气缸套活塞环摩擦副上止点附近的低速润滑特性

气缸套活塞环摩擦副上止点附近的低速润滑特性
气缸套活塞环摩擦副上止点附近的低速润滑特性

活塞环梯形角度测量仪的设计方案说明书

姓名:李洋 学号:0743024017 学院:制造学院 指导老师:赵世平黄玉波陆小龙 2018年1月

活塞环梯形角度测量仪的设计 一·概述 活塞环(Piston Ring> 是用于崁入活塞槽沟的环,分为两种:压缩环和机油环。压缩环可用来密封燃烧室内的压缩空气;机油环则用来刮除汽缸上多余的机油。活塞环是一种具有较大向外扩张变形的金属弹性环,它被装配到剖面与其相应的环形槽内。往复和旋转运动的活塞环,依靠气体或液体的压力差,在环外圆面和气缸以及环和环槽的一个侧面之间形成密封。 活塞环作用包括密封、调节机油<控油)、导热<传热)、导向<支承)四个作用。 密封:指密封燃气,不让燃烧室的气体漏到曲轴箱,把气体的泄漏量控制在最低限度,提高热效率。漏气不仅会使发动机的动力下降,而且会使机油变质,这是气环的主要任务; 调节机油<控油):把气缸壁上多余的润滑油刮下,同时又使缸壁上布有薄薄的油膜,保证气缸和活塞及环的正常润滑,这是油环的主要任务。在现代高速发动机上,特别重视活塞环控制油膜的作用; 导热:通过活塞环将活塞的热量传导给缸套,即起冷却作用。据可靠资料认为,活塞顶所受的的热量中有70~80%是通过活塞环传给缸壁而散掉的; 支承:活塞环将活塞保持在气缸中,防止活塞与气缸壁直接接触,保证活塞平顺运动,降低摩擦阻力,而且防止活塞敲缸。一般汽油发动机的活塞采用两道气环,一道油环,而柴油发动机则采用三道气环,一道油环。 作为发动机的关键零件,活塞环的形状对内燃机的性能有着重要的影响, 活塞环的梯形角是梯形活塞环的一个重要参数, 其角度大小直接影响到活塞环的质量及使用性能。角度过大, 易发生拉缸现象, 角度过小, 则密封性能差, 发动机功率下降且容易发生烧机油现象。要提高活塞环的质量和性能,就必须首先提高其检测技术,为解决梯形活塞环角度测量问题,我们改进设计一种检测系统——活塞环梯形角度测量仪。 二·设计目的及技术指标 1.设计目的 本次设计课题为活塞环梯形角度测量仪的设计,其目的如下: a、巩固所学传感器、检测技术、精密机械设计、机械制图、公差分 析等相关知识;

发动机的基本知识

第一章发动机的基本知识 一、填空: 1.车用内燃机根据其燃料不同分为()和()。 2.四冲程发动机每完成一个工作循环,曲轴旋转()周,进、排气门各开启()次,活塞在两止点间移动()次。 3.上、下止点间的距离称为()。 4.四冲程发动机每完成一个工作循环需要经过()、()、()和()四个行程。 5.在内燃机工作的过程中,膨胀过程是主要过程,它将燃料的()转变为()。 6.压缩终了时可燃混合气的压力和温度取决于()。 7.在进气行程中,进入汽油机气缸的是(),而进入柴油机气缸的是();汽油机的点火方式是(),而柴油机的点火方式是()。 8.汽油机由()大机构()大系统组成,柴油机由()大机构()大系统组成。 9.发动机的动力性指标主要有()和()等;经济性指标主要有()。 10.发动机速度特性指发动机的功率、转矩和燃油消耗率三者随()变化的规律。 二、选择: 1.曲轴旋转两周完成一个工作循环的发动机称为()。 A.二冲程发动机B.四冲程发动机C.A,B二者都不是 2.发动机有效转矩与曲轴角速度的乘积称为()。 A.指示功率B.有效功率C.最大转矩D.最大功率 三、简答: 1、发动机通常由哪些机构和系统组成? 2、什么是发动机的工作循环,简述四行程汽油机的工作过程 3、试分析汽油机和柴油机的特点和区别 4、发动机的主要性能指标有哪些? 5、内燃机产品名称和型号包括几个部分?其含义是什么? 6、名词解释:上止点、下止点、活塞行程、总容积、工作容积、燃烧室容积、压缩比、发动机排量 第二章曲柄连杆机构 一、填空: 1.曲柄连杆机构是往复活塞式内燃机将()转变为()的主要机构。 2.根据汽缸体结构将其分为三种形式:()、()和()汽缸体。 3.按冷却介质的不同,冷却方式分为()与()两种。 4.汽车发动机汽缸的排列方式基本有三种形式:()、()和()。 5.根据是否与冷却水相接触,汽缸套分为()和()两种。 6.常用汽油机燃烧室形状有()、()和()三种。 7.活塞环分为()和()两种。 8.曲轴分为()和()两种。

