北大附中高考数学专题复习简单几何体

北大附中高考数学专题复习简单几何体
北大附中高考数学专题复习简单几何体

学科:数学

教学内容:简单几何体

【考点梳理】 一、考试内容

1.棱柱(包括平行六面体)。棱锥。多面体。 2.球。

3.体积的概念与体积公理。棱柱、棱锥的体积。球的体积。 二、考试要求

1.理解棱柱、棱锥、球及其有关概念和性质。

掌握直棱柱、正棱锥、球的表面积和体积公式,并能运用这些公式进行计算。 3.了解多面体的概念,能正确画出棱柱、正棱锥的直观图。 对于截面问题,只要求会解决与几种特殊的截面(棱柱、棱锥的对角面,棱柱的直截面,球的截面)以及已给出图形或它的全部顶点的其他截面的有关问题。

三、考点简析 1.棱柱

2.棱锥

正棱锥是底面正多边形的中心

顶点在底面上的射影

棱锥-

---

--

3.棱柱、棱锥的侧面积与体积

S 正棱柱侧=C h ′ S 正棱锥侧=

21C h ′ V 柱体=S h ′ V 锥体=3

1

S h ′ 4.球

S 球=4πR 2 V 球=

3

4

πR 3

四、思想方法

1.割补法。它是通过“割”与“补”等手段,将不规则的几何体转化为规则的几何体,是一种常用的转化方法。

2.正棱锥的计算问题。应抓住四个直角三角形和两个角。四个直角三角形,即正棱锥的高、侧棱及其在底面上的射影、斜高及其在底面上的射影、底面边长的一半组成的四个直角三角形。两个角,即侧棱与底面所成的线面角,侧面与底面所成的二面角。四个直角三角形所围成的几何体称之为“四直角四面体”,它是解决棱锥计算问题的基本依据,必须牢固掌握。

3.正棱锥的侧面积与底面积的关系。 正棱锥:S 底=S 侧cos α

4.多面体中表面上两点的最短距离。

多面体中表面上两点的最短距离,就是其平面展开图中,连结这两点的线段长度,这是立体几何中求最短距离的基本依据(球面上两点间的距离除外)。

5.关于组合体体积的计算问题。

有很多的几何体,都由一些简单几何体所组成,这样的几何体叫做组合体。 构成组合体的方式一般有两种:其一是由几个简单几何体堆积而成,其体积就等于这几个简单几何体体积之和;其二是从一个简单几何体中挖去几个简单几何体而成,其体积就等于这个几何体的体积减去被挖去的几个几何体的体积。

因此,组合体体积的求法,即为“加、减”法,关键是合理的分割,可使计算简化。 6.关于等积变换问题。

等积变换的依据是等底等高的棱锥体积相等。 等积变换求体积或求点到平面的距离,都是在基本几何体——四面体和平行六面体中进行的。这是因为这些几何体变换底面后,计算体积的方法不变,几何体仍为四面体和平行六面体,这样,我们就可以选择适当的面为底面,使计算简单、易行。

若几何体本身不是四面体或平行六面体,则需先将其分成几个四面体或平行六面体之后,再施行等积变换。

用等积变换求点到平面的距离,是用两种不同的体积计算方法,来建立所求距离的方程,使问题得解。

异面直线间的距离,可转化为点到平面的距离,因此也可用等积变换求解。 用等积变换求距离,可绕过距离的作图,从而降低了题目的难度。

【例题解析】

例1 如图8-1,已知斜三棱柱ABC —A 1B 1C 1的底面是直角三角形,AC ⊥CB ,∠ABC=30°,侧面A 1ABB 1是边长为a 的菱形,且垂直于底面,∠A 1AB=60°,E 、F 分别是AB 1、BC 的中点。

(1)求证:EF ∥侧面A 1ACC 1;

(2)求四棱锥A ——B 1BCC 1的体积;

(3)求EF 与侧面A 1ABB 1所成角的大小。

(1)连结A 1B 、A 1C

∵A 1ABB 1是菱形,且E 是AB 1的中点, ∴E 是A 1B 的中点。 又F 是BC 的中点, ∴EF ∥A 1C 。

又A 1C 平面A 1ACC 1,

EF ?平面A 1ACC 1, ∴EF ∥面A 1ACC 1。

(2)∵平面A 1ABB 1⊥平面ABC ,交线为AB ,

∴在平面A 1ABB 1内,过A 1作A 1O ⊥AB 于O ,则A 1O ⊥平面ABC ,且h =A 1O=

2

3a , 又∵AC ⊥CB ,∠ABC=30°,∴a a,AC C,BC B AC S S C B ΔA 2

12321111==??==, ∴V A —C 1CBB 1 =V 柱-V A —A 1B 1C 1 =S h -

31S h =32S h =32·2

1

·AC ·BC ·A 1O =

32·21·21a ·23 a ·23a =8

1a 3

(3)在平面ABC 内,过F 作FH ⊥AB 于H ,则FH ⊥侧面A 1ABB 1。

连结EH ,则∠HEF 为EF 与侧面A 1ABB 1所成的角。 ∵在Rt △FHB 中,FH=

21BF=83a ,BH=8

3a ;

在△HEB 中,HE=BA A BH BE BH BE 12

2

cos 2)()(∠???-+

=????

