直线与圆的方程的应用 优秀教案

直线与圆的方程的应用 优秀教案
直线与圆的方程的应用 优秀教案

直线与圆的方程的应用

【教学目标】

利用直线与圆的位置关系及圆与圆的位置关系解决一些实际问题

【教学重难点】

教学重点:直线的知识以及圆的知识

教学难点:用坐标法解决平面几何。

【教学过程】

一、复习准备:

直线方程有几种形式? 分别为什么?

(2) 圆的方程有几种形式?分别是哪些?

(3) 求圆的方程时,什么条件下,用标准方程?什么条件下用一般方程?

(4) 直线与圆的方程在生产。生活实践中有广泛的应用。想想身边有哪些呢?

(5) 如何用直线和圆的方程判断它们之间的位置关系?

(6) 如何根据圆的方程,判断它们之间的位置关系?

二、讲授新课:

提出问题、自主探究

例1.如图是一桥圆拱的示意图,根据提供信息完成以下计算:圆拱跨度AB =84米,拱高A6P6=15米,在建造时每隔7米需用一个支柱支撑,求:支柱A3P3的长度(精确到0.01米)。

方法一:在6

Rt AA O ?中 R 2 =422 +(R-15)2 可求出半径R ,而在3 Rt P CO ?中2223

21 P C R =-,

∴O A C P P A 6333-=,从而可求得33P A 长度。

能否用学过的圆方程的有关知识来尝试求解?

方法二:先求圆的方程,再把求33P A 长度看成3P 的纵坐标。

首先应建立坐标系。

如何建系?四种不同的建系方案:

分组解答,同学自选一种建系方案,同桌之间可以互相协作,相互探讨。

归纳总结、巩固步骤

总结解决应用问题的步骤:

(1)审题----分清条件和结论,将实际问题数学化;

(2)建模----将文字语言转化成数学语言或图形语言,找到与此相联系的数学知识,建立数学模型;

(3)解模----求解数学问题,得出数学结论;

(4) 还原----根据实际意义检验结论,还原为实际问题。

流程图:

实际问题数学问题数学结论实际问题结论

(审题) (建模) (解模) (还原)

变式训练:某圆拱桥的水面跨度16米,拱高4米。有一货船,装满货过桥,顶部宽4米,水面以上高3米,请问此船能否通过?当卸完货返航时,船水面以上高3.9米,此时能否通过?

深入讨论、提炼思想

在上面问题求解过程中,我们通过“建系”,利用直线和圆的方程来完成平面几何中的计算。这一“新方法”在初等几何的证明中也非常有用,如证明 “平

行四边形四条边的平方和等于两条对角线的平方和”,再看下例:

例2.已知内接于圆P 的四边形ABCD 的对角线互相垂直,

AD PE ⊥于E ,探求线段PE 与BC 的数量关系。

(1)BC PE 2

1=。

思路:把四边形特殊化,看成正方形,那么圆心与正方形的中心重合,此时BC PE 2

1=。 对于一般情形,这个结论正确吗?作如下猜想:“已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边边长一半”,能否用学过的平面几何知识加以证明?

证明:(平面几何法)连接AP 并延长交圆P 于点F ,连接DF ,CF ,

∵∠3=∠4 ∴在Rt ⊿ADF 和Rt ⊿AHB 中∠1=∠2

∵ ∠5=∠1+ ∠7, ∠6=∠2+ ∠7 ∴ ∠5= ∠6 ①

又∵∠ACF=900 且 ∠CHD=900 ∴ CF ∥BD ②

由① ②可得四边形CFDB 为等腰梯形∴|CB|=|FD| 又∵|FD|=2|PE| ∴|BC|=2|PE | 用“建系”这一新工具尝试

证明:(解析几何法)以AC ,BD 交点为坐标原点,所在直线为坐标轴建立平面直角坐标系,设)0,(a A ,),0(b B ,)0,(c C ,)0,(d D 。