活塞环的基本材料

活塞环的基本材料 当今活塞环应用各种品质的铸铁材料和钢。首先考察铸铁材料,按照用材料强度、延伸率、疲劳强度和耐磨性等指标表征的承载能力,可选用的铸造品质的全部范围见表1。对于第一道压缩环应特别优先选用一种具有高抗弯强度和弹性模数的球墨铸铁,其基体为马氏体,以获得高的硬度,可使侧面具有较好的耐磨性。 第二道活塞环能应用无镀层环,开发了一种在调质热处理状态下呈现细化片状组织铸造品质的材料,通过生成铬、钒、锰和钨元素的特殊碳化物,以及马氏体基体组织,以获得良好的耐磨性。而GOE44可锻铸铁是一种在细化珠光体基体组织中有针对性地生成残余碳化物成分的材料,能将高抗切向力强度与良好的耐磨性结合起来。 由于对材料强度和疲劳强度以及良好耐磨性的要求越来越高,现在趋向于进一步优化球状石墨的生成,以便在静态(装配状态)和动态负荷下获得特别高的抗弯强度,同时用贝氏体基体组织来获得活塞环侧面和工作表面较低的磨损率。 由于汽油机和柴油机活塞结构高度降低,压缩环的轴向高度相应减小,特别是面对20MPa气缸爆发压力,对机械结构的要求越来越高,这一切都要求提高活塞环侧面的强度和耐磨性。钢材料特别适合于这些要求。与铸铁材料相比,钢具有良好的机械动态承载能力,因此在弯曲负荷增大的情况下具有高的疲劳强度。当然,通过表面镀层和表面处理的效果可部分地缩小铸铁和钢之间动态强度的差异。试验表明,通过附加的化学处理(CPS法)可使氮化钢活塞环的动态强度提高大约30%。 首先应用含铬量为13%或18%的高铬马氏体钢,这种材料通过生成精细分布的铬碳化物和附加生成的渗氮层使表面层硬度明显提高,从而获得良好的耐磨性。如果要使用调质处理的Cr-Si低合金钢的话,则环工作表面镀层是必需的。 在最近15年内,全世界汽油机第1道压缩环都由铸铁环改用钢环,其中特别是欧洲和日本偏爱于氮化钢环。在汽油机高转速的使用条件下,现在轴向高度低的第1道钢环已成为标准零件,在此期间开发的发动机的第1道环超过90%采用氮化钢环,而第2道环大多数采用成本较低的铸铁环,并根据各自的功能要求选择相应的结构型式和工作表面涂层。 在欧洲轿车柴油机,即升功率大于50k W/的高负荷发动机上,第1道压缩环必须使用牌号为52/56的球墨铸铁,第2道环采用牌号为32的调质耐磨灰铸铁。通过采用强化的球墨铸铁(GOE56)或含铬18%铬钢来改善活塞环侧面特别是上侧面的耐磨性。当然,特别是在环轴向高度低的情况下,钢环包含着环槽磨损增大的风险,但是在每种情况下槽和环侧面总磨损量的差异并不大。 在柴油机上,由于活塞环的轴向高度较高,其材料向钢变化的倾向并不明显。这一方面是因为铸铁环和环槽镶圈材料之,间的材料配对非常好,另一方面是因为铸铁材料具有非常良好的加工性。 原则上,商用车柴油机第1道压缩环使用球墨铸铁已有非常丰富的经验,这从球墨铸铁环在欧洲柴油机上占有很高的分额就反映出来了。但是,自从上世纪60年代以来,具有非常低轴向磨损的含铬18%铬钢镀层压缩环在商用车柴油

活塞环基本知识

活塞环基本知识 活塞环是发动机的重要零件之一。活塞环分为气环和油环两种。活塞环的作用:密封气体;均匀分布气缸壁上的润滑油,并防止润滑油窜入燃烧室;导出活塞上的热量;支承活塞,防止活塞直接与气缸壁接触。活塞环工作的好坏直接影响发动机的性能、工作可能性和使用寿命。 1 活塞环的作用 1.1气环的作用 气环起密封气体及导热的作用,其本身具有一定弹力。将环压在缸壁上。当发动机工作时,高压气体进入环槽,一方面将环压紧在环槽上,另一方面环背将更紧密地压在缸壁上起到更好的密封作用。当气体通过第一道环隙窜入第二道时,压力已大大降低。而且第二道环漏泄的气体极少。为了进一步减少摩擦损失,有的发动机只采用一道气环。第二道气环密封任务较轻,而且工作条件较一道好些。为了避免机油窜入燃烧室,所以要求第二道气环除密封气体外,还有一定的刮油作用。 1.2 油环的作用 油环的作用是将一定的润滑油均匀分布在缸壁上,防止润滑油窜入燃烧室并保证活塞环和缸壁的润滑。 油环要刮下缸壁上多余的油,须较大的径向力将环压在缸壁上。由于环背没有气体压力的帮助,故环本身要具有较大的弹力及较小的接触面积,同时刮下的润滑油要能顺利地流回油底壳,所以油环槽背设有回油孔或切口。 2 活塞环的结构分析 2.1活塞环各部分名称,如图1所示。 2.2切口形式 活塞环切口基本上有3种形式:直切口、斜切口和梯形切口,如图2所示。其

中用得最普遍的是直切口。二行程发动机为防止环切口与缸壁上的气口相碰,在切口处用销钉档住,不让环在环槽内转动,如图3所示。 2.3 常用气环断面形状 气环断面形状如图4所示。 矩形环:断面呈矩形,制造简单,广泛采用。 锥形环:将工作面制成小锥度以提高表面接触压力,有利于是磨合密封,并有一定的刮油作用。锥形环用肉眼不一定能看出锥角,所以一定要做标记,不能装反。正确安装应是正锥形,其锥顶向上。 图4 常用活塞环的断面形状 a)矩形 环b)锥面环c)桶面 环d)内切槽环 e)下切槽

活塞环的机械加工工艺规程设计

机械制造工艺学 课程设计 班级 B120231 姓名王志强 学号 B12023118 2014 年 03 月 14 日

课程设计任务书 机械工程系机械设计制造及其自动化专业学生姓名王志强班级 B120231 学号 B12023118 课程名称:机械制造工艺学 设计题目:活塞环的机械加工工艺规程设计 设计内容: 1.产品零件图1张 2.毛坯图1张 3.机械加工工艺过程综合卡片1份 4.机械加工工艺工序卡片1份 5.课程设计说明书1份 设计要求: 大批生产 设计(论文)开始日期 2014 年 03 月 03 日 设计(论文)完成日期 2014 年 03 月 07 日 指导老师邹聆昊