-+60cos 8

3

212)8

3()2

1

(2

2

a a a a

=

8

13a , ∴在Rt △EHF 中,tan ∠HEF=

HE HF =13

39, ∴∠HEF=arctan

13

39。

例2 如图8-3,三棱锥P —ABC 中,△ABC 是正三角形,∠PCA=90°,D 为PA 的中点,二面角P —AC —B 为120°,PC=2,AB=23。

(1)求证:AC ⊥BD ;

(2)求BD 与底面ABC 所成的角(用反正弦表示); (3)求三棱锥P —ABC 的体积。

解 (1)如图8-4,取AC 中点E ,连DE 、BE ,则DE ∥PC ,∵PC ⊥AC ,∴DE ⊥AC 。

∵△ABC 是正三角形,∴BE ⊥AC 。

又DE 平面DEB ,BE 平面DEB ,DE ∩BE=E ,∴AC ⊥平面DEB 。 ∵DB 平面DEB ,∴AC ⊥DB 。

(2)法一:∵AC ⊥平面DEB ,AC 底面ABC ,∴平面DEB ⊥底面ABC ,∴EB 是DB 在底面ABC 内的射影,∠DBE 是BD 与底面ABC 所成的角。

又∵DE ⊥AC ,BE ⊥AC ,∴∠DEB 即为二面角P —AC —B 的平面角。

在△DEB 中,∵DE=

2

1

PC=1,BE=23AB=3,

∴由余弦定理,得 BD 2=12+32 – 2×1×3cos120°=13,BD=13,

∴由正弦定理,得

DBE

∠sin 1

=?120sin 13,

解得sin ∠DBE=

2639,即BD 与底面ABC 所成的角为arcsin 26

39。 法二:∵AC ⊥平面DEB ,AC 平面ABC 。∴平面DEB ⊥平面ABC ,作DF ⊥平面ABC ,F 为垂足,则F 在BE 的延长线上,∠DBF 是BD 与平面ABC 所成的角。∵DE ⊥AC ,BE ⊥AC ,∴∠DEB 是二面角P —AC —B 的平面角。在Rt △DBF 中,DE=

2

1

PC=1,BE=23AB=3,

∠DEB=120°,∠DEF=60°,DF=

2

3

。 ∴在△DEB 中,由余弦定理得BD=13,

∴sin ∠DBF=

DB

DF =2639,故BD 与底面ABC 所成的角为arcsin 2639。 (3)∵AC ⊥平面DEB ,AC 平面PAC ,

∴平面DEB ⊥平面PAC ,∴过点B 作平面PAC 的垂线段BG ,垂足G 在DE 的延长线

上。

∵在Rt △BEG 中,∠BEG=60°,BE=3,∴BG=

2

3

3, ∴V P —ABC =V B —PAC =

31S △PAC ×BG=3

1×2322 ×233=3。

例3 如图8-5,三棱锥P —ABC 中,已知PA ⊥BC ,PA=BC=l ,PA 、BC 的公垂线DE=h ,求三棱锥P —ABC 的体积。

分析:思路一直接求三棱锥P —ABC 的体积比较困难。考虑到DE 是棱PA 和BC 的公垂线,可把原棱锥分割成两个三棱锥P —EBC 和A —EBC ,利用PA ⊥截面EBC ,且△EBC 的面积易求,从而体积可求。

解 如图8—5—1,连结BE ,CE 。∵DE 是PA 、BC 的公垂线,∴PA ⊥DE 。又PA ⊥

BC ,∴PA ⊥截面EBC 。∴V P —EBC =

31S △EBC ·PE ,V A —EBC =3

1

S △EBC ·AE 。∵DE ⊥BC ,∴S △EBC =21BC ·DE=21lh ,∴V P —ABC =V P —EBC +V A —EBC =31S △EBC ·(PE+AE )=31PA ·S △EBC =6

1l 2h 。

注 本例的解法称为分割法,把原三棱锥分割为两个三棱锥,它们有公共的底面△EBC ,而高的和恰为PA ,因而计算简便。

思路二 本题也可用补形法求解。

解 如图8-5-2,将△ABC 补成平行四边形ABCD ,连结PD ,则PA ⊥AD ,且BC ∥平面PAD ,故C 到平面PAD 的距离即为BC 和平面PAD 的距离。

∵MN ⊥PA ,又MN ⊥BC ,BC ∥AD ,∴MN ⊥AD , MN ⊥平面PAD 。

故 V P —ABC =V P —ADC =V C —PAD =

31S △PAD ·MN=31(21·PA ·AD )·MN=6

1l 2h 。 注 本题的解法称为补形法,将原三棱锥补形成四棱锥,利用体积互等的技巧进行转换,

以达到求体积的目的。

本题也可将三棱锥补成三棱柱求积。想一想,怎样做?

例4 如图8-6,在四棱锥P —ABCD 中,底面ABCD 是边长为a 的正方形,并且PD=a , PA=PC=2a 。

(1)求证:PD ⊥平面ABCD ;

(2)求异面直线PB 与AC 所成的角; (3)求二面角A —PB —D 的大小;

