时间序列分解法讲解

时间序列分解法讲解
时间序列分解法讲解

什么是时间序列分解法

时间序列分解法是数年来一直非常有用的方法,这种方法包括谱分析、时间序列分析和傅立叶级数分析等。

时间序列分解模型

时间序列y可以表示为以上四个因素的函数,即:

Y

= f(T t,S t,C t,I t)

t

时间序列分解的方法有很多,较常用的模型有加法模型和乘法模型。

加法模型为:Y t = T t + S t + C t + I t

乘法模型为:

时间序列的分解方法

(1)运用移动平均法剔除长期趋势和周期变化,得到序列TC。然后再用按月(季)平均法求出季节指数S。

(2)做散点图,选择适合的曲线模型拟合序列的长期趋势,得到长期趋势T。

(3)计算周期因素C。用序列TC除以T即可得到周期变动因素C。

(4)将时间序列的T、S、C分解出来后,剩余的即为不规则变动,即:

时间序列的模式

时间序列一般包括四类因素,长期趋势因素、季节变动因素、循环变动因素和不规则变动因素。四种因素的组合形式一般有以下几类, 其中记Xt为时间序列的全变动;Tt为长期趋势;St为季节变动;Ct为循环变动;It为不规则变动,它总是存在着的。

1)乘法模式,其中,

a) X t与T t有相同的量纲,S t为季节指数,C t为循环指数,两者皆为比例数;

b)

c) I t是独立随机变量序列,服从正态分布。

2)加法模式X t = T t + S t + C t + I t

这种形式要求满足条件:

a) X t,T t,S t,C t,I t均有相同的量纲;

b) ,k为季节性周期长度;

c) I t是独立随机变量序列,服从正态分布。

3) 混合模式

a) X t与T t,C t,I t有相同的量纲,St是季节指数,为比例数;

b)

c) I t是独立随机变量序列,服从正态分布。

时间序列分解法试图从时间序列中区分出这四种潜在的因素,特别是长期趋势因素(T)、季节变动因素(S)和循环变动因素(C)。显然,并非每一个预测对象中都存在着T、S、C这三种趋势,可能是其中的一种或两种。一个具体的时间序列究竟由哪几类变动组合,采取哪种组合形式,应根据所掌握的资料、时间序列及研究目的来确定。

时间序列分解法各因素的确定

分解法的基础是容易理解而且直观的。不过最重要的是它为预测和检验提供了独特和非常有用的资料。我们用一个例题来说明各个因素分解的步骤。

设有某产品十二年(91年-02年)的季度销售额数据。见表4.3中的第二列,共有48个数据。如果将这些数据画在图上(图.1),可以看出有明显的长期趋势和季节变动。利用分解法,假设这48个数据可表示为

。这里X t是这些原始数据,通过分析原始数据X来确定T、C、S(剩下的为I)。

1.移动平均数

把最初的四个数据(表示91年4个季度的值)相加求平均值得到(X1+ X2+ X

+ X4) / 4 = 2741.334。这个数是没有季节性的,而且随机性因素也很小甚至3

没有。因为随机性围绕中间值波动,将四个数相加,正负波动在一定程度上相互抵消了,所以可认为其中已无随机性。同样将第二个至第五个数据相加平均,也不包含季节性,而且其随机性因素也很小。如此我们可得到45个数据。它们不包含季节性,而且随机性因素很小甚至没有。也就是说它们只包括长期趋势和循环变动两部分(T×C)。这45个数据组成的序列我们称之为移动平均数序列,用MA来表示,MA=T×C。

2.季节性

由于(1)

因此将观察值除以移动平均数得到的比率值就只包含季节性和随机性,从而这些比率包括了确定季节性因素所需要的信息。如果某个比率的值>100,意味着实际值X比移动平均数(T×C)要大。由于X中包含季节性和随机性,因而当比率值大于100时,就意味着这个季度的季节性和随机性高于平均数。反之,如果比率小于100,则表示季节性和随机性低于平均数。

表.2 某产品48个季度的销售数据及数据分解

季度观察值Xt 移动平均值T×C S×I比率%长期趋势T 循环变动C%

1 3017.60 ————2774.81 ——

2 3043.54 ————2813.77 ——

3 2094.35 2741.33

4 76.339 2852.73 96.10

4 2809.84 2805.632 100.150 2891.69 97.02

5 3274.80 2835.569 115.490 2930.65 96.76

6 3163.28 2840.558 111.361 2969.61 95.65

7 2114.31 2894.240 73.052 3008.57 96.20

8 3024.57 2907.411 104.030 3047.53 95.40

9 3327.48 2989.961 111.288 3086.49 96.87

10 3493.48 3071.367 113.744 3125.45 98.27

11 3439.93 3187.921 76.537 3164.41 100.74

12 3490.79 3277.322 106.514 3203.37 102.31

13 3685.08 3319.258 111.021 3242.33 102.37

14 3661.23 3303.883 110.816 3281.29 100.69

15 2378.43 3296.073 72.159 3320.25 99.27

16 3459.55 3337.209 103.666 3359.21 99.34

17 3849.63 3347.198 115.010 3398.17 98.50

18 3701.18 3413.185 108.438 3437.13 99.30

19 2642.38 3444.678 76.706 3476.09 99.10

20 3585.52 3501.936 102.387 3515.05 99.63

21 4078.66 3553.405 114.782 3554.01 99.98

22 3907.06 3597.425 108.607 3592.97 100.12

23 2818.46 3723.421 75.695 3631.93 102.52

24 4089.50 3788.657 107.941 3670.89 103.21

25 4339.61 3849.043 112.745 3709.85 103.75

26 4148.60 3874.540 107.101 3748.81 103.35

27 2976.45 3872.325 75.315 3787.77 102.23

28 4084.64 3848.029 106.149 3826.73 100.56

29 4242.42 3810.274 111.342 3865.69 98.57

30 3997.58 3801.414 105.160 3904.65 97.36

31 2881.01 3789.311 76.030 3943.61 96.09

32 4036.23 3818.788 105.694 3982.57 95.89

33 4360.33 3909.526 111.531 4021.53 97.21

34 4360.53 3982.320 109.497 4060.49 98.07

35 3172.18 4029.203 78.730 4099.45 98.29

36 4223.76 4111.740 102.724 4138.41 99.36

37 4690.48 4195.228 111.805 4177.37 100.43

38 4694.48 4237.770 110.777 4216.33 100.51

39 3342.35 4326.237 77.258 4255.29 101.67

40 4577.63 4394.982 104.156 4294.25 102.35

41 4965.46 4477.872 110.889 4333.21 103.34

42 5026.05 4509.818 111.447 4372.17 103.15

43 3470.14 4496.895 77.167 4411.13 101.94

44 4525.94 4570.210 99.031 4450.09 102.70

由式(1)可知,如果能将S×I中的随机性部分去掉,则就得到了季节性指数。要做到这一点,只需注意到随机性指的是偶然性、没有一定模式、围绕中间值0上下波动。因此通过平均就能去掉随机性的影响。将表4.3中“S×I比率”这一栏列成表4.6的形式,将各年同一季度的数据放在同一列之中,求相同各季度的平均值,得第一至第四季度的平均数分别为112.72,109.88,76.28,103.86。由于从1991年至2002年各年中相同季度的数值加以平均消除了大部分随机性,因此这四个平均数仅仅代表了季节性。用代数式表示即为