课程设计评语 机械工程系机械设计制造及其自动化专业学生姓名王志强班级 B120231 学号 B12023118 课程名称:机械制造工艺学 设计题目:活塞环的机械加工工艺规程设计 课程设计篇幅: 图纸共 2 张 说明书共 16 页指导老师评语: 年月日指导老师

目录 1.零件的分析 (1) 1.1.零件的作用 (1) 1.2.零件的工艺分析 (1) 1.2.1.零件图样分析 (2) 1.2.2.零件的技术要求 (3) 2.工艺规程设计 (4) 2.1.确定毛坯的制造形式 (4) 2.2.基面的选择 (5) 2.3.制定工艺路线 (6) 2.4.机械加工余量、工序尺寸及毛坯尺寸的确定 (7) 2.5.确定切削用量及基本工时 (8) 总结 (11) 参考文献 (12) 附表A1-A4:机械加工工艺过程综合卡片 附表B1-B9:机械加工工艺(工序)卡片

1. 零件的分析 1.1.零件的作用 活塞环作用包括密封、调节机油(控油)、导热(传热)、导向(支承)四个作用。密封:指密封燃气,不让燃烧室的气体漏到曲轴箱,把气体的泄漏量控制在最低限度,提高热效率。漏气不仅会使发动机的动力下降,而且会使机油变质,这是气环的主要任务;调节机油(控油):把气缸壁上多余的润滑油刮下,同时又使缸壁上布有薄薄的油膜,保证气缸和活塞及环的正常润滑。在现代高速发动机上,特别重视活塞环控制油膜的作用;导热:通过活塞环将活塞的热量传导给缸套,即起冷却作用。据可靠资料认为,活塞顶所受的的热量中有70~80%是通过活塞环传给缸壁而散掉的;支承:活塞环将活塞保持在气缸中,防止活塞与气缸壁直接接触,保证活塞平顺运动,降低摩擦阻力,而且防止活塞敲缸。 1.2.零件的工艺分析 1.该工艺安排是将毛坯造成筒形状,粗车切下后再进行单件加工。若单件铸造毛坯单件加工,其工艺安排,只是粗加工前的工序与筒形状毛坯不同,其他工序基本相同。 2.活塞环类零件在磨床上磨削加工时,多采用磁力吸盘装夹工件,因此在加工后,必须进行退磁处理。 3.为了保证活塞环的弹力,加工中对活塞环在自由状态下开口有一定的要求,因开口铣削后不能满足图样要求,所以增加一道热定型工序,热定型时需在专用工装上进行,其活塞环的开口处用一个键撑开,端面压紧,键的宽度要经过多次试验后得出合理宽度数据之后,再成批进行热定型。 4.对45°开口的加工采用专用工装进行装夹工件,但每批首件应划线对刀,以保证加工质量。 5.活塞环的翘曲度是将工件放在平台进行检查,采用0.06mm塞尺进行检查,当塞尺未能通过翘曲的缝隙时为合格。

活塞环的材料

活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2许用应力(㎏)推荐使用范 围 工作 应力 安装应力 灰铸铁合金铸铁亚共晶铸 铁 球墨铸铁碳钢马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油 环 压缩环油 环 压缩环油 环 IST IST OIL刮片 环 IST 钢带衬环 许用剪应力200㎏/mm2

活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si:2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造

04第三章活塞环的设计

第三章活塞环的设计 内燃机的性能与活塞环的设计息息相关。目前世界上活塞环设计已进入标准化系列化时代。 3.1 活塞环的设计原则 根据活塞环的作用和工作条件,活塞环的设计应满足如下要求: 1 有适当的弹力,以利初始密封; 2 有较高的机械强度和热稳定性好; 3 易磨合且有足够的耐磨性和抗结胶能力; 4 加工工艺简单,成本低廉。 活塞环设计采用弹性弯曲理论,综合考虑环装入活塞的张开应力和环在气缸中的工作应力。根据这些应力的最佳比例和环材料的强度和弹性模量,实际环的自由状态开口距离为2.5~3.5倍的环径向厚度,环直径/径向厚度之比在22~34之间。 经长期设计经验之积累和广泛的发动机运转测试,得出了压缩环、油环和环槽设计参数的推荐范围,如表3-1~3-4所示的数据,给活塞环设计提供一个全面的指南。 表3-1 气环侧隙 环直径间隙 顶环第二和第三道环 76~178mm >178~250mm >250~405 mm >405~600mm >600mm 0.064/0.114 mm 0.076/0.127 mm 0.102/0.152 mm 0.152/0.216 mm 0.152/0.229 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-2 油环侧隙 环直径间隙 76~178 mm >178~250 mm >250~405 mm >405~600 mm >600 mm 0.038/0.089 mm 0.064/0.114 mm 0.076/0.127 mm 0.127/0.191 mm 0.127/0.203 mm 表3-3 闭口间隙 发动机型式单位缸径的闭口间隙 水冷 风冷及两冲程 0.003/0.004 0.004/0.005表3-4 侧面光洁度 活塞环直径侧面光洁度CLA ≤178 mm >178~405 mm >405~920 mm 最大0.4μm 最大0.8μm 最大1.6μm

活塞式发动机的基本常识

活塞式燃油发动机基础常识 活塞式燃油发动机通常是指燃油在汽缸里燃烧膨胀,推动活塞下行带动曲轴旋转,以此形式输出动力的发动机。这种发动机是目前最最接近平民百姓的实用型燃油发动机,大到火车、轮船~~,小到助力车、航模~~,可以说是随处可见;其中一些经过少许改装后,还可以使用汽体燃料。 最近几年,版友们最常接触的是踏板助力车上的燃油发动机,其实活塞式燃油发动机的范畴很大,不只是汽油机和柴油机,点火方式也不全是靠火花塞;在此写上一篇,以本版角度,将活塞式燃油发动机的一些常识简述一下,以四冲汽油机为主,作为车民常识资料,以便版内车友学习参考。 一、活塞式燃油发动机常见名词常识: A、活塞式燃油发动机: 通常指做功形式为燃油在汽缸里燃烧、以膨胀气体推动活塞,通过连杆带动曲轴输出动力,以消耗燃油而产生动力的发动机。它的主要产品为使用化油器实施汽缸外雾化燃油、汽缸内火花塞点火的汽油机,还有使用喷油泵直接对汽缸内喷射柴油、直接燃烧作功的柴油机。 B、发动机的工作循环与冲程: 工作循环是指发动机活塞由进气、压缩、燃烧膨胀(做功)、排气行程所组成的工作进程。发动机每完成一次进气,压缩、做功、排气的进程,称为一个工作循环,也称一个周期。 C、二冲程发动机:

凡发动机曲轴每旋转一转,即活塞上下往复运动两个行程而完成一个工作循环的发动机。按点火方式包含有:火花塞点火,压缩点火,喷油点火。按进气方式有:簧片阀进气,活塞阀进气,转盘阀进气~~~。D、四冲程发动机: 凡发动机曲轴每旋转两转,即活塞上下往复动动四个行程而完成一个工作循环的发动机。通常以化油器供油、火花塞点火的汽油发动机和直接向汽缸里喷射燃油的柴油机为主。其外观最大特征:有复杂的换气机构--缸头。 E、曲轴: 一根类似“弓”字形的转轴,用连杆连接活塞,通过它使活塞来回运动,完成吸气、压缩、作功、排气等功能。同时活塞也通过它将直线运动的作功力量转换为输出动力的旋转运动。 F、飞轮: 为了使活塞连续往复运动,曲轴需要靠飞轮的惯性来保持连续运转。在小型发动机中,飞轮通常与磁电机合并设计,在飞轮的内圈安置强力磁钢,使得飞轮一转动,底盘上的线圈就有点火电力输出。 G、连杆: 连接曲轴与活塞的部件,其主要功能是将曲轴的旋转运动转换成活塞的往复运动,同时也将活塞的推动力转换成曲轴的旋转运动。因其运动时的摆动幅度较大,所以需要尽量轻巧牢固。 H、曲轴箱: 将曲轴安装在内、并连接汽缸和变速机构的发动机箱体。常规二冲程发

内燃机缸套-活塞环摩擦学研究回顾与展望

内燃机缸套-活塞环摩擦学研究回顾与展望 西安交通大学张家玺高群钦朱均 摘要:内燃机缸套-活塞环摩擦副是一个典型的摩擦学系统,其中含有多种类型的摩擦和磨损,润滑、摩擦、磨损的相互作用十分显著。其摩擦学性能对提高内燃机的可靠性和耐久性,保证内燃机经济、可靠地工作具有决定性的作用。其摩擦学问题的研究一直是人们关注的热点之一。 关键词:内燃机缸套活塞环摩擦学研究 内燃机中缸套-活塞环摩擦副对内燃机工作性能(动力性、经济性以及稳定性等)和使用寿命有着举足轻重的影响。如何控制好这对摩擦副的摩擦学行为是人们魂系梦牵的事情。由于缸套-活塞环摩擦副的工作条件十分苛刻,经常处于高温、高压和高冲击负荷工作状态。为了解决好这对摩擦副的润滑和抗磨问题,国内外许多汽车工程技术人员,长期以来孜孜以求地投入了大量的研究工作,至今仍在探索。 1 缸套-活塞环摩擦学理论研究概述 从缸套-活塞环研究的历史上看,早期对缸套-活塞环的摩擦学研究主要是求内燃机的摩擦功耗,自Stanton,T.E.1925年发表第一个摩擦力研究结果以来,人们围绕着缸套-活塞环的摩擦及润滑问题做了许多工作,Rogowki,A.R.指出活塞连杆系统的摩擦功耗可占到整个内燃机机械损失的75%,而缸套-活塞环的摩擦功耗又占活塞连杆系统的75%,Ricardo,H. 的研究表明当内燃机以1600r/min转速运转时,活塞连杆系统的损失占机械损失的58%,并指出“对所有内燃机来说,活塞连杆系统的摩擦功耗是机械损耗的最大组成部分,但又是最难准确地定量描述的部分。”最早在点火内燃机上进行摩擦力测量的是美国麻省理工学院的学者们,他们通过研究得出了摩擦力随气体压力升高略有增加的结论。Farobarros,A.T Dyson,A.研究了不同粘度润滑油对摩擦力的影响以及在混合润滑区内减摩添加剂的作用。Wakuri,Y.等人通过对摩擦力的测量和分析,指出贫油对摩擦力有巨大的影响,同时还探讨了环组中活塞环的数目对摩擦力的影响以及缸套-活塞环间油膜厚度随润滑油粘度的变化。Furuhama,s.等人在缸套-活塞环摩擦学特性研究作出了巨大的贡献,他们于70年代末期研制的可动缸测量摩擦力装置,有效地克服了惯性力、气体压力等因素的影响,测得了在整个内燃机工作循环中的摩擦力变化过程,提出了内燃机载荷主要由流体润滑膜承担,而摩擦力主要受混合润滑区域影响的论断,这一点已被后来进一步的理论研究所证实。 Riches,M.F.等人侧重于混合润滑效应,从理论和实验两方面对缸套-活塞环间的摩擦力进行了研究,指出在低速及低粘条件下充分考虑混合润滑作用的重要性。活塞环的摩擦影响着内燃机的效率,而缸套-活塞环的磨损则影响着它们的使用寿命,近年来,对高性能内燃机提出要求之一就是延长不解体检测的运行时间。为此,减少缸套-活塞环的磨损就成了首要的任务。缸套-活塞环的磨损是非常复杂的,它受到许多因素的影响,同时其磨损又包含粘着磨损、磨粒磨损、腐蚀磨损等多种磨损形式。针对这种情况,Nealc,M.J.经过广泛调查,于1970年发表文章阐述了缸套-活塞环一般的磨损机理,提出了一些改善措施,指出了需要加强研究的问题。基于Archard,J.F.磨损定律,Ting,L.L.等人提出了一种分析缸套-活塞环磨损的模型,分别计算了缸套上推力面和次推力面的磨损,得出了缸套磨损曲线。国内的