(4)在这个四棱锥中放入一个球,求球的最大半径。

解 (1)PC=2a ,PD=DC=a ,

∴△PDC 是Rt △, 且PD ⊥DC 。 同理,PD ⊥AD 。

而AD ∩DC=D ,∴PD ⊥平面ABCD 。

(2)如图8-7,连BD ,∵ABCD 是正方形,

∴BD ⊥AC 。

又∵PD ⊥平面ABCD 。

∴BD 是PB 在平面ABCD 上的射影。 由三垂线定理,得PB ⊥AC 。 ∴PB 与AC 成90°角。

(3)设AC ∩BD=O ,作AE ⊥PB 于E ,连OE 。 ∵AC ⊥BD ,又PD ⊥平面ABCD ,AC 平面ABCD 。 ∴PD ⊥AC 。

而PD ∩BD=D ,∴AC ⊥平面PDB , 则OE 是AE 在平面PDB 上的射影。 由三垂线定理逆定理知OE ⊥PB ,

∴∠AEO 是二面角A —PB —D 的平面角。 ∵PD ⊥平面ABCD ,DA ⊥AB 。∴PA ⊥AB 。 在

Rt △PAB

中,AE ·PB=PA ·AB 。又

AB= a ,AP=

2a ,

PB=2

22AB AD PD ++=3a ,

∴AE=

3

2a 。 又AO=

2

2a ∴sin ∠AEO=

AE AO =2

3,∠AEO=60° ∴二面角A —PB —D 的大小为60°。

(4)设此球半径为R ,最大的球应与四棱锥各个面相切,球心为S ,连SA 、SB 、SC 、SD 、SP ,则把此四棱锥分为五个小棱锥,它们的高均为R 。

由体积关系,得

V P —ABCD =

3

1

R (S △PDC + S △PDA + S △PBC + S △PAB + S 正方形ABCD ) =3

1

R (22a +22a +22a 2+22a 2 + a 2)。

又∵3

3

1a V ABCD P =-, ∴31R(2a 2+2a 2)= 3

1a 3 ∴R=

2

2+a =

a 2

2

2-。 例5 如图8-8,已知长方体ABCD —A 1B 1C 1D 1中,AB=BC=4,AA 1=8,E 、F 分别为AD 和CC 1的中点,O 1为下底面正方形的中心。求:

(1)二面角C —EB —O 1的正切值;

(2)异面直线EB 与O 1F 所成角的余弦值; (3)三棱锥O 1—BEF 的体积。

解 如图8—9,(1)取上底面的中心O , OG ⊥EB 于G ,连OO 1和GO 1。由长方体的性质得OO 1⊥平面ABCD ,则由三垂线定理得O 1G ⊥EB ,

则∠OGO 1为二面角C —EB —O 1的平面角。由已知可求得EB=2

242+=25。

利用△ABE ∽△GEO (图8-10),可求得OG=

5

2。

在Rt △O 1OG 中,tan ∠O 1GO=

OG

OO 1

=45。 (2)在B 1C 1上取点H ,使B 1H=1,连O 1H 和FH 。 易证明O 1H ∥EB ,则∠FO 1H 为异面直线EB 与1O 所成角。 又O 1H=

2

1

BE=5,HF=2243+=5, O 1F=2

22422++=26,

∴在△O 1HF 中,由余弦定理,得 cos ∠FO 1H=

6

25225524??-+=

30

30

(3)连HB ,HE ,由O 1H ∥EB ,得O 1H ∥平面BEF 。 ∴V O

1

——BEF

=V H —BEF = V E —BHF =

3

1

·S △BHF ·AB ∵S △BHF =32-

21

(1×8+3×4+4×4)=14 1O V ∴——BEF =31×14×4=

3

56

例6 如图8-12,球面上有四个点P 、A 、B 、C ,如果PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,求这个球的表面积。

解 如图8-12,设过A 、B 、C 三点的球的截面圆半径为r ,圆心为O ′,球心到该圆面的距离为d 。在三棱锥P —ABC 中,

∵PA ,PB ,PC 两两互相垂直,且PA=PB=PC=a ,

∴AB=BC=CA=2a ,且P 在△ABC 内的射影即是△ABC 的中心O ′。

由正弦定理,得

?60sin 2a =2r,∴r=3

6

a 。

又根据球的截面的性质,有OO ′⊥平面ABC ,而PO ′⊥平面ABC ,

∴P 、O 、O ′共线,球的半径R=22d r +。又PO ′=2

2r PA -=2

2

32a a -

=3

3a , ∴OO ′=R -

3

3a =d=2

2r R -,(R -

3

3a )2=R 2 – (

3

6a )2

,解得R=23a ,

∴S 球=4πR 2=3πa 2。

注 本题也可用补形法求解。将P —ABC 补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=

2

3

a ,下略。

例7 如图8-13所示,四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB=BC=2,E 是AC 的中点,异面直线AD 与BE 所成的角为arccos

10

10

,求四面体ABCD 的体积。

解 如图8-14,过A 引BE 的平行线,交CB 的延长线于F ,则∠DAF 是异面直线BE 与AD 所成的角。

∴∠DAF=arccos

10

10 ∵E 是AC 的中点,∴B 是CF 的中点,且BF=AB=2。∵AB ⊥BC=2 2=BE

∴AF=2BE=22

∴DF=DA ,∵DB ⊥BA ,DB ⊥BF ,BF=BA , 则三角形ADF 是等腰三角形, AD=

2AF ·DAF

∠cos 1=20,BD=2

2AB AD -=4

故四面体V ABCD =

61AB ×BC ×BD=38,因此四面体ABCD 的体积是3

8。

例8 如图8-15,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=

3

π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。

解 (1)如图8-16,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN ,

∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N ,

从而OM=ON 。 ∴点O 在∠BAD 的平分线上。

(2)∵AM=AA 1cos 3

π

=3×21=23

∴AO=AMsec

4π=22

3

。又在Rt △AOA 1中, A 1O 2=AA 12 – AO 2=9 -

29=2

9

,∴A 1O=223,

∴平行六面体的体积V=5×4×

2

2

3=302。

例9 如图8-17,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥D 1B ,且面EAC 与底面ABCD 所成角为45°,AB=a 。

(1)求截面EAC 的面积;

(2)求异面直线A 1B 1与AC 之间的距离; (3)求三棱锥B 1—EAC 的体积。

(1999年全国高考试题)