(2)

其中中上面的横线表示季节平均。

表3 产品销售额的季节性指数

1994 111.02 110.82 72.16 103.67

1995 115.01 108.44 76.71 102.39

1996 114.78 108.61 75.70 107.94

1997 112.75 107.10 75.32 106.15

1998 111.34 105.16 76.03 105.69

1999 111.53 109.50 78.73 102.72

2000 111.81 110.78 77.26 104.16

2001 110.89 111.45 77.17 99.03

2002 111.84 111.78 80.26 —

平均数112.72 109.88 76.28 103.86

修正平均数 111.95 109.13 75.76 103.16

表3中的四个平均值相加的和为402.74,它不等于400。为了使各季节指数的平均数等于100,必须进行简单的调整。如果400被合计数402.74来除,结果是0.9932。以0.9932乘以各季节的平均数得到111.95,109.13,75.76,103.16等(见表中最后一行)。现在这四个季节指数的和为400,它们的含义就更加清楚了,例如第二季度的109.13就表示第二季度比全年平均数高出9.13%,第三季度的75.76表示第三季度比全年低24.24%。

3.长期趋势和循环变动

前面介绍的公式MA=T×C表示了一组循环变动—长期趋势数值。在多数情况下这样已能满足要求,但有时仍需要把循环变动和长期趋势分离开来。为了做到这一点,我们只需确定一种能最好的描述数据长期趋势的类型。例如长期趋势可以是线性的、二次的、S曲线或其它。对于本例,如果将数据在图上画出来,可以看出线性的长期趋势是比较合适的:

T

= a + bt(.3)

t

t = 1,2,3…48。用最小二乘法可求得模型的最佳拟合参数为:

a = 2735.85,

b = 38.96

因此趋势直线方程为

T_t=2735.85+38.96t

如图4所示。用此方程即可求得每个季度的趋势值。如第20季度(2000年的第四季度)趋势值为

T_{20}=a+bt=3515.05

由于MA=T×C,因此

MA/T=(T\times C)/T=C (4)

应用上式即可求得循环变动值C。如第45季度的循环变动值C_{45}等于表3中的移动平均数除以T_{45},即

如同季节指数,循环指数也采取百分比率。其值大于100的表明该季度经济活动水平高于所有季度的平均值,而小于100的循环指数所表明的情况则刚好相反。

循环因子比较复杂,且其变动周期较长,因而在短期预测中可以忽略不计,或将其归入到趋势变化之中(称为趋势—循环因子)。人们更关心的是趋势和季节的识别。

至此我们完成了对原始数据Xt的分解工作,其步骤总结如下:

1)用MA=T×C分析长期趋势和循环变动;

2)用分析季节性和随机性;

3)用分析季节性;

4)用趋势外推法中介绍的方法来分析长期趋势;

5)用MA / T = C分析循环变动。

总之,分解法提供了分析时间序列各种因素的手段,它使用简单,只需用加法、乘法和除法等简单代数运算即可,而且分解法非常直观,能给企业提供一定时期内的大量信息。

根据时间序列分解法进行预测

用分解法确定了季节指数、趋势值和循环指数之后,就可以根据上面总结的步骤进行预测了。我们对2003年第一季度(第49季度)进行预测。数据的基本关系式为

X=T×C×S×I

由于随机性无法直接进行预测,进行预测的关系式为:

X=T×C×S

于是,计算出第49季度的T49,C49,S49值即可求得第49季度的预测值。

表3中已得到第一季度的季节指数为111.95,由趋势方程求得

最后循环指数通常要根据判断估算出来,或者用某种方法预测得到。这里我们假定通过判断为:C49 = 98,于是

同样可以对第50、51季度进行预测。

时间序列分解法的进一步说明

1. 居中移动平均数

为了求得移动平均数MA,上面我们是将相邻的4个原始数据相加取平均得到一个数,这样在表4.5的第三列中就少了三个数据。于是产生了这样一个问题:最初的四个数据被平均时,它们的平均数应该置于何处?严格讲应该放在第二季度和第三季度的中间((1+4)/2=2.5,第2.5个季度)。其余数据取平均时也有类似的问题。但实际数据是表示各个季度而不是半个季度的,这里我们只好将平均数放在靠后半个季度的地方。假如对平均数再取平均的话就不会产生这样的问题了,因为如第一季度至第四季度的平均数2741.34是指第2.5季度,而第二季度至第五季度的平均数是指第 3.5季度,则它们的平均数就是指第3个季度((2.5+3.5)/2=3)。称如此的平均数为居中移动平均数,于是居中移动平均数比原始数据少四个(首尾各两个)。

现在,实际值除以居中移动平均值所得的比率(还是S×I)也可以用来计算季度指数,具体的与上面所述完全一样。这样求得的四个季度的季节指数分别为112.20,109.44,75.37,103.17,其和为400.18,非常接近于400,这是因为移动平均数居中的缘故。

2.分解法的改进

在上面所叙述的分解法基础上,我们也可作一些改进,如:

1)修正原始数据中工作日或营业日的差额。由于各个月度(或季度)的工作日是不尽相同的,这就会影响到销售额或别的所要预测的变量。因此首先必须对数据进行校正。如对月度数据的校正可通过原始数据乘以30对工作日的比率来进行,即将各月度的原始数据折算到工作日均为30天的统一情况。

2)利用统计方法来淘汰极值(即修改或舍去超出标准差的三倍范围的数值),在分解法实施之前先对数据进行预处理。

3)按上一节求得的季节性指数还可进一步改进,并进行动态的调整,因为实际上季节指数并不一定是一成不变的,它本身亦是一个变化的时间序列。

还应注意到用分解法进行预测时,循环因素的确定是最为困难的。如有什么秘诀的话,那就是应具备足够数量的历史数据,以使管理人员了解循环模式是从哪里开始重复的,必要时可用图表方法来帮助确定。由于循环模式可能会发生变化,按照管理人员的判断对循环模式作一些调整无疑是必要的。

