废料。炉基水槽应保持畅通。 4风口、渣口及水套,应牢固、严密,不应泄漏煤气;进出水管,应有固定支撑;风口二套,渣口二、三套,也应有各自的固定支 撑。 5高炉应安装环绕炉身的检修平台,平台与炉壳之间应留有间隙,检修平台之间宜设两个走梯。走梯不应设在渣口、铁口上方。 6为防止停电时断水,高炉应有事故供水设施。

7冷却件安装之前,应用直径为水管内径0.75~0.8倍的球进行通球试验,然后按设计要求进行水压试验,同时以0.75kg的木锤敲击。经10min的水压试验无渗漏现象,压力降不大于3%,方可使用。 8炉体冷却系统,应按长寿、安全的要求设计,保证各部位冷却强度足够,分部位按不同水压供水,冷却器管道或空腔的流速及流量适宜。并应满足下列要求: ——冷却水压力比热风压力至少大0.05MPa; ——总管测压点的水压,比该点到最上一层冷却器的水压应至少大0.1MPa; ——高炉风口、渣口水压油设计确定; ——供水分配管应保留足够的备用水头,供高炉后期生产及冷却器由双联(多联)改为单联时使用;

——应制定因冷却水压降低,高炉减风或休风后的具体操作规程。 9热电偶应对整个炉底进行自动、连续测温,其结果应正确显示于中控室(值班室)。采用强制通风冷却炉底时,炉基温度不宜高于250℃;应有备用鼓风机,鼓风机运转情况应显示于高炉中控室。采用水冷却炉底时,炉基温度不宜高于200℃。 10采用汽化冷却时,汽包应安装在冷却器以上足够高的位置,以利循环。汽包的容量,应能在最大热负荷下1h内保证正常生产,而不必另外供水。 11汽包的设计、制作及使用,应遵守下列规定: ——每个汽包应有至少两个安全阀和两个放散管,放散管出口应指向安全区;

高炉炼铁工艺流程(经典之作)

本次将高炉炼铁工艺流程分为以下几部分: 一、高炉炼铁工艺流程详解 二、高炉炼铁原理 三、高炉冶炼主要工艺设备简介 四、高炉炼铁用的原料 附:高炉炉本体主要组成部分介绍以及高炉操作知识 工艺设备相见文库文档: 一、高炉炼铁工艺流程详解 高炉炼铁工艺流程详图如下图所示:

炼铁过程实质上是将铁从其自然形态——矿石等含铁化合物中还原出来的过程。 炼铁方法主要有高炉法、直

接还原法、熔融还原法等,其原理是矿石在特定的气氛中(还原物质CO、H2、C;适宜温度等)通过物化反应获取还原后的生铁。生铁除了少部分用于铸造外,绝大部分是作为炼钢原料。 高炉炼铁是现代炼铁的主要方法,钢铁生产中的重要环节。这种方法是由古代竖炉炼铁发展、改进而成的。尽管世界各国研究发展了很多新的炼铁法,但由于高炉炼铁技术经济指标良好,工艺简单,生产量大,劳动生产率高,能耗低,这种方法生产的铁仍占世界铁总产量的95%以上。 炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例自高炉炉顶装入高炉,并由热风炉在高炉下部沿炉周的风口向高炉内鼓入热风助焦炭燃烧(有的高炉也喷吹煤粉、重油、天然气等辅助燃料),在高温下焦炭中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气。原料、燃料随着炉内熔炼等过程的进行而下降,在炉料下降和上升的煤气相遇,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣铁主要矿石中不还原的杂质和石灰石等熔剂结合生成,自渣口排出后,经水淬处理后全部作为水泥生产原料;产生的煤气从炉顶导出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。炼铁工艺流程和主要排污节点见上图。

相关文档
最新文档