活塞环的材料

第二章活塞环的材料 活塞环材料品种繁多、性能各异。选择活塞环的材料要考虑其使用条件、性能要求和环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高的机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定的强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性和工艺性等。目前,活塞环材料主要是铸铁,随着发动机的强化,出现了从灰铸铁过渡到可锻铸铁和球墨铸铁以及钢材的趋向。常用的材料和性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2 许用应力(㎏)推荐使用范围工作应力安装应力 灰铸铁 合金铸铁亚共晶铸铁 球墨铸铁 碳钢 马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油环 压缩环油环 压缩环油环 IST IST OIL刮片环 IST 钢带衬环 活塞环的材料主要是灰铸铁、合金铸铁和球墨铸铁,其材料的成份和性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3.5-3.75% Si: 2.2-2.75% Mn:0.6-0.8% P:0.3-0.8% S:小于0.10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁的基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要是因铸铁中含有石墨是优良的固体润滑剂,当活塞环处于临界摩擦或干摩擦的状态下,铸铁材料就显示出其优越的自身润滑性能。 如摩擦或润滑问题,能充分解决的话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2.1 活塞环的一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号的铸铁。材质是活塞环机械性能与使用寿命的基础,因此在规定范围内合理调整材料成分比例、严格控制造型与浇铸工艺来确保活塞环具有符合设计要求的最佳金相组织。 2 热处理 采用适当的热处理方法,以调整活塞环的金相组织及消除加工应力。 3 刚度 活塞环是一个刚度差的弹性零件,加工时必须合理安排工艺流程、注意装夹方法,以保 许用剪应力200㎏/mm2

活塞环工作原理

活塞环工作原理 乍一看活塞环是一个形态非常简单,具有圆开口的环,但它在摩托车发动机(内燃机)中却是不可缺少的运动部件,起着极为重要的作用,活塞环按作用分为气环和油环,它有四大功能。 一、保持气密性
活塞环是所有发动机零件中唯一作三个方向运动的零件。(即轴向运动、径向运动和圆周方向的旋转运动),同时也是使用条件中最为苛刻的零件。发动机燃烧室在爆炸的瞬间,燃气温度可达到2000℃-2500℃,其爆发压力平均达到50kg/cm平方,活塞头部的温度一般不低于200℃。活塞是作往复运动的,其速度和负荷都很大。因此活塞环是工作在高温、高压条件下的。尤其是第一道气环,承受的温度最高,润滑条件也最差,为了保证它具有和其它几道环相同或更高的耐用性,常常将第一道气环,的工作表面进行多孔镀铬处理。多孔镀铬层硬度高,并能贮存少量的润滑,以改善润滑条件,使环的寿命提高2-3倍。近年来,摩托车发动机大多采用长度短于缸径的活塞,这种活塞的头部在上行程转到下行程时会产生摆动现象,使活塞环外圆的上下边缘紧紧地与缸壁接触,导致活塞环的棱缘加载而形成刮伤。为避免这种异常现象,一般将第一道气环外圆制成圆弧状,以其上、下端面的边缘角不触及缸壁,并且易于发动机的初期磨合,这种气环称为桶面环,为目前高功率高转速的内燃机所采用。尽管当今制造技术非常精细,零部件差亦控制在最小范围,但因其材料、热处理及装配后的机械变形,汽缸内的气密总有极个别泄漏点存在,这就需要发动机在使用初期进行良好的磨合及启动后适

当的预热来逐渐消除摩擦副的凹凸不平点。倘若由于多种原因引起汽缸的密封不良时,会引起压缩压力下降和燃烧气体的窜漏,高压高温气体将穿过缸壁与活塞环之间的微小空隙,由此而引起的故障是破坏了活塞环与缸壁之间的所必需的油膜,以致形成了金属之间直接接触的干磨擦状态,从而导致了因干磨擦而烧伤的拉伤活塞、活塞环和汽缸,使发动机产生异常磨损。泄漏的高温气体窜入曲轴箱使机油变质和产生硬质油泥,使活塞环发生粘着等故障。由此看来,确保活塞环在汽缸内的气密性关重要,来不得任何的泄漏。
二、控制机油
活塞环是在高负荷下和高温气氛中沿缸壁来回滑动的。为了更好地发挥其功能,既要有少量的机油润滑汽缸和活塞,又必然适当地刮掉附着在缸壁上多余的机油,防止其上窜以保持机油消耗量适中。
大家知道,四冲程发动机在进气行程中,燃烧室内的压力低于曲轴箱内的压力,由于这种压差起着一种泵油作用,所以机油通过活塞环、活塞和汽缸之间微小间隙而被吸入燃烧室,导致因窜机油而使机油消耗量大增。尤其在发动机怠速情况下,节气门基本处于关闭状态,汽缸内负压较大时,这种现象更趋严重。为了控制机油上窜,一般都将活塞上第二道气环外圆制成锥面。锥面环既能在活塞上行时的滑动面上布下油膜,又能在活塞环下行时有效的刮去缸壁下端多余机油,真可谓一举两得。为了更加有效地将飞溅至汽缸壁下部的机油刮净,又在活塞第二道气环的下部增加一道钢片组合式刮油环。这种环的特点仅在于其接触压力高,而且由于上下刮片能够分别动作,即使对于正圆爌较差的汽缸来说,也具有良好的适应性。更重要的是每个