在前面的两个子节中,我们是以周期为4的季度数据的一个例题来说明分解法的分解步骤和预测程序。对周期为12月度数据、周期为7的日常数据等其它情况,运用分解法的程序完全类似,在此不再举例讨论。

分解法能帮助解释历史数据为什么变化,能使管理人员分别预计各局部模式的变化。这些局部模式不仅能用以预测,而且也可用于管理之中,再加上它容易被管理人员所理解,因此分解法在直观上吸引了许多管理人员的注意,从而被大量的用于实际问题的预测。经过成千上万个时间序列的反复检验,分解法被证明其效率和准确性都是较高的。当然这种证明是经验的而非理论的,这也是它的主要缺点。它不能用统计的方法来检验,也不能建立置信区间。实际上,分解法仅适用于那些季节性较强的中期预测、短期预测,当预测目标受外界干扰较大时,其预测能力会明显减弱。

时间序列分解法案例分析

案例一:运用时间序列分解法进行销售预测

时间序列是由一个包括了4个部分的模型组合而成,即T、S、C、R。假定影响时间序列的这四个因素彼此相互作用、非独立,那么我们采用相乘的模型[4,P460],即Y,=T×C×S×R。该方法包括以下四个步骤:1.用4季度移动平均法确定季节性指数[4,P463]。其基本原理是用移动平均法来度量趋势和周期性组合(TC)。这种做法可以消除季节性和随机变动的影响,即S和R。做法如下:(1)计算时间序列中的4季度移动平均值(TC_1),例:(500+350+250+400)/

4=375。

(2)对4季度移动平均值再求其移动平均值的中点值(TC_2)[2],例:

(375+362.5/2=368.75)。

计算真实销售额(3)计算真实销售额(Y_1)与移动平均值(TC_2)的比率,这个比率实际上表示的季节性和随机变动综合作用的部分[2],即SR=Y/TC。

(4)把计算处的比率值按季度排列,例如

第一季度的SR值分别是:1.263、1.367、1.467、1.222、1.348;

第二季度的SR值分别是:1.037、0.762、0.812、0.853、0.879;

第三季度的SR值分别是:0.678、0.640、0.522、0.588、0.700;

第四季度的SR值分别是:1.003、1.067、1.206、1.275、1.116。

然后后按季度分别计算平均比率以便剔除随机变动(R)的影响,而该平均比率称为季节性因子(S_1)。例:对于第一季度的计算:

(1.263+1.367+1.467+1.222+1.348)/5=1.333 4。依次类推计算第二、三、四季度的s1分别得:1.33 4、0.908 6、0.625 6、1.153 4。(5)对季节性因子(S1)进行调整,调整后的季节性因子(用S2表示)。

例:第一季度的S2计算:1.333 40-0.005 25=1.328 15,其中0.00525=(1.333 4+0.908 6+0.625 6+1.153 4-4)/5。同样,第二、三、四季度的S2分别是:0.903 35、0.620 35、1.148 15。上述(1)、(2)、(3)、(4)、(5)的计算结果如下表。

2.从原始时间序列中剔除季节性变化影响,即进行非季节性处理[2]。从附图中观测销售额与时期是否有线性变化趋势。通过观测发现:1994~1995年销售

额有下降的趋势,1996-1999年销售额有上升的趋势。但是,前两年下降的趋势不明显,后四年一直是上升趋势。因此,可以近似看作销售额(Y)与时间(t)有线性关系,并依据非季节性数据作线性回归方程:Y2 = a + b t其中

将表3中的数据代入上述公式得:Y=149.673+20.882t (3)

3.将t=25、26、27、28代人第二步求得的回归方程(3),并乘上相应的季节性因子S2,则得出2000年每一季度的销售额预测值。即:Y25 = 892.149、Y26 = 625.665、Y_27=442.612、Y28 = 843.1664,在附图上作出上述回归方程(3)的图形。

采用时间序列分解法时,必须观察时间t与非季节性数据Y_2的趋势关系。若t与Y2的趋势变化是近似于线性的,则可用线性回归方程预测;若Y2对t来说是呈几何级数增长,则宜用指数曲线回归方程;若是其他变化,必须采用相应的其他回归方程。

采用线性回归方程来预测,但是由于前两年的数值是下降的,后四年的数值是上升的,因此,使得该回归方程的拟合度不是很好。但是,这种影响程度会随着t的增加而减弱,最终不会影响预测的精确度,因为总趋势是上升的。,采用时间序列分解法预测时,由于前两年的数值有下降的趋势,而拟合的是上升趋势的线性回归方程,因此,用该方法预测短期(1-2年)的销售额不准确,通过附图可以看出。

季节性时间序列分析方法

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847) 对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。但是

这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W ΛΛ2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有 t t d a B e B )()(Θ=?φ (2) 式中,t a 为白噪声;n n B B B B ???φ----=Λ22111)(;m m B B B B θθθ----=ΘΛ22111)(。 在(1)式两端同乘d B ?)(φ,可得: t S t d S t D S d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=?=??=?φφφ (3) 注:(1)这里t D S S X B U ?)(表示不同周期的同一周期点上的相关关系;t d X B ?)(φ则表示同一周期内不同周期点上的相关关系。二者的结合就能同时刻划两个因素的作用,仿佛是显像管中的电子扫

时间序列季节性分析spss

表1 为某公司连续144个月的月度销售量记录,变量为sales。试用专家模型、ARIMA模型和季节性分解模型分析此数据。

选定样本期间为1978年9月至1990年5月。按时间顺序分别设为1至141。 一、画出趋势图,粗略判断一下数据的变动特点。 具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选入“Variables”列表框,时间变量date 选入“Time Axis Labels”,单击“OK”按钮,则生成如图2 所示的sales序列。 图1 “Sequence Chart”对话框