解 (1)如图8-18,连结DB 交AC 于O ,连结EO 。

∵底面ABCD 是正方形,∴DO ⊥AC 。又∵ED ⊥底面AC ,∴EO ⊥AC 。∴∠EOD 就是面EAC 与底面AC 所成的二面角的平面角,∠EOD=45°。

又DO=

22a , AC=2a , EO=22a sec45°=a ,故S △EAC =2

2a 2。 (2)由题设ABCD —A 1B 1C 1D 1是正四棱柱,得A 1A ⊥底面AC ,A 1A ⊥AC 。又A 1A ⊥

A 1

B 1,∴A 1A 是异面直线A 1B 1与A

C 之间的公垂线。∵

D 1B ∥面EAC ,且面D 1BD 与面EAC 交线为EO ,∴D 1B ∥EO 。又O 是DB 的中点,∴

E 是D 1D 的中点,D 1B=2EO=2a 。∴D 1D=221DB B D -=2a ,即异面直线A 1B 1与AC 之间的距离为2a 。

(3)法一:如图8-18,连结D 1B ,∵D 1D=DB=2a ,∴四边形BDD 1B 1是正方形。连结B 1D 交D 1B 于P ,交EO 于Q 。∵B 1D ⊥D 1B ,EO ∥D 1B ,∴B 1D ⊥EO 。又AC ⊥EO ,AC ⊥ED ,∴AC ⊥面BDD 1B 1,∴B 1D ⊥AC ,∴B 1D ⊥面EAC 。则B 1Q 是三棱锥B 1—EAC 的高。由DQ=PQ 得B 1Q=

43 B 1D=23a ,∴EAC B V -1=31

·22a 2·2

3a =42a 3。

所以三棱锥B 1—EAC 的体积是

4

2a 3

法二:连结B 1O ,则112EOB A EAC B V V --=∵AO ⊥面BDD 1B 1,∴AO 是三棱锥A —EOB 1

的高,且AO=

2

2

a 。在正方形BDD 1B 1中,E 、O 分别是D 1D 、DB 的中点(如图8-19),则1

EOB S △=

43a 2。EAC -1B V =2×31×4

3

a 2×22a =42a 3。所以三棱锥B 1—EAC 的体积是

4

2a 3

例10 如图8-20,在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点。 (1)证明AD ⊥D 1F ;

(2)求AE 与D 1F 所成的角; (3)证明面AED ⊥面A 1FD 1;

(4)设AA 1=2,求三棱锥F —A 1ED 1的体积1

1ED A F V -。

(1997年全国高考数学试题)

解 (1)∵多面体AC 1是正方体,∴AD ⊥面DC 1。又D 1F 面DC 1,∴AD ⊥D 1F 。 (2)如图8-21,取AB 的中点G ,连结A 1G ,FG 。因为F 是CD 的中点,所以GF 、AD 平行且相等,又A 1D 1、AD 平行且相等,所以GF 、A 1D 1平行且相等,故GFD 1A 1是平行四边形,A 1G ∥D 1F 。设A 1G 与AE 相交于点H ,则∠AHA 1是 AE 与D 1F 所成的角。因为E 是BB 1的中点,所以Rt △A 1AG ≌Rt △ABE,∠GA 1A=∠GAH ,从而∠AHA 1=90°,即直线AE 与D 1F 所成角为直角。

(3)由(1)知AD ⊥D 1F ,由(2)知AE ⊥D 1F ,又AD ∩AE=A ,所以D 1F ⊥面AED 。又因为D 1F 面A 1FD 1,所以面AED ⊥面A 1FD 1。

(4)连结EG ,GD 1,∵FG ∥A 1D 1,∴FG ∥面A 1ED 1,∴体积,111

1

1

1

GE

A D

ED A G ED A F V V V ---==

∵AA 1=2,∴GE A S 1?=23。∴GE A D ED A F V V 111--==31×A 1D 1×GE A S 1?=31×2×2

3

=1。

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

全国统一高考数学试卷(理科)(全国一卷)

绝密★启用前 全国统一高考数学试卷(理科)(新课标Ⅰ) 一、选择题:本题共12小题, 每小题5分, 共60分。在每小题给出的四个选项中, 只 有一项是符合题目要求的。 1.已知集合}242{60{}M x x N x x x =-<<=--<,, 则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2.设复数z 满足=1i z -, z 在复平面内对应的点为(x , y ), 则 A .22 +11()x y += B .221(1)x y +=- C .22(1)1y x +-= D .2 2(+1)1y x += 3.已知0.20.32 log 0.220.2a b c ===,,, 则 A .a b c << B .a c b << C .c a b << D .b c a << 4.古希腊时期, 人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是 512-( 51 2 -≈0.618, 称为黄金分割比例), 著名的“断臂维纳斯”便是如此.此外, 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 51 -.若某人满足上述两个黄金分割比例, 且腿长为105 cm, 头顶至脖子下端的长度为26 cm, 则其身高可能是

A .165 cm B .175 cm C .185 cm D .190 cm 5.函数f (x )= 2 sin cos ++x x x x 在[,]-ππ的图像大致为 A . B . C . D . 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个 爻组成, 爻分为阳爻“——”和阴爻“— —”, 如图就是一重卦.在所有重卦中随机取一重卦, 则该重卦恰有3个阳爻的概率是 A . 516 B . 1132 C . 2132 D . 1116 7.已知非零向量a , b 满足||2||=a b , 且()-a b ⊥b , 则a 与b 的夹角为 A . π6 B . π3 C . 2π3 D . 5π6 8.如图是求 112122 + +的程序框图, 图中空白框中应填入

最新高考数学压轴题专题训练(共20题)[1]