活塞环的材料

第二章活塞环得材料 活塞环材料品种繁多、性能各异。选择活塞环得材料要考虑其使用条件、性能要求与环别等因素。一般说内燃机活塞环材料应满足下列要求; 1在高温下具有足够高得机械强度; 2 耐磨且摩擦系数小; 3 不易产生粘着,容易磨合; 4 加工方便,价格便宜。 这样,就要求活塞环材料应具有一定得强度、硬度、弹性、耐磨性(包括贮油性)、耐蚀性、热稳定性与工艺性等。目前,活塞环材料主要就是铸铁,随着发动机得强化,出现了从灰铸铁过渡到可锻铸铁与球墨铸铁以及钢材得趋向。常用得材料与性能见表2-1。 表2-1 活塞环常用材料及性能 材料硬度弹性模量 ㎏/mm2 许用应力(㎏) 推荐使用范围工作应力安装应力 灰铸铁 合金铸铁亚共晶铸铁 球墨铸铁 碳钢 马氏体不锈钢奥氏体不锈钢HRB 95~106 HRB 98~108 HRB 98~108 HRB 100~110 HR30N68~72 HRC 38~44 HR30N 59~67 95000 95000 11000 15500 20000 20000 20000 25 25 28 40 50 50 50 50 55 80 100 100 压缩环油环 压缩环油环 压缩环油环 IST IST OIL刮片环 IST 钢带衬环 活塞环得材料主要就是灰铸铁、合金铸铁与球墨铸铁,其材料得成份与性能: 1 灰铸铁:其化学成份按活塞环尺寸大小、铸造方法而变化。含C:3、5-3、75% Si:2、2-2、75% Mn:0、6-0、8% P:0、3-0、8% S:小于0、10%。含少量铬、钼或钒等合金元素,其性能、抗弯强度30㎏/㎝2以上,硬度HRB94-107,弹性系数8000-11000㎏/mm2弹力衰减率(300℃×2小时)在10%以下。 2 合金铸铁:为了改进铸铁得基体组织,在铁水中另加铬、钛、钨、钒、铜、镍等元素即为合金铸铁。其硬度比灰铸铁高、耐热性好、弹力衰退小等优点。 3 球墨铸铁:就是将超共晶组织铁水,经镁、铈或钙处理而制成,主要优点就是抗弯强度高达80-120㎏/mm2,比普通铸铁高一倍以上。弹性系数高达15000-17000㎏/mm2,受冲击不易破环。 活塞环材料之所以以铸铁为主,主要就是因铸铁中含有石墨就是优良得固体润滑剂,当活塞环处于临界摩擦或干摩擦得状态下,铸铁材料就显示出其优越得自身润滑性能。 如摩擦或润滑问题,能充分解决得话,钢材也可以用来制造活塞环,近年来还发展半可锻铸铁材料。 2、1 活塞环得一般技术要求 1 化学成分与金相 活塞环广泛使用各种牌号得铸铁。材质就是活塞环机械性能与使用寿命得基础,因此在规定范围内合理调整材料成分比例、严格控制造型与浇铸工艺来确保活塞环具有符合设计要求得最佳金相组织。 2 热处理 采用适当得热处理方法,以调整活塞环得金相组织及消除加工应力。 3 刚度 活塞环就是一个刚度差得弹性零件,加工时必须合理安排工艺流程、注意装夹方法,以保证加工时工件具有足够得刚度,达到尺寸、形状与粗糙度要求。 许用剪应力200㎏/mm2

动环EISU基本知识

动环EISU基础知识 目录 1、EISU简介 2、EISU主要功能 3、EISU工作原理 4、单板介绍 5、外部接口 6、软件使用 7、系统图 EISU简介 ZXM10 EISU(Enhanced Intelligent Supervision Unit)增强智能型采集单元为嵌入式微处理器系统。它可以实现对各种基站动力设备和环境监测信号的实时监测和报警处理,并根据应用需求做出相应的控制。同时,ZXM10 EISU具备有对下行基站的组网能力,可以有效地利用基站的通信资源进行组网。

EISU主要功能 1 ZXM10 EISU在基本配置下可以提供12路通用AI/DI测量通道、2路通用DI测量通道、4路DO输出通道,完成非智能设备的数据采集和控制;内置门禁控制器功能;可以配置扩展采集单元,增加8路通用AI/DI测量通道、2路通用DI测量通道和4路DO输出接口。 2 具备专用的常用传感器接口,可以接入1路数字温度传感器、2路蓄电池总电压、1路烟雾传感器; 3 提供多个智能设备协议解析接口,完成智能设备的数据采集和控制;(4~6个,可接入20个智能设备); 4 具备图片监控功能,提供2路USB摄像头接口,完成图片数据的处理、存储和转发;图片分辨率可达到640×480 5 提供多种通信接口和组网方式,传输接口包括异步串口、以太网接口和E1接口,可以提供公务信道、网络、2M保护环、2M链、单独2M、2M抽时隙等组网方式;

6 提供本地存储功能。在主通讯中断后,可以在本地存储15天的数据。 7 提供运行程序和智能设备通讯协议程序远程下载和本地下载功能; 8 具备设备自诊断、故障自定位功能; 9 提供实时时钟的管理功能。 10 可配置扩展传输板,提供透明以太网接口; 11 提供WEB浏览功能。 12 支持智能设备中心解析功能; 13 支持空调节能应用。 工作原理 ZXM10 EISU增强智能型采集单元为嵌入式微处理器系统,集模拟量输入、开关量输出、电池采集、E1 接口到IP 接口转换、传输等功能于一体。它可以实现对各种基站动力设备和环境监测信号的实时监测、报警处理,并根据应用要求做出相应的继电器接点输出控制。 EISU不断采集各种基站动力设备和环境的监测信号,并将监测信号处理成可供传输通道传送的实时监测和告警信息。一般情况下,EISU不主动上报实时数据和告警信息,只有在通信机询问该模块时才上报这些实时数据和告警信息。 EISU单板介绍 EISU的单板包括EISU子卡(EISUP板)、EISU主板(EISUM)、EISU采集扩展板(EISUS板)、ETN主板(ETNM)和EISU指示灯板(EISUL)