从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加而加大。 二、模型的估计 (一)、季节性分解模型 根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。 1、定义日期 具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的日期格式,在对话框的右侧定义数据的起始年份、月份。定义完毕后,单击“OK”按钮,在数据集中生成日期变量。 图3 “Define Date”对话框 2、季节分解 具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开“Seasonal Decomposition”对话框,将待分析的序列变量名选入“Variable”列表框。在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

spss教程第四章-- 时间序列分析

第四章时间序列分析 由于反映社会经济现象的大多数数据是按照时间顺序记录的,所以时间序列分析是研究社会经济现象的指标随时间变化的统计规律性的统计方法。.为了研究事物在不同时间的发展状况,就要分析其随时间的推移的发展趋势,预测事物在未来时间的数量变化。因此学习时间序列分析方法是非常必要的。 本章主要内容: 1. 时间序列的线图,自相关图和偏自关系图; 2. SPSS 软件的时间序列的分析方法?季节变动分析。 §4.1 实验准备工作 §4.1.1 根据时间数据定义时间序列 对于一组示定义时间的时间序列数据,可以通过数据窗口的Date菜单操作,得到相应时间的时间序列。定义时间序列的具体操作方法是: 将数据按时间顺序排列,然后单击Date →Define Dates打开Define Dates对话框,如图4.1所示。从左框中选择合适的时间表示方法,并且在右边时间框内定义起始点后点击OK,可以在数据库中增加时间数列。 图4.1 产生时间序列对话框 §4.1.2 绘制时间序列线图和自相关图 一、线图 线图用来反映时间序列随时间的推移的变化趋势和变化规律。下面通过例题说明线图的制作。 例题4.1:表4.1中显示的是某地1979至1982年度的汗衫背心的零售量数据。

试根据这些的数据对汗衫背心零售量进行季节分析。(参考文献[2]) 表4.1 某地背心汗衫零售量一览表单位:万件 解:根据表4.1的数据,建立数据文件SY-11(零售量),并对数据定义相应的时间值,使数据成为时间序列。为了分析时间序列,需要先绘制线图直观地反映时间序列的变化趋势和变化规律。具体操作如下: 1. 在数据编辑窗口单击Graphs Line,打开Line Charts对话框如图4. 2.。从中选择Simple单线图,从Date in Chart Are 栏中选择Values of individual cases,即输出的线图中横坐标显示变量中按照时间顺序排列的个体序列号,纵坐标显示时间序列的变量数据。 图4.2 Line Charts对话框 2. 单击Define,打开对话框如图4.4所示。选择分析变量进入Line Represents,,在Category Labels 类别标签(横坐标)中选择Case number数据个数(或变量

spss时间序列作业

s p s s时间序列作业标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

时间序列作业 一、利用软件计算 1、 1974年——1993年间美国历年从欧佩克进口的石油量(以百万桶为单位),数据见文件:美国历年从欧佩克进口的石油量。 A、请计算从欧佩克年石油进口量的3点移动平均值。 B、利用平滑常数α=,计算从欧佩克年石油进口量的指数平滑序列。 C、用移动平均法预测1995年从欧佩克进口的石油量。 D、用α=的指数平滑法预测1995年从欧佩克进口的石油量。 A由EXCEL运行知: B由EXCEL运行知:

C由EXCEL进行预测:

1995年的预测为1992-1994的平均数,为1286. D用α=的指数平滑法预测1995年从欧佩克进口的石油量。 2、 年间美国城市间长途汽车运输公司所创造的总收入,数据见文件:长途汽车运输公司总收入。 A、试对总收入提出一个考虑长期趋势的回归模型。 利用EXCEL做移动平均: B、画出数据的散布图,你能否识别出这一时间序列中的趋势成份。 C、将A中的模型与数据拟合。这个模型对预测收入是否合适 D、预测1993年城市间长途汽车公司的总收入。求出两个95%预测区间。3、 两个城市间的旅馆和汽车旅馆每月的客房出租率数据,令Y t=t月凤凰城的客房出租率。数据见文件: A、对E(Y t)提出一个模型,考虑月份数据可能存在的季节变差。(提示: 考虑带虚拟变量的模型。全年12个月除选做基础水平的月份外,其余各月每月有一个虚拟变量。) B、将A中模型与数据拟合。 C、检验假设:每个月的虚拟变量都是客房出租率的有用的预测变量。(提 示:进行F检验。) D、利用B中拟合过的最小二乘模型以95%预测区间预测凤凰城第三年一月 份的客房出租率。 第一年客房出租率第二年客房出租率 月亚特兰大凤凰城月亚特兰大凤凰城

第六章时间序列分析

第六章时间序列分析 重点: 1、增长量分析、发展水平及增长量 2、增长率分析、发展速度及增长速度 3、时间数列影响因素、长期趋势分析方法 难点: 1、增长量与增长速度 2、长期趋势与季节变动分析 第一节时间序列的分析指标 知识点一:时间序列的含义 时间序列是指经济现象按时间顺序排列形成的序列。这种数据称为时间序列数据。 时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。 时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。表现了现象在时间上的动态变化,故又称为动态数列。 一个完整的时间数列包含两个基本要素: 一是被研究现象或指标所属的时间; 另一个是该现象或指标在此时间坐标下的指标值。 同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。 研究时间数列的意义:了解与预测。 [例题·单选题]下列数列中哪一个属于时间数列(). a.学生按学习成绩分组形成的数列 b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列 c.工业企业按产值高低形成的数列 d.降水量按时间先后顺序排列形成的数列 答案:d 解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。 知识点二:增长量分析(水平分析)

一.发展水平 发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用y t (t=1,2,3,…,n) 。 在绝对数时间数列中,发展水平就是绝对数; 在相对数时间数列中,发展水平就是相对数或平均数。 几个概念:期初水平y 0,期末水平y t ,期间水平(y 1 ,y 2 ,….y n-1 ); 报告期水平(研究时期水平),基期水平(作为对比基础的水平)。 二.增长量 增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为: 增长量=报告期水平-基期水平 根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。 1.逐期增长量:是报告期水平与前一期水平之差,用公式表示为: △ = y n - y n-1 (i=1,2,…,n) 2.累计增长量:是报告期水平与某一固定时期水平(通常是时间序列最初水平)之差,用公式表示为: △ = y n - y (i=1,2,…,n)(i=1,2,…,n) 二者关系:逐期增长量之和=累计增长量 3.平均增长量 平均增长量是时间序列中的逐期增长量的序时平均数,它表明现象在一定时段内平均每期增加(减少)的数量。 一般用累计增长量除以增长的时期数目计算。 (y n - y )/n [例题·单选题]某社会经济现象在一定时期内平均每期增长的绝对数量是()。 a.逐期增长量 b.累计增长量 c.平均增长量 d.增长速度 答案:c 解析:平均每期增长的绝对数量是平均增长量。 知识点三:增长率分析(速度分析) 一.发展速度