1.已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

3.已知点A (-1,0),B (1,0),C (- 5712,0),D (5712 ,0),动点P (x , y )满足AP →·BP → =0,动点Q (x , y )满足|QC →|+|QD →|=10 3 ⑴求动点P 的轨迹方程C 0和动点Q 的轨迹方程C 1; ⑵是否存在与曲线C 0外切且与曲线C 1内接的平行四边形,若存在,请求出一个这样的平行四边形,若不存在,请说明理由; ⑶固定曲线C 0,在⑵的基础上提出一个一般性问题,使⑵成为⑶的特例,探究能得出相应结论(或加强结论)需满足的条件,并说明理由。 4.已知函数f (x )=m x 2+(m -3)x +1的图像与x 轴的交点至少有一个在原点右侧, ⑴求实数m 的取值范围; ⑵令t =-m +2,求[1 t ];(其中[t ]表示不超过t 的最大整数,例如:[1]=1, [2.5]=2, [-2.5]=-3) ⑶对⑵中的t ,求函数g (t )=t +1t [t ][1t ]+[t ]+[1t ]+1的值域。

2021年高考数学第一轮专题复习- 直线、平面、简单几何体——空间向量及其运算

第76课时:第九章 直线、平面、简单几何体——空间向量及其运算 课题:空间向量及其运算 一.复习目标:理解空间向量的概念、掌握空间向量的有关运算及其性质. 二.主要知识: 1.,a b 向量共线的充要条件: ; 2.三点共线: ; 3.三向量共面: ; 4.四点共面: ; 5.两向量夹角的范围 ; 三.课前预习: 1.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。若AB a =, AD b =,1AA c =,则下列向量中与BM 等的向量是 ( ) ()A 1122a b c -++ ()B 1122 a b c ++ ()C 1122 a b c - -+ ()D c b a +-21 21 2.有以下命题: ①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b 的关系是不共线; ②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面; C1

③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。 其中正确的命题是 ( ) ()A ①② ()B ①③ ()C ②③ ()D ①②③ 3.下列命题正确的是 ( ) ()A 若a 与b 共线,b 与c 共线,则a 与c 共线;()B 向量,,a b c 共面就是它们所在的 直线共面; ()C 零向量没有确定的方向; ()D 若//a b ,则存在唯一的实数λ使得a b λ=; 4.已知A 、B 、C 三点不共线,O 是平面ABC 外的任一点,下列条件中能确定点M 与点A 、B 、C 一定共面的是 ( ) ()A OM ++= ()B OM --=2 ()C OC OB OA OM 3121++= ()D OC OB OA OM 3 1 3131++= 四.例题分析: 例1.已知在正三棱锥ABC P -中,N M ,分别为BC PA ,中点,G 为MN 中点,求证: BC PG ⊥ G N A B C P M

高考数学前三道大题练习

1 A B C D S E F N B 高考数学试题(整理三大题) (一) 17.已知0αβπ<<4,为()cos 2f x x π? ?=+ ?8??的最小正周期,1tan 14αβ????=+- ? ????? ,, a (cos 2)α=, b ,且?a b m =.求 2 2cos sin 2() cos sin ααβαα ++-的值. 18. 在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜 甲的概率为0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙; 第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者,求: (1)乙连胜四局的概率; (2)丙连胜三局的概率. 19.四棱锥S -ABCD 中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 。已知∠ABC =45°,AB =2,BC=22,SA =SB =3。 (Ⅰ)证明:SA ⊥BC ; (Ⅱ)求直线SD 与平面SAB 所成角的大小; (二) 17.在ABC △中,1tan 4A =,3 tan 5 B =. (Ⅰ)求角C 的大小; (Ⅱ)若ABC △ 18. 每次抛掷一枚骰子(六个面上分别标以数字1,2,3,4,5,6). (I )连续抛掷2次,求向上的数不同的概率; (II )连续抛掷2次,求向上的数之和为6的概率; (III )连续抛掷5次,求向上的数为奇数恰好出现3次的概率。 19. 如图,在四棱锥S-ABCD 中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 分别是 AB 、SC 的中点。 求证:EF ∥平面SAD ; (三) 17.已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围;(II )求函数2()2sin 24f θθθ?? =+ ??? π的最大值与最小值. 18. 某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二得奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求 (1)甲、乙两人都没有中奖的概率; (2)甲、两人中至少有一人获二等奖的概率. 19. 在Rt AOB △中,π 6 OAB ∠= ,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上. (I )求证:平面COD ⊥平面AOB ; (II )当D 为AB 的中点时,求异面直线AO 与CD 所成角 的大小; (III )求CD 与平面 AOB 所成角的最大值 (四) 17.已知函数2 π()2sin 24f x x x ??=+ ???,ππ42x ??∈???? ,. (I )求()f x 的最大值和最小值; (II )若不等式()2f x m -<在ππ42 x ??∈???? ,上恒成立,求实数m 的取值范围. 18. 甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求: (1)甲、乙两班参赛同学中各有1名同学成绩及格的概率; (2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率. 19. 如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形, 4 ABC π ∠= , OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点。 (Ⅰ)证明:直线MN OCD 平面‖; (Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。 O C A D B E

【典型题】高考数学试卷(含答案)

【典型题】高考数学试卷(含答案) 一、选择题 1.从分别写有数字1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数字不大于第二张卡片的概率是( ) A . 110 B . 310 C . 35 D . 25 2.给出下列说法: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确说法的个数是( ) A .0 B .1 C .2 D .3 3.如果 4 2 π π α<< ,那么下列不等式成立的是( ) A .sin cos tan ααα<< B .tan sin cos ααα<< C .cos sin tan ααα<< D .cos tan sin ααα<< 4.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ; ③p ∧(?q );④(?p )∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 5.如图是某高三学生进入高中三年来的数学考试成绩茎叶图,第1次到第14次的考试成 绩依次记为1214,, A A A ,下图是统计茎叶图中成绩在一定范围内考试次数的一个算法流 程图,那么算法流程图输出的结果是( ) A .7 B .8 C .9 D .10