活塞环与缸套的润滑

活塞环与缸套的润滑 1.内燃机润滑的特殊性 内燃机与其它机械相比,润滑的特殊性有: ①快速往返运动; ②小型、轻量,为达到大的输出功率且滑动面负荷大; ③滑动面温度高,由于输出功率的限制,润滑油要有耐热性; ④受温度分布变化,热应力限制; ⑤缸壁供油过多油耗过大; ⑥尽量减少摩擦面高温燃气产生有害成分含量的排放。 2.润滑摩擦及磨损机构 2.1固体摩擦图1固体磨擦面的实际接触面积 图1为固体摩擦面的实际接触情况,它是凸出部分相互接触,在接触面A处造成非常大的应力,开始摩擦付双方可能产生塑性变形,当应力大时也可能折断,当温度升高至低熔点一方的熔点时,两面会产生胶粘。……结果是固体摩擦刚一出现,虽然速度,载荷一定(没有变化),摩擦系数发生了变化。……铸铁材料石墨多孔性可含油,熔点高的材料耐磨性高。 图1固体摩擦面的实际接触面积 2.2滑动面的液体润滑 W正压力(载荷);μ油黏度 P油压; U相对运动速度 H1油膜厚;d W正压力负荷 F 摩擦力 图3强力附着在金属面上脂肪饱和酸的分子与极性原子团的模型 2.3边界润滑(略) 2.4实际摩擦状态

图4为各种摩擦状态的摩擦系数,图中W正压力,μ 粘度,U相对运动速度。图中曲线1-2:液体润滑摩擦状 态,摩擦系数低。直线3-4:摩擦付之间润滑油流失。但 摩擦面上吸附一层极性原子团COOH1,其上粘有饱和脂肪 酸,此时摩擦系数介于液体摩擦与固体干摩擦之间,是 由液体润滑摩擦变成固体干摩擦的中间边界摩擦状态。 直线5-6;固体干摩擦,摩擦面在边界摩擦状态下,由 于油膜的破坏,继续摩擦造成摩擦力增大,温度升高, 使得极性原子团COOH1,及粘有饱和脂肪酸脱离摩擦面, 完全形成干摩擦,使摩擦付双方金属直接接触,摩擦系 数变成摩擦付的最大值。 3.活塞环油膜的形成 3.1活塞环润滑的特殊性 图3.5活塞环动面磨合过程(轴向放大)图3.6作用于环的力 图3.5活塞环滑动面磨合过程,图3.6作用于环的力。 3.2滑动面的形成。 e = B′/1000 式中e塌边量(译者注;指磨合后波峰被磨去部分出现的凸度高,参见图3.5磨合完全部分,e指图中尺寸c)B′实际幅度(译注:此处不宜译为厚度,以免与径向厚度相混,参见图3.5,图3.6指测量处实际磨合的轴向环高尺寸,图3.5中B′=3mm。) 环与缸套滑动接触面中央的最小油膜厚h2,楔形油两端进出口处油膜厚h1。h1/h2=2 3.3滑动面的做用力 作用在活塞环上的力参见图6

活塞环教学设计方案

教学设计方案

步骤导入新课 教师活动 教师手拿一活塞连杆组:上节课我们讲了 活塞的结构和作用,大家有没有发现我手 上拿的这个活塞它的顶部有三道环,这三 道环在这里起什么作用了? 学生活动 思考原因。 教学意图时间 激发学生学习兴2分钟 趣 。 提问部分学生思考的结果 针对是学生的一些意见,进行引导:’ 大家 想,燃料在汽缸里的燃烧应该是在怎样的一 个空间里?(封闭)也即是说不能有缝隙, 不然就有可能漏气。但是活塞可以在汽缸里 做上下往复运动,说明活塞与汽缸壁之间应 该有间隙,不然活塞就不可能在汽缸里自由 的运动,就可能卡死在汽缸里。但是这样一 来,就会造成部分混合气,从汽缸与缸壁间 的缝隙窜入曲轴箱,造成密圭寸不严,对发 动机的性能造成影响,大家想想是不是这样 了? 那么怎么解决这个问题了? 总结出活塞环的作用 教师展示活塞连杆组提问:大家察前两道 环和第三道环的结构是否相同,作用是否 也相同了? 再次引出问题,活塞能在汽缸里做往复运 动,说明缸壁上有机油,但机油过多进入 燃烧室会对发动机性能造成影响,第三道 环上有孔,引出油环的作用,并在黑板上 写板书 发言:试着说说自 己的理解活塞环的 作用 学生再次看看活 塞环的结构和位 置,再次思考 认真听讲,对比下自 己刚才的分析对不对 观察这三道环,思考 问题 认真听讲记录和 在课本上勾画。 让学生谈谈自己的 认识,使学生在接 下来的课中有更深 的认识,同时了解学 生思考情况。 对学生进行引导, 激发学生的探究精 神和思维能力,一 步步得出结论 让学生总结自己的 思维方式,分析问 题的能力 进一步细化,分别 得出气环和由环的 作用 让学生记住这个重 要的知识点 3分钟