实验二 用SPSS进行时间序列分析

西安郵電大学 C++实验报告 院(系) :经济与管理学院名称 学生姓名:段明强 专业名称:信息管理与信息系统班级:1201 学号: 02125021

SPSS进行时间序列分析 1.连续4周(每周5个工作日)测定某无菌操作室空气中的细菌含量(×103/M3)资料如下表所示,试绘制时间序列图,看是否存在周期性变动趋势。 表1 无菌操作室空气中的细菌含量 1.、激活数据管理窗口,定义变量名为DATA,然后按时间顺序从第一周第1天起将观察数据依次输入数据区域。 图1 数据输入界面 2.在Graphs菜单的Time Series项中,选择Autocorrelations(自相关时间序列图)。 3.在弹出的Autocorrelations对话框中,选左侧变量列表中的data点击按钮使之进入Variable框。在Display栏选 Autocorrelations项,要求仅绘制自动相关的时间序列图。

图3 选择变量进入右侧的分析列表 4.点击Options钮,弹出“Autocorrelations:Options”对话框,在Maximum Number of Lags 处输入5,表示时间序列阶段为每5天一个周期,点击Continue钮返回Autocorrelations 对话框,再点击OK钮即完成。 图4 设置分析参数 5.结果显示和说明。

图5 结果显示 在时间序列图中,用户可根据相关系数的大小来判断序列模型的变动趋势。一般地说,相关系数为0或为<0,则前后序列或相邻序列的变动趋势保持原状;当最大的正相关系数出现在最后一个时点之前的任一时点时,表明趋势变动,完整地说是后面的或相邻变量的序列较前面的或相邻前面变量的序列延迟,前面的或相邻前面变量的序列超前的时点即在最大正相关系数所在的时点。 在本试验中,一个时间序列为5个时点段,结果图显示最大正相关系数位于最后一个时点,故表明前后时间序列稳定,即具有周期性。 实验心得: 本次实验收获很多,学会使用spss进行时间序列的使用!

时间序列及分析

时间序列 (一)时间序列及其分类 同一现象在不同时间上的相继观察值排列而成的序列称为时间序列。例如,下表就是我国国内生产总值、人口等在不同时间上得到的观察值排列而成的序列。 由表可以看出,时间序列形式上由现象所属的时间和现象在不同时间上的观察值两部分组成。根据所处的观察时间不同,现象所属的时间可以是年份、季度、月份或其他任何时间形式。现象的观察值根据表现形式不同有绝对数、相对数和平均数等。因此,从观察值的表现形式上看,时间序列可分为绝对数时间序列、相对数时间序列和平均数时间序列等。 由一系列绝对数按时间顺序排列而成的序列称为绝对数时间序列。它是时间序列中最基本的表现形式,用于反映现象在不同时间上所达到的绝对水平。绝对数时间序列根据观察值所属的时间状况不同,可以分为时期序列和时点序列。例如,表中的国内生产总值序列就是时期序列。时期序列中的观察值反映现象在一段时期内的活动总量,并且各观察值通常可以直接相加,用于反映现象在更长一段时期内的活动总量。表中的年末总人口序列属于时点序列,时点序列中的观察值反映现象在某一瞬间时点上的总量,它是在某一时点上统计得到的,序列中的各观察值通常不能相加。由绝对数时间序列可以派生出相对数和平均数时间序列,它们分别是由一系列相对数和平均数按时间顺序排列而成的。例如,表中的人口自然增长率序列就是相对数时间序列,居民消费水平序列则是平均数时间序列。 时间序列的描述性分析包括水平分析和速度分析两方面的内容。 (二)时间序列的水平分析 1.序时平均数 在时间序列中,我们用i t表示现象所属的时间,i Y表示现象在不同时间上观察值。i Y也称为现象在时间i t上的发展水平,它表示现象在某一时间上所达到的一种数量状态。若观察的时间范围为1t,2t,…,n t,相应的观察值表示为1Y,2Y,…,3Y,其中1Y称为最初发展水平,n Y称为最末发展水平;若对两个观察值进行比较时,把现在的这个时期称为报 告期,用于比较的过去的那个时期称为基期。 序时平均数是现象在不同时间上的观察值的平均数。它可以概括性地描述出现象在一段时期内所达到的一般水平。在证券市场上,对股票价格或股票价格指数的分析中常用到序时

第五讲传统时间序列分析与动态时间序列模型

第五讲 传统时间序列分析 一、趋势模型与分析 1、趋势模型 确定型时间序列分析是根据时间序列自身发展变化的基本规律和特点即趋势,选取适当的趋势模型进行分析和预测。 趋势模型的一般形式是:?()t y f t = 式中,t 是时间变量,一般取值为,0,1,2, 或2,1,0,1,2,-- 。 趋势模型的具体形式多种多样,例如经济领域不少现象近似指数增长?t y = 0(1)t y r +,0y 其中为增长初期水平,r 为增长率。常用的其他趋势模型还有: (1)直线模型?t y a bt =+ (2)指数模型?t t y ab = (3)幂函数模型?b t y at =或?bt t y ae = (4)对数模型?ln()t y a b t =+ (5)多项式模型01?k t k y b bt b t =+++ (6)修正指数曲线?t t y L ab =+或?bt t y L ae =+ (7)双曲线模型?t y L b =+ (8)Compertz 曲线?t b t y La = (9)Logistic 曲线?(1)bt t y L ae =+ 2、模型的选择 趋势模型形式的选择是定性分析和定量分析相结合的过程。 定性分析要求:在选取模型之前,要弄清的条件和预测对象的性质、特点。例如,指数曲线模型成立的条件是后一期与前一期之比为常数,即发展速度为常

数。实际现象的逐期增长率不可能严格等于某一常数,但常会围绕某一常数上下波动。如果分析对象具备上述特点,可以考虑采用指数模型。有些模型是从其他领域特别是生物学领域移植过来的。比如Logistic曲线最初用于研究生物种群发展规律,假定物种的增长取决于两个因素:种群的现有规模和环境(生存空间、光照、水和食物等),其中环境是限制性因素,在有限的环境中物种不可能无限增长,而是存在增长极限L。如果用Logistic曲线分析某种现象,必须首先确认:该现象是否发展到一定规模后增长速度会逐步下降,该现象是否存在增长的极限等。 除定性分析外,根据资料把握现象的特点也是选择模型的重要环节。定量分析需要用到多种初等分析方法。常用的方法是绘制曲线图,直观的判断现象大体符合哪种模型。有时数据中不仅包含趋势,还存在周期波动和较强的随机变动,造成趋势识别的困难,需要对数据进行预处理,方法主要包括数据的平滑和周期调整(如季节调整),后面知识将分别来介绍。 3、模型的估计与预测 趋势模型的估计与预测与线性回归模型的方法相似。 二、季节模型与分析 1、季节模型的类型 季节模型反映具有季节变动规律的时间序列模型。季节变动是指以一年为一个周期的变化。引起季节变动的首要因素四季更迭。 传统的时间序列分析把时间序列的波动归结为四大因素:趋势变动(T)、季节变动(S)、循环变动(C)和不规则变动(I)。其中循环变动指周期为年数的变动,通常指经济周期。不规则变动即随机变动。四种变动与原序列(Y)的