6.在下列区间中,函数()43x f x e x =+-的零点所在的区间为( ) A .1,04?? - ??? B .10,4?? ??? C .11,42?? ??? D .13,24?? ??? 7.设i 为虚数单位,复数z 满足21i i z =-,则复数z 的共轭复数等于( ) A .1-i B .-1-i C .1+i D .-1+i 8.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A . 2 2 B . 3 C . 5 D . 72 9.已知i 为虚数单位,复数z 满足(1)i z i +=,则z =( ) A . 14 B . 12 C . 22 D .2 10.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( ) A .108cm 3 B .100cm 3 C .92cm 3 D .84cm 3 11.在ABC ?中,A 为锐角,1lg lg()lgsin 2b A c +==-,则ABC ?为( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰直角三角形 12.已知a R ∈,则“0a =”是“2 ()f x x ax =+是偶函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 二、填空题 13.若三点1 (2,3),(3,2),( ,)2 A B C m --共线,则m 的值为 . 14.函数()22,0 26,0x x f x x lnx x ?-≤=?-+>? 的零点个数是________. 15.若过点()2,0M 3()2 :0C y ax a =>的准线l 相交于点

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

高考理科数学数学导数专题复习

高考理科数学数学导数专题复习

高考数学导数专题复习 考试内容 导数的背影.导数的概念.多项式函数的导数. 利用导数研究函数的单调性和极值.函数的最大值和最小值.证明不等式恒成立 考试要求: (1)了解导数概念的某些实际背景. (2)理解导数的几何意义. (3)掌握常用函数导数公式,会求多项式函数的导数. (4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值. (5)会利用导数求某些简单实际问题的最大值和最小值. (6)会利用导数证明不等式恒成立问题及相关问题 知识要点 导数导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值 x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注: ①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000 x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时,1-=??x y ,故x y x ??→?0lim 不存在. 注: ①可导的奇函数函数其导函数为偶函数. ②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义和物理意义:

高考数学专题复习简单几何体的面积与体积

第5讲 简单几何体的面积与体积 一、选择题 1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为( ) A.7 2π B .56π C .14π D .64π 解析 设长方体的过同一顶点的三条棱长分别为a ,b ,c ,则??? ab =2, bc =3, ac =6,得??? a =2, b =1, c =3, 令球的半径为R ,则(2R )2=22+12+32=14,∴R 2=7 2, ∴S 球=4πR 2=14π. 答案 C 2.若等腰直角三角形的直角边长为3,则以一直角边所在的直线为轴旋转一周所成的几何体体积是( ) A .9π B .12π C .6π D .3π 解析 由题意知所得几何体为圆锥,且底面圆半径为3,高为3,故V =13·(π·32 )·3=9π. 答案 A 3.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm 2)为( ).

A .48 B .64 C .80 D .120 解析 据三视图知,该几何体是一个正四棱 锥(底面边长为8),直观图如图,PE 为侧面△PAB 的边AB 上的高,且PE =5.∴此几何体的侧面积是S =4S △PAB =4×1 2×8×5= 80(cm 2). 答案 C 4.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ). A.2 6 B.36 C.23 D.22 解析 在直角三角形ASC 中,AC =1,∠SAC =90°,SC =2,∴SA =4-1=3;同理SB = 3.过A 点作SC 的垂线交SC 于D 点,连接DB ,因△SAC ≌△SBC ,故BD ⊥SC ,故SC ⊥平面ABD ,且平面ABD 为等腰三角形,因∠ASC =30°,故 AD =1 2SA = 32,则△ABD 的面积为1 2 ×1× AD 2-? ?? ?? 122 =24,则三棱锥的体积为13×24×2=26. 答案 A 5.某品牌香水瓶的三视图如下(单位:cm),则该几何体的表面积为 ( ).

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

2011 英国高考数学试卷之一

Centre Number Candidate Number Surname Other Names Candidate Signature General Certificate of Education Advanced Level Examination January2011 Mathematics MPC4 Unit Pure Core4 Monday24January20119.00am to10.30am For this paper you must have: *the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. Time allowed *1hour30minutes Instructions *Use black ink or black ball-point pen.Pencil should only be used for drawing. *Fill in the boxes at the top of this page. *Answer all questions. *Write the question part reference(eg(a),(b)(i)etc)in the left-hand margin. *You must answer the questions in the spaces provided.Do not write outside the box around each page. *Show all necessary working;otherwise marks for method may be lost. *Do all rough work in this book.Cross through any work that you do not want to be marked. Information *The marks for questions are shown in brackets. *The maximum mark for this paper is75. Advice *Unless stated otherwise,you may quote formulae,without proof, from the booklet. For Examiner’s Use Examiner’s Initials Question Mark 1 2 3 4 5 6 7 8 TOTAL P38267/Jan11/MPC46/6/6/MPC4 (JAN11MPC401)

1997年全国统一高考数学试卷(理科)