活塞环岸的设计及校核

活塞环岸的设计及基本校核 1. 基本参数 汽油发动机缸径mm D 76=,行程mm S 5.82=,气缸高mm l 204=;活塞的压缩高度mm H 281=,火力岸高度mm h 5=;最高爆发压力bar p z 80=;发动的最高功率L KW P m 81=。 2. 环岸的设计 2.1第一环位置 根据活塞环的布置确定活塞压缩高度时,首先必须定出第一环的位置。希望火力高度h 尽可能小,但h 过小会使第一环温度过高,导致活塞环弹性松驰、粘结等故障。由所给的参数可知道mm h 5=. 2.2环岸高度 为减小活塞高度,活塞环槽轴向高度b 应尽可能小,这样活塞环惯性力也小,会减轻对环槽侧面冲击,有助于提高环槽耐久性。由《内燃机设计》可知,一般气环高3~2=b 毫米,油环高6~4=b 毫米。但随着现代制环工艺的发殿,一般活塞环槽轴向高度b 可以取得更小一些。所以,取mm b 2.11=,mm b 2.12=,mm b 5.23=。 环岸的高度c 应保证在气压力造成的负荷下不会破坏。而第一环岸所受的负荷、温度较第二环岸的都较高。因此,环岸高度一般第一环最大,其它较小。实际发动机的统计表明,1211)2~1(,)5.2~5.1(b c b c ==。所以取mm c mm c mm c 1,5.2,5321===。 2.3活塞的环数 活塞环数对活塞头部的高度1H 有很大影响。目前高速汽油机一般用2~3道气环和1道油环。事实上只要活塞环工作正常,2道气环已的足够的密封作用。所以,我们采用2道气环和1道油环。 2.4环带断面与环槽尺寸 对于活塞头部热流情况分析,说明应保证高热负荷活塞的环带有足够的壁厚' δ,使导热良好,不让热量过多地集中在最高一环,其平均值汽油机为'')0.2~5.1(t =δ。取

活塞环表面处理

活塞环表面处理 1.环表面处理的变迁 镀硬铬环已使用半个多世纪,它与非表面处理比较,其耐磨性、耐熔着磨损性有了飞跃的改善。现在活塞环生产中有60%以上的经镀硬铬的表面处理。 火焰喷涂活塞环始于1960年代,当内燃机高功率化,活塞环镀硬铬开始不适应,热负荷高的内燃机从1970年代开始用喷镀环。钼、合金、碳化物等喷涂应用于活塞环。 1980年代初开发了氮化,80年代中期开发了复合分散镀。80年代后期开发了PVD,TiN涂层用于活塞环,90年开始开发PVD CrN涂层,PVD陶瓷涂覆表面处理新技术、期待今后更大的发展。 2.电镀 2.1镀硬铬 在活塞环的表面处理中,镀硬铬为历史最长久,镀层厚度5-300μm比装饰铬0.1-5.0μm厚得多,硬铬镀层特点为: ①Hv800-1000耐磨。 ②摩擦系数低。 ③熔点1890℃耐熔着磨损性好。 ④耐蚀性好,耐腐蚀磨损性强。 图7.1为铸铁镀铬顶环与铸铁非表面处理的顶环和缸套匹配使用,顶环闭合间隙增大值和缸套磨损量比较,从图7.1看出镀硬铬环有优良的 图7.1镀硬铬环的影响图7.2环的镀铬处理 耐磨性和对缸套好的减磨性。 图7.2为镀铬处理,环在镀槽中的放置和处理方法。图7.3 为镀铬环断面的金相组织。镀铬废水处理应控制有害6价铬的含量。

图7.3镀铬环断面的金相组织 2.2镍基复合分散镀 表7.1分散镀的基质与分散微粒 复合分散镀是用固体微粒(分散粒子)与基质金属形成的复合镀层。 选用分散粒子使镀层具有耐磨,耐蚀,自润滑等优良性能。分散粒子有氮化物、碳化物、氧化物、氟化物、硅化物等见表7.1表7.2。镍基分散镀的细颗粒,Si3N4、Sic 、TiC 、TiC 、Cr3C2相比较可看出Si3N4有优良的抗熔着磨损性能,TiN、 TiC 、Si3N4有良好的耐磨性能,它们都比镀铬层优越。

活塞环热处理工艺

活塞环热处理工艺 随着现代发动机向高转速、高负荷、低排放方向发展,在对活塞环的材料提出越来越高要求的同时,对表面处理也提出了更高的要求,活塞环材料的时效、调质、气体氮化、离子氮化及渗陶处理工艺应用越来越广。 活塞环是发动机的核心零部件之一,其在发动机中的主要作用在于密封、传热、控油润滑和支承,因此,活塞环材料应具有适合的强度、硬度、弹性和抗疲惫性能,优良的耐磨性、耐热和耐蚀性能。随着现代发动机向高转速、高负荷、低排放方向发展,在对活塞环的材料提出越来越高要求的同时,对表面处理也提出了更高的要求,越来越多的热处理新技术已经或者正在被应用于活塞环的热处理,如离子氮化,表面渗陶、纳米技术等。 我公司活塞环的热处理从对普通合金铸铁活塞环的时效往应力、球墨铸铁活塞环的调质,多元合金铸铁活塞环的调质发展到钢环的气体氮化、铸铁环的离子氮化及活塞环表面浸渗陶瓷复合处理。本文主要就这些活塞环的热处理工艺作扼要介绍。 时效往应力处理 活塞环属于薄壁件,除铸造内应力外,在金加工过程中还存在加工应力。而活塞环产品一般对挠曲度要求不大于0.06mm,如不经过期效处理,这一指标靠加工控制是很难达到的,有时即使大大降低加工切屑速度也无法满足要求。而假如使用时效处理,在不降低生产效率的基础上还能消除加工过程中产生的环体挠曲变形,确保环体挠曲度符合技术要求。 固然如此,因活塞环环体较薄,在时效过程中,活塞环开口部位会由于整个环体应力开释而出现收缩现象,如收缩过大,则会造成成品环漏光等缺陷。在生产过程中,我们通过大量的对比试验,针对不同材料的环体采用不同的时效工艺,既消除了活塞环的挠曲题目,又避免了活塞环的漏光缺陷,确保了产品的质量。本公司采用的时效工艺为:500℃ 580℃×1.5 2.5h。 退火、调质处理 1、退火处理 为确保活塞环铸造毛坯的内在质量,球铁环和多元合金铸铁环多采用单体双片铸造工艺进行生产。毛坯铸态组织硬度较高,割片加工难度较大,需对铸态毛坯进行退火处理。

相关文档
最新文档