第八章 时间序列分析

第八章时间序列分析与预测 【课时】6学时 【本章内容】 § 时间序列的描述性分析 时间序列的含义、时间序列的图形描述、时间序列的速度分析 § 时间序列及其构成分析 时间序列的构成因素、时间序列构成因素的组合模型 § 时间序列趋势变动分析 移动平均法、指数平滑法、模型法 § 时间序列季节变动分析 [ 原始资料平均法、趋势-循环剔除法、季节变动的调整 § 时间序列循环变动分析 循环变动及其测定目的、测定方法 本章小结 【教学目标与要求】 1.掌握时间序列的四种速度分析 2.掌握时间序列的四种构成因素 3.掌握时间序列构成因素的两种常用模型 4.掌握测定长期趋势的移动平均法 5.了解测定长期趋势的指数平滑法 6.; 7.掌握测定长期趋势的线性趋势模型法 8.了解测定长期趋势的非线性趋势模型法 9.掌握分析季节变动的原始资料平均法 10.掌握分析季节变动的循环剔出法 11.掌握测定循环变动的直接法和剩余法 【教学重点与难点】 1.对统计数据进行趋势变动分析,利用移动平均法、指数平滑法、线性模型法求得数 据的长期趋势; 2.对统计数据进行季节变动分析,利用原始资料平均法、趋势-循环剔除法求得数据 的季节变动; 3.对统计数据进行循环变动分析,利用直接法、剩余法求得循环变动。 【导入】 ; 很多社会经济现象总是随着时间的推移不断发展变化,为了探索现象随时间而发展变化的规律,不仅要从静态上分析现象的特征、内部结构以及相互关联的数量关系,而且应着眼于现象随时间演变的过程,从动态上去研究其发展变动的过程和规律。这时需要一些专门研究按照时间顺序观测的序列数据的统计分析方法,这就是统计学中的时间序列分析。 通过介绍一些时间序列分析的例子,让同学们了解时间序列的应用,并激发学生学习本章知识的兴趣。 1.为了表现中国经济的发展状况,把中国经济发展的数据按年度顺序排列起来,

时间序列分解Decompose

时间序列分解算法和d ecompose函数实现 李思亮 55531469@https://www.360docs.net/doc/961828789.html, 目录 时间序列分解算法和decompose函数实现 (1) 1 数据读入并生成时间序列 (2) 2 数据可视化 (4) 3 时间序列分解 (7)

在时间序列分析的过程中,往往需要对时间序列作出初步分析,本文主要采用R语言作为分析平台,从数据的读入,可视化图,分解(decompose)为趋势项,季节项,随机波动等角度对数据开展分析的几个案例。最后对分解算法作出初步描述并探讨其预测预报中的潜在应用。本文的数据和部分内容主要采用https://www.360docs.net/doc/961828789.html,/en/latest/中的内容,感兴趣的读者可以参考。 1 数据读入并生成时间序列 对于数据分析来讲,数据读入是一个比较关键的步骤。常用的数据读入函数有scan,read.table 等。下面列举了几种常见的数据。 首先是https://www.360docs.net/doc/961828789.html,/tsdldata/misc/kings.dat,中包含了英国国王的寿命从William开始,数据来源(Hipel and Mcleod, 1994)。 > kings <- scan("https://www.360docs.net/doc/961828789.html,/tsdldata/misc/kings.dat",skip=3) Read 42 items > kings [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 上述例子中,读入了连续42个公国国王的寿命并将其赋给变量‘kings’ 如果我们希望对读入数据开展分析,下一步就是将其转化为时间序列对象(时间序列类),R提供了很多函数用于分析时间序列类数据。可以使用ts函数将变量转化为时间序列类。 > kingsts <- ts(kings) > kingsts Time Series: Start = 1 End = 42 Frequency = 1 [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 对于上述数据操作的好处是将数据转化为特定的“时间序列类”便于我们使用R中的函数分析数据。 有时候我们会按照一定的时间周期来收集数据,这个周期可能是季度,月,日,小时,分。在大数据时代,有些情况下的数据是按照秒来采集收集。这种情况下,我们需要对数据的周期或频率进行设置。这里采用ts函数中的frequency参数可以实现这种功能。比方说,若按1年为一个周期,我们的月度时间

应用时间序列分析简答题

1.简述非平稳时间序列的确定性因素分解方法及其优缺点:确定性因素分解方法产生于长期的实践。序列的各种变化可以归纳为三大因素的影响:(1)长期趋势波动,包括长期趋势和无固定周期的循环波动(2)季节性变化,包括所有具有固定周期的循环波动(3)随机波动,包括除了长期趋势波动和季节性变化之外的其他因素的综合因素。优点:原理简单;操作方便;易于理解。缺点:(1)只能提取强劲的确定性信息,对随机性信息浪费严重(2)它把所有序列的变化归纳为四大因素的综合影响,却始终无法提供明确有效的方法判断各大因素之间明确的作用关系。 2.比较传统的统计分析与时间序列分析数据结构并说明引入序列平稳性的意义: (1)根据数理统计学常识,传统的统计分析的随机变量越少越好,而每个变量获得的样本信息越多越好。因为随机变量越少,分析的过程越简单,而样本容量越大,分析的结果越可靠。(2)时间序列数据分析的结构有它的特殊性。对随机序列{…,1x ,2x ,…t x …}而言,它在任意时刻t 的序列值t x 都是一个随机变量,而且由于时间的不可重复性,该变量在任意一个时刻只能获得唯一的一个样本观察值。(3)时间序列分析的数据结构的样本信息太少,如果没有其他的辅助信息,通常这种数据结构是没有办法进行分析的。序列的平稳性概念的提出可以有效地解决这个困难。 3.什么是模型识别?模型识别的基本原则是什么?计算出样本自相关系数和偏自相关系数的值之后,就要根据他们表现出来的性质,选择适当的ARMA 模型拟合观察值序列。这个根据样本自相关关系数和偏自相关系数的性质估计自相关阶数p ?和移动平均阶数q ?的过程即是模型识别过程。ARMA 模型定阶基本原则如下表: 4.简述单整和协整分析的含义。(1)单整是处理伪回归问题的一种方式。如果一个时间序列经过一次差分变成平稳的,则称原序列是1阶单整的,记为I (1)。一般地,如果时间序列经过d 次差分后变成平稳序列,而经过d-1次差分仍不平稳,则称原序列是d 阶单整序列,记为I (d )。(2)假定回归模型t k 1i it i 0t y εχββ++=∑=