1997年全国统一高考数学试卷(理科) 参考答案与试题解析 一、选择题(共15小题,1-10每小题4分,11-15每小题5分,满分65分)1.(4分)设集合M={x|0≤x<2},集合N={x|x2﹣2x﹣3<0},集合M∩N=() A .{x|0≤x< 1} B . {x|0≤x< 2} C . {x|0≤x≤1}D . {x|0≤x≤2} 考点:交集及其运算. 分析:解出集合N中二次不等式,再求交集. 解答:解:N={x|x2﹣2x﹣3<0}={x|﹣1<x<3},∴M∩N={x|0≤x<2},故选B 点评:本题考查二次不等式的解集和集合的交集问题,注意等号,较简单.2.(4分)如果直线ax+2y+2=0与直线3x﹣y﹣2=0平行,那么实数a等于() A .﹣6 B . ﹣3 C . D . 考点:直线的一般式方程与直线的平行关系. 专题:计算题. 分析: 根据它们的斜率相等,可得=3,解方程求a的值.解答:解:∵直线ax+2y+2=0与直线3x﹣y﹣2=0平行, ∴它们的斜率相等,∴=3,∴a=﹣6. 故选A. 点评:本题考查两直线平行的性质,两直线平行,斜率相等.3.(4分)函数y=tan()在一个周期内的图象是() A .B . C . D . 考点:正切函数的图象. 专题:综合题. 分析:先令tan()=0求得函数的图象的中心,排除C,D;再根据函数y=tan() 的最小正周期为2π,排除B. 解答:解:令tan()=0,解得x=kπ+,可知函数y=tan()与x轴的一个交点不是,排除C,D

∵y=tan()的周期T==2π,故排除B 故选A 点评:本题主要考查了正切函数的图象.要熟练掌握正切函数的周期,单调性,对称中心等性质.4.(4分)已知三棱锥P﹣ABC的三个侧面与底面全等,且AB=AC=,BC=2.则二面角P﹣BC ﹣A的大小为() A .B . C . D . 考点:平面与平面之间的位置关系;与二面角有关的立体几何综合题. 专题:计算题. 分析:要求二面角P﹣BC﹣A的大小,我们关键是要找出二面角P﹣BC﹣A的大小的平面角,将空间问题转化为平面问题,然后再分析二面角P﹣BC﹣A的大小的平面角所在的三角形的 其它边与角的关系,解三角形进行求解. 解答:解:如图所示,由三棱锥的三个侧面与底面全等, 且AB=AC=, 得PB=PC=,PA=BC=2, 取BC的中点E,连接AE,PE, 则∠AEP即为所求二面角的平面角. 且AE=EP=, ∵AP2=AE2+PE2, ∴∠AEP=, 故选C. 点评:求二面角的大小,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AEP为二面角P﹣BC﹣A的平面角,通过解∠AEP所在的三角形求得∠AEP.其解题过 程为:作∠AEP→证∠AEP是二面角的平面角→计算∠AEP,简记为“作、证、算”.5.(4分)函数y=sin()+cos2x的最小正周期是() A .B . πC . 2πD . 4π 考点:三角函数的周期性及其求法. 分析:先将函数化简为:y=sin(2x+θ),即可得到答案. 解答: 解:∵f(x)=sin()+cos2x=cos2x﹣sin2x+cos2x=(+1)cos2x﹣sin2x =sin(2x+θ) ∴T==π

高考文科数学数列经典大题训练(附答案)

1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列; (2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式. 2.(本小题满分12分) 等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式. 2.设 31323log log ......log ,n n b a a a =+++求数列1n b ?? ???? 的前项和. 3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S

4.已知等差数列{a n}的前3项和为6,前8项和为﹣4. (Ⅰ)求数列{a n}的通项公式; (Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n. 5.已知数列{a n}满足,,n∈N×. (1)令b n=a n+1﹣a n,证明:{b n}是等比数列; (2)求{a n}的通项公式.

1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14 3 n n a a -= . 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a . 所以{}n a 是首项为1,公比为4 3 的等比数列. 7分 (2)解:因为14 ()3 n n a -=, 由1(1,2,)n n n b a b n +=+=,得114 ()3 n n n b b -+-=. 9分 由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b =1)34(33 41)34(1211 -=--+--n n , (2≥n ), 当n=1时也满足,所以1)3 4 (31-=-n n b . 2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32 34 9a a =所以21 9 q =。有条件可知a>0,故13 q =。 由12231a a +=得12231a a q +=,所以113 a =。故数列{a n }的通项式为a n =1 3n 。 (Ⅱ )111111log log ...log n b a a a =+++ (12...) (1) 2 n n n =-++++=- 故 12112()(1)1 n b n n n n =-=--++ 12111111112...2((1)()...())22311 n n b b b n n n +++=--+-++-=-++

1992年全国统一高考数学试卷(理科)

1992年全国统一高考数学试卷(理科) 一、选择题(共18小题,每小题3分,满分54分) 1.(3分) 的值是( ) A . B . 1 C . D . 2 2.(3分)如果函数y=sin (ωx )cos (ωx )的最小正周期是4π,那么常数ω为( ) A . 4 B . 2 C . D . 3.(3分)极坐标方程分别是ρ=cosθ和ρ=sinθ的两个圆的圆心距是( ) A . 2 B . C . 1 D . 4.(3分)方程sin4xcos5x=﹣cos4xsin5x 的一个解是( ) A . 10° B . 20° C . 50° D . 70° 5.(3分)已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是( ) A . 6:5 B . 5:4 C . 4:3 D . 3:2 6.(3分)图中曲线是幂函数y=x n 在第一象限的图象.已知n 取±2,±四个值,则相应于曲线c 1、c 2、c 3、c 4的n 依次为( ) A . ﹣2,﹣,,2 B . 2,,﹣,﹣2 C . ﹣,﹣2,2, D . 2 ,,﹣2,﹣ 7.(3分)若log a 2<log b 2<0,则( ) A . 0<a <b <1 B . 0<b <a <1 C . a > b >1 D . b >a >1 8.(3分)直线(t 为参数)的倾斜角是( )