时间序列分解法

什么是时间序列分解法 时间序列分解法是数年来一直非常有用的方法,这种方法包括谱分析、时间序列分析和傅立叶级数分析等。 时间序列分解模型 时间序列y可以表示为以上四个因素的函数,即: Y t = f(T t,S t,C t,I t) 时间序列分解的方法有很多,较常用的模型有加法模型和乘法模型。 加法模型为:Y t = T t + S t + C t + I t 乘法模型为: 时间序列的分解方法 (1)运用移动平均法剔除长期趋势和周期变化,得到序列TC。然后再用按月(季)平均法求出季节指数S。 (2)做散点图,选择适合的曲线模型拟合序列的长期趋势,得到长期趋势T。 (3)计算周期因素C。用序列TC除以T即可得到周期变动因素C。 (4)将时间序列的T、S、C分解出来后,剩余的即为不规则变动,即:

时间序列的模式 时间序列一般包括四类因素,长期趋势因素、季节变动因素、循环变动因素和不规则变动因素。四种因素的组合形式一般有以下几类, 其中记Xt为时间序列的全变动;Tt为长期趋势;St为季节变动;Ct为循环变动;It为不规则变动,它总是存在着的。 1)乘法模式,其中, a) X t与T t有相同的量纲,S t为季节指数,C t为循环指数,两者皆为比例数; b) c) I t是独立随机变量序列,服从正态分布。 2)加法模式X t = T t + S t + C t + I t 这种形式要求满足条件: a) X t,T t,S t,C t,I t均有相同的量纲; b) ,k为季节性周期长度; c) I t是独立随机变量序列,服从正态分布。 3) 混合模式

a) X t与T t,C t,I t有相同的量纲,St是季节指数,为比例数; b) c) I t是独立随机变量序列,服从正态分布。 时间序列分解法试图从时间序列中区分出这四种潜在的因素,特别是长期趋势因素(T)、季节变动因素(S)和循环变动因素(C)。显然,并非每一个预测对象中都存在着T、S、C这三种趋势,可能是其中的一种或两种。一个具体的时间序列究竟由哪几类变动组合,采取哪种组合形式,应根据所掌握的资料、时间序列及研究目的来确定。 时间序列分解法各因素的确定 分解法的基础是容易理解而且直观的。不过最重要的是它为预测和检验提供了独特和非常有用的资料。我们用一个例题来说明各个因素分解的步骤。 设有某产品十二年(91年-02年)的季度销售额数据。见表4.3中的第二列,共有48个数据。如果将这些数据画在图上(图.1),可以看出有明显的长期趋势和季节变动。利用分解法,假设这48个数据可表示为 。这里X t是这些原始数据,通过分析原始数据X来确定T、C、S(剩下的为I)。

时间序列分解结果

在随机时间序列分析中,为简便起见,我们假定时间序列主要由趋势项(T)、季节项 (S)和随机项(R)构成。 # 读入数据,画曲线图 > sales <- read.csv(file = "sales.csv",header = TRUE) > head(sales) > plot(sales$t,sales$Y,type = "l") 观察这幅图形,可以看出有明显的长期趋势和季节变动。 利用分解法,假设这48个数据可表示为:,Yt代表实际销售额

度。 长期趋势的分解 用时间回归法,在同一图中画出趋势项目、季节项和随机项的数据图,如下: decompose()函数主要用来做季节指数分解,figure项即指季节指数。同时也返回原始数据,以及MA算法的结果;trend趋势项使用光滑移动平均法求得,它包含了长期趋势T 和周期变动因素C,之前用回归法求得长期趋势T,利用此函数的返回值Trend即可求得周期变动因素C;Random即为不规则变动。 此函数的基本结构: Additive: xt = Trend + Seasonal + Random Multiplicative: xt = Trend * Seasonal * Random > sales1 <- ts(sales[,2],start = 1,frequency = 4) # 季节变动趋势分解 > m <- decompose(sales1,type = "multiplicative") > plot(m) > m$x Qtr1 Qtr2 Qtr3 Qtr4 2003 3017.60 3043.54 2094.35 2809.84 2004 3274.80 3163.28 2114.31 3024.57 2005 3327.48 3493.48 2439.93 3490.79 2006 3685.08 3661.23 2378.43 3459.55 2007 3849.63 3701.18 2642.38 3585.52 2008 4078.66 3907.06 2828.46 4089.50 2009 4339.61 4148.60 2916.45 4084.64 2010 4242.42 3997.58 2881.01 4036.23 2011 4360.33 4360.53 3172.18 4223.76 2012 4690.48 4694.48 3342.35 4577.63 2013 4965.46 5026.05 3470.14 4525.94 2014 5258.71 5189.58 3596.76 3881.60

时间序列的速度分析

时间序列的速度分析 一、学习目标: 1.掌握发展速度、增长速度、平均发展速度、平均增长速度指标 2.掌握定基发展速度和环比发展速度之间的关系 二、知识梳理: 1.发展速度的概念 2.发展速度的分类及联系: 3.增长速度的概念 4.增长速度的分类及联系: 5.平均发展速度的概念及计算: 6.平均增长速度的概念及计算: 三、典例解析: 1.时间序列中的速度指标包括()、()、() ()四类。 2.定基发展速度与环比发展速度的关系是:某期的定基发展速度等于相应的各环比发展速度的(),某期的环比发展速度等于该期的定基发展速度()上期的定基发展速度。 3.平均发展速度也属于(),它是对各期()求得的(),这种方法称作()或()。 4.某企业产品产量年年增加20万吨,则产量环比发展速度() A.年年下降 B.年年增长 C.年年不变 D.不确定 5.若各环比增长速度为4%,5%,8%,9%,则定基增长速度为() A. 4%*5%*8%*9% B 4%*5%*8%*9%—1 C.104%*105%*108%*109% D. 104%*105%*108%*109%—1

6.用几何平均法计算平均发展速度时,被开方的数是( ) A.环比发展速度之和 B.环比发展速度的连乘积 C.报告期发展水平与基期发展水平之比 D.发展总速度 E. 报告期发展水平与基期发展水平之差 试计算1995—2000年 (1) 该企业产量的平均发展水平; (2) 该企业的年平均增长量和平均增长速度。 四、限时训练: 1.增长速度的计算方法有两种,即( )和( )。 2.绝对增长量除以相应的用%表达的增长速度,叫( )。 3.说明现象在较长时期内发展的总速度是( ) A.环比发展速度 B.平均发展速度 C.定基增长速度 D.各年逐期增长量 4.已知各时期环比发展速度和时期数,便能计算出( ) A.平均发展速度 B.平均发展水平 C.各期定基发展速度 D.各年逐期增长量 E.累计增长量 要求:(1)计算并填列表中所缺数字。 (2)计算该地区1997—2001年间的平均国民生产总值。 (3)计算1998—2001年间国民生产总值的平均发展速度和平均增长速度。

用EVIEWS处理时间序列汇总

应用时间序列分析 实验手册

目录 目录 (2) 第二章时间序列的预处理 (3) 一、平稳性检验 (3) 二、纯随机性检验 (9) 第三章平稳时间序列建模实验教程 (10) 一、模型识别 (10) 二、模型参数估计(如何判断拟合的模型以及结果写法) (14) 三、模型的显著性检验 (17) 四、模型优化 (18) 第四章非平稳时间序列的确定性分析 (19) 一、趋势分析 (19) 二、季节效应分析 (34) 三、综合分析 (38) 第五章非平稳序列的随机分析 (44) 一、差分法提取确定性信息 (44) 二、ARIMA模型 (58) 三、季节模型 (62)

第二章时间序列的预处理 一、平稳性检验 时序图检验和自相关图检验 (一)时序图检验 根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征 例2.1 检验1964年——1999年中国纱年产量序列的平稳性 1.在Eviews软件中打开案例数据 图1:打开外来数据 图2:打开数据文件夹中案例数据文件夹中数据

文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入 图3:打开过程中给序列命名 图4:打开数据

2.绘制时序图 可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等 图1:绘制散点图 图2:年份和产出的散点图

100 200300400 5006001960 1970198019902000 YEAR O U T P U T 图3:年份和产出的散点图 (二)自相关图检验 例2.3 导入数据,方式同上; 在Quick 菜单下选择自相关图,对Qiwen 原列进行分析; 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。 图1:序列的相关分析

第三节时间序列的速度分析

第三节 时间序列的速度分析 【本节考点】 1、发展速度与增长速度的概念 2、发展速度和增长速度的计算方法 3、定基发展速度与环比发展速度之间的关系,并能利用这种关系进行速度之间的相互推算。 4、平均发展速度和平均增长速度的含义及计算方法 5、 速度分析中应注意的问题,增长1%绝对值的含义及其用途, 增长1%绝对值的计算方法。 【本节内容】 【知识点一】发展速度与增长速度 (一)发展速度 1、发展速度:是以相对数形式表示的两个不同时期发展水平的比值,表明报告期水平已发展到基期水平的几分之几或若干倍。 发展速度= 基期水平报告期水平 由于基期选择的不同,发展速度有定基发展速度与环比发展速度之分。 (1)定基发展速度:报告期水平与某一固定时期水平(通常是最初水平)的比值,用i a 表示, i y y 最初水平报告期水平定基发展速度= i a (2)环比发展速度是报告期水平与其前一期水平的比值,用i b 表示, 1 i i y y -= 报告期前一期水平报告期水平环比发展速度i b 【应用举例】某地区2000~2002年钢材使用量(单位:万吨)如下: (3)定基发展速度与环比发展速度之间的关系 第一,定基发展速度等于相应时期内各环比发展速度的连乘积

推导: 定基发展速度 1 2312010-??????=n n n y y y y y y y y y y =各环比发展速度的连乘积 第二,两个相邻时期定基发展速度的比率等于相应时期的环比发展速度 推导: 相邻时期定基发展速度的比率 0y y n /01y y n -=1 -n n y y =相应时期的环比发展速度 【例题14:2005年、2006年、2007年单选题】以2000年为基期,我国2002、2003年广义货币供应量的定基发展速度分别是137.4%和164.3%,则2003年与2002年相比的环比发展速度是( )。 A.16.4% B.19.6% C.26.9% D.119.6% 【答案】D 【解析】相邻时期定基发展速度的比率 0y y n /01y y n -=1 -n n y y =相应时期的环比发展速度 所以,2003年与2002年环比发展速度 =2003年定基发展速度÷2002年定基发展速度 =164.3%÷137.4%=119.6% 【例题15:单选题】已知某地区以1990年为基期,1991-1996年财政收入的环比发展速度为115.71%、118.23%、108.01%、131.9%、122.95%、101.54%,以1990年为基期的1996年财政收入的定基发展速度为() A.40.55%

SPSS时间序列分析案例

用SPSS软件做时间序列分析,有某公司2002年一季度到2010年二季度的34个税后利润数据,要求预测出该公司2010年三季度和四季度的税后利润。 要求: 1.画出序列趋势图 2.绘制出自相关图和偏自相关图 3.确定参数和模型 4.给出预测值 观测值序列图

2 税后盈利 自相关图序列:税后盈利 滞后 自相关标准误差a Box-Ljung 统计量 值df Sig.b 1 .306 .164 3.48 2 1 .062 2 .198 .162 4.987 2 .083 3 .185 .159 6.340 3 .096 4 .542 .157 18.342 4 .001 5 .084 .154 18.641 5 .002 6 .06 7 .151 18.836 6 .004 7 .094 .149 19.239 7 .007 8 .458 .146 29.093 8 .000 9 .041 .143 29.176 9 .001 10 .016 .140 29.189 10 .001 11 .012 .137 29.197 11 .002 12 .236 .134 32.308 12 .001 13 -.092 .131 32.806 13 .002 14 -.094 .128 33.345 14 .003 15 -.079 .125 33.745 15 .004 16 .106 .121 34.510 16 .005 a. 假定的基础过程是独立性(白噪音)。 b. 基于渐近卡方近似。

偏自相关 序列:税后盈利 滞后偏自相关标准误差 1 .306 .171 2 .115 .171 3 .107 .171 4 .503 .171 5 -.279 .171 6 -.010 .171 7 .046 .171 8 .268 .171 9 -.130 .171 10 -.054 .171 11 -.053 .171 12 -.081 .171 13 -.040 .171 14 -.051 .171 15 -.027 .171 16 -.062 .171

相关文档
最新文档