A . 20° B . 70° C . 45° D . 135° 9.(3分)在四棱锥的四个侧面中,直角三角形最多可有( ) A . 1个 B . 2个 C . 3个 D . 4个 10.(3分)圆心在抛物线y 2=2x 上,且与x 轴和该抛物线的准线都相切的一个圆的方程是( ) A . x 2+y 2﹣x ﹣2y ﹣=0 B . x 2+y 2+x ﹣2y+1=0 C . x 2+y 2﹣x ﹣2y+1=0 D . x 2+y 2﹣x ﹣ 2y+=0 11.(3分)在(x 2+3x+2)5的展开式中x 的系数为( ) A . 160 B . 240 C . 360 D . 800 12.(3分)若0<a <1,在[0,2π]上满足sinx≥a 的x 的范围是( ) A . [0,arcsina ] B . [arcsina ,π﹣arcsina ] C . [π﹣arcsina ,π] D . [arcsina ,+arcsina ] 13.(3分)已知直线l 1和l 2的夹角平分线为y=x ,如果l 1的方程是ax+by+c=0,那么直线l 2的方程为( ) A . b x+ay+c=0 B . a x ﹣by+c=0 C . b x+ay ﹣c=0 D . b x ﹣ay+c=0 14.(3分)在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( ) A . B . C . D . 15.(3分)已知复数z 的模为2,则|z ﹣i|的最大值为( ) A . 1 B . 2 C . D . 3 16.(3分)函数y=的反函数( ) A . 是奇函数,它在(0,+∞) 上是减函数 B . 是偶函数,它在(0,+∞)上是减函数 C . 是奇函数,它在(0,+∞) 上是增函数 D . 是偶函数,它在(0,+∞)上是增函数 17.(3分)如果函数f (x )=x 2+bx+c 对任意实数t 都有f (2+t )=f (2﹣t ),那么( ) A . f (2)<f (1) B . f (1)<f (2) C . f (2)<f (4) D . f (4)<f (2)

高考数学二轮总复习专题训练一 综合测试题 理

专题一综合测试题 (时间:120分钟 满分:150分) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合U ={1,2,3,4,5,6},集合M ={1,3},N ={2,3,4},则(?U M )∩(?U N )=( ) A .{3} B .{4,6} C .{5,6} D .{3,6} 解析:?U M ={2,4,5,6},?U N ={1,5,6},∴(?U M )∩(?U N )={5,6},故选C. 答案:C 2.已知全集I =R ,若函数f (x )=x 2-3x +2,集合M ={x |f (x )≤0},N ={x |f ′(x )<0},则M ∩?I N =( ) A .[3 2,2] B .[3 22) C .(3 2 ,2] D .(3 2 2) 解析:由f (x )≤0解得1≤x ≤2,故M =[1,2];f ′(x )<0,即2x -3<0,即x <3 2,故N =(-∞,32),?I N =[32M ∩?I N =[3 2 ,2]. 答案:A 3.设某种蜡烛所剩长度P 与点燃时间t 的函数关系式是P =kt +b .若点燃6分钟后,蜡烛的长为17.4 cm ;点燃21分钟后,蜡烛的长为8.4 cm ,则这支蜡烛燃尽的时间为( ) A .21分钟 B .25分钟 C .30分钟 D .35分钟 解析:由? ?? ?? 17.4=6k +b 8.4=21k +b ,解得k =-0.6,b =21,由0=-0.6t +21,解得t =35. 答案:D 4.已知命题p :“?x ∈[1,2],x 2-a ≥0”,命题q :“?x ∈R ,x 2+2ax +2-a =0”.若命题“綈p 且q ”是真命题,则实数a 的取值范围为( ) A .a ≤-2或a =1 B .a ≤-2或1≤a ≤2 C .a ≥1 D .a >1 解析:命题p :“?x ∈[1,2],x 2-a ≥0”,∴a ≤x 2在[1,2]上恒成立,∴a ≤1,∴綈 p 为a >1.

高考数学真题分类汇编专题直线与圆理科及答案

专题八 直线 与圆 1.【2015高考重庆,理8】已知直线l :x +ay -1=0(a ∈R )是圆C :2 2 4210x y x y +--+=的对称轴.过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |= ( ) A 、2 B 、 C 、6 D 、 【答案】C 【解析】圆C 标准方程为2 2 (2)(1)4x y -+-=,圆心为(2,1)C ,半径为2r =,因此 2110a +?-=,1a =-,即(4,1)A --,6AB ===. 选C . 【考点定位】直线与圆的位置关系. 【名师点晴】首先圆是一个对称图形,它关于圆心成中心对称,关于每一条直径所在直线都是它的对称轴,当然其对称轴一定过圆心,其次直线与圆有相交、相切、相离三种位置关系,判断方法可用几何与代数两种方法研究,圆的切线长我们用勾股定理求解,设圆外一点P 到 圆的距离为d ,圆的半径为r ,则由点P 所作切线的长l = . 2.【2015高考新课标2,理7】过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【答案】C 【解析】由已知得321143AB k -= =--,27 341 CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ?为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为 22(1)(2)25x y -++=,令0x =,得2y =±-,所以MN =C . 【考点定位】圆的方程. 【名师点睛】本题考查三角形的外接圆方程,要注意边之间斜率的关系,得出ABC ?是直角三角形,可以简洁快速地求出外接圆方程,进而求弦MN 的长,属于中档题. 3.【2015高考广东,理5】平行于直线012=++y x 且与圆52 2 =+y x 相切的直线的方程是( ) A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x

相关文档
最新文档