用勾股定理, 22AE R PE -=,其中E 为AD 中点;

先求出圆心P 的坐标及直线AD 的方程,然后用点到直线距离公式求PE 的长;先求出圆心P 与点E 的坐标,再用两点间距离公式求PE 的长。

设圆方程为(x-m )2 + (y-n)2 =r 2,考虑到圆与x 轴交于A 、C 两点,令y=0,得关于x 的一元二次方程x 2-2mx+(M2+n2-r 2)=0,然后利用韦达定理可得圆心的横坐标 2

a c m +=,同理可得圆心的纵坐标2

b d n +=。

应用圆的方程求圆心坐标,正是圆方程的具体应用。

过圆心作两坐标轴的垂线,利用垂径定理来解决,很快可以求出

圆心的P 坐标(,)

22a c b d ++。

变式练习:设Q 为BC 的中点,则// QH PE ,如何用代数方法证

明这一结论呢?

还能有什么其他发现?

(1)若圆内接四边形的两条对角线互相垂直,则一组对边

的平方和等于另一组对边的平方和;

(2)若圆内接四边形的两条对角线互相垂直,则两条对角

线之积等于两组对边之积的和;

(3)若圆内接四边形的两条对角线互相垂直,则经过对角

线交点作其中一边的垂线,一定平分这一条边的对边。

课堂小结:

(1)直线与圆的方程在实际问题和平面几何中的一些应用;

(2)解决实际问题的具体步骤------审题、建模、解模、还原;

(3)解决几何问题的新方法------解析法,主要数学思想是通过代数方法研究几何问题,达到数形结合的一种完美境界。用坐标法解决平面几何问题的“三步曲”:

第一步:建立适当的坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:把代数运算结果“翻译”成几何结论;

【板书设计】

一、指数函数

1.定义

2.图像

3.性质

二、例题

例1

变式1

例2

变式2

【作业布置】

(word完整版)高中数学必修二直线与方程及圆与方程测试题.docx

一选择题(共 55 分,每题 5 分) 1. 已知直线经过点 A(0,4)和点 B ( 1, 2),则直线 AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点 ( 1,3) 且平行于直线 x 2 y 3 0 的直线方程为( ) A . x 2y 7 0 B . 2x y 1 0 C . x 2y 5 0 D . 2x y 5 0 3. 在同一直角坐标系中,表示直线 y ax 与 y x a 正确的是( ) y y y y O x O x O x O x A B C D 4.若直线 x+ay+2=0 和 2x+3y+1=0 互相垂直,则 a=( ) A . 2 B . 2 C . 3 3 3 3 2 D . ( 2 5.过 (x , y )和 (x , y )两点的直线的方程是 ) 1 1 2 2 A. y y 1 x x 1 y 2 y 1 x 2 x 1 B. y y 1 x x 1 y 2 y 1 x 1 x 2 C.( y 2 y 1 )( x x 1) (x 2 x 1 )( y y 1) 0 D.( x 2 x 1)( x x 1) ( y 2 y 1 )( y y 1 ) 0 6、若图中的直线 L 1 、 L 2、 L 3 的斜率分别为 K 1、K 2、 K 3 则( ) A 、 K ﹤ K ﹤ K L 3 1 2 3 L B 、 K ﹤ K ﹤ K 2 1 3 C 、 K 3﹤ K 2﹤ K 1 o x D 、 K 1﹤K 3﹤ K 2 L 1 7、直线 2x+3y-5=0 关于直线 y=x 对称的直线方程为( ) A 、 3x+2y-5=0 B 、 2x-3y-5=0 C 、 3x+2y+5=0 D 、 3x-2y-5=0 8、与直线 2x+3y-6=0 关于点 (1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0

人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套 直线的倾斜角和斜率 一、教学目标 (一)知识教学点 知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式. (二)能力训练点 通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力. (三)学科渗透点 分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想. 二、教材分析 1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫. 2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了. 3.疑点:是否有继续研究直线方程的必要? 三、活动设计 启发、思考、问答、讨论、练习. 四、教学过程 (一)复习一次函数及其图象 已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上. 初中我们是这样解答的:

∵A(1,2)的坐标满足函数式, ∴点A在函数图象上. ∵B(2,1)的坐标不满足函数式, ∴点B不在函数图象上. 现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.) 讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系. (二)直线的方程 引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗? 一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是. 一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应. 以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线. 上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的. 显然,直线的方程是比一次函数包含对象更广泛的一个概念. (三)进一步研究直线方程的必要性 通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如 y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究. (四)直线的倾斜角 一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.

高中数学直线与圆的位置关系 直线与圆的方程的应用教案

直线与圆的位置关系-直线与圆的方程的应用 教学要求: 利用直线与圆的位置关系解决一些实际问题 教学重点: 直线的知识以及圆的知识 教学难点: 用坐标法解决平面几何. 教学过程: 一、复习准备: (1) 直线方程有几种形式? 分别为什么? (2)圆的方程有几种形式?分别是哪些? (3)求圆的方程时,什么条件下,用标准方程?什么条件下用一般方程? (4)直线与圆的方程在生产.生活实践中有广泛的应用.想想身边有哪些呢? 二、讲授新课: 出示例1.图1所示是某圆拱形桥.这个圆拱跨度20AB m =,拱高4OP m =, 建造时每间隔4m 需要用一根支柱支撑,求支柱22A B 的高度(精确0.01m) 出示例2.已知内接于圆的四边形的对角线互相垂直,求证圆心到一边距离 等于这条边所对这条边长的一半.(提示建立平面直角坐标系) 小结:用坐标法解题的步骤: 1建立平面直角坐标系,将平南几何问题转化为代数问题; 2利用公式对点的坐标及对应方程进行运算,解决代数问题: 3根据我们计算的结果,作出相应的几何判断. .三、巩固练习: 1.赵州桥的跨度是37.4m.圆拱高约为7.2m.求这座圆拱桥的拱圆的方程 2.用坐标法证明:三角形的三条高线交于一点 3.求出以曲线2225x y +=与213y x =-的交点为顶点的多边形的面积. 4.机械加工后的产品是否合格,要经过测量检验某车间的质量检测员利用三个同样的量球以及两块不同的长方体形状的块规检测一个圆弧形零件的半径.已知量球的直径为2厘米,并测出三个不同高度和三个相应的水平距离,求圆弧零件的半径. .四、作业: P144练习4题;

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

直线与圆的方程单元测试卷含答案

直线与圆的方程单元测试卷 一。选择题 1.方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

直线与圆的方程教学案

教学课题: 直线与圆的方程 课时规划:4 教学目标:掌握圆的方程,直线与圆的位置判断,会求弦长。 教学重点:圆的方程,直线与圆的关系 教学难点:直线与圆的综合应用 教学过程 一、 知识链接(包括学情诊断、知识引入和过渡) 1. 复习直线的方程:点斜式、截距式、两点式、斜截式.; 2. 两点之间的距离公式:21221221)()(||y y x x P P -+-=. 3. 点到线的距离公式:2200B A C By Ax d +++=,平行线间的距离公式:2221B A C C d +-=. 4. 过两点1 212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 5. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 圆的一般方程:022=++++F Ey Dx y x ; 当0422 F E D -+时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . 当0422 F E D -+时,方程无图形(称虚圆). 6. 点和圆的位置关系:给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x -+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x -+-? 7. 直线和圆的位置关系:

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

直线和圆的方程测试题

西中高一(14)(15)班《直线与圆的方程》单元测试 韩世强 时间:120分钟 满分:150分 一、选择题:本大题共10小题,每小题5分,共50分. 1.在直角坐标系中,直线033=-+y x 的倾斜角是( ) A . 6 π B . 3 π C . 6 5π D . 3 2π 2.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( ) 3.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( ) A .1 B .13- C .2 3 - D .2- 4. 若直线023022=--=++y x y ax 与直线 平行,那么系数a 等于( ) A .3- B .6- C .2 3 - D .3 2 5. 圆x 2+y 2 -4x =0在点P (1,3)处的切线方程为( ) +3y -2=0 +3y -4=0 -3y +4=0 -3y +2=0 6 若圆C 与圆1)1()2(2 2=-++y x 关于原点对称,则圆C 的方程是( ) A .1)1()2(2 2=++-y x B .1)1()2(2 2=-+-y x C .1)2()1(2 2=++-y x D .1)2()1(2 2 =-++y x 7.已知两圆的方程是x 2 +y 2 =1和x 2 +y 2 -6x -8y +9=0,那么这两个圆的位置关系是( ) A .相离 B .相交 C .外切 D .内切 8.过点(2,1)的直线中,被圆x 2 +y 2 -2x +4y =0截得的最长弦所在的直线方程为( ) A .3x -y -5=0 B .3x +y -7=0 C .x +3y -5=0 D .x -3y +1=0 9.若点A 是点B (1,2,3)关于x 轴对称的点,点C 是点D (2,-2,5)关于y 轴对称的点,则|AC |=( )

直线与方程专题复习讲课教案

直线与方程专题复习

专题复习 直线与方程 【基础知识回忆】 1.直线的倾斜角与斜率 (1)直线的倾斜角 ①关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ②直线与x 轴平行或重合时,规定它的倾斜角为 ③倾斜角α的范围 . (2)直线的斜率 ①直线的倾斜角与斜率是反映直线倾斜程度的两个量,它们的关系是 ②经过两点))(,(),,(21222111x x y x P y x P ≠两点的斜率公式为:=k ③每条直线都有倾斜角,但并不是每条直线都有斜率。倾斜角为 的直线斜率不存 在。 2.两直线垂直与平行的判定 (1)对于不重合的两条直线21,l l ,其斜率分别为21,k k ,,则有: ?21//l l ? ; ?⊥21l l ? . (2)当不重合的两条直线的斜率都不存在时,这两条直线 ;当一条直线斜率为 0,另一条直线斜率不存在时,两条直线 . 3.直线方程的几种形式

一般式 ) 0(0 22≠+=++B A c By Ax 注意:求直线方程时,要灵活选用多种形式. 4.三个距离公式 (1)两点),(),,(222111y x P y x P 之间的距离公式是:=||21P P . (2)点),(00y x P 到直线0:=++c By Ax l 的距离公式是:=d . (3)两条平行线0:,0:21=++=++c By Ax l c By Ax l 间的距离公式是:=d . 【典型例题】 题型一:直线的倾斜角与斜率问题 例1、已知坐标平面内三点)13,2(),1,1(),1,1(+-C B A . (1)求直线AC BC AB 、、的斜率和倾斜角. (2)若D 为ABC ?的边AB 上一动点,求直线CD 斜率k 的变化范围. 例2、图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则: A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3 <k 2 例3、利用斜率证明三点共线的方法: 若A(-2,3),B(3,-2),C(0,m)三点共线,则m的值 为 .

直线和圆的方程知识与典型例题

直线和圆的方程知识关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2) 是直线上两个已知 点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐 标轴平行的直线不能 用此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

直线和圆的方程

简单的线性规划例13. 若点(3,1)和(4 -,6)在直线0 2 3= + -a y x的两侧,则实数a的取值范围是 ()724 A a a <-> 或()724 B a -<<()724 C a a =-= 或(D)以上都不对例14. ABC ?的三个顶点的坐标为(2,4) A,(1,2) B-,(1,0) C,点(,) P x y在ABC ?内部及边界上运动,则2 y x -的最大值为,最小值为。 例15. 不等式组: 10 x y x y y -+ + ? ? ? ? ? ≥ ≤ ≥ 表示的平面区域的面积是; 例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高? 例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下: 根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.

高中数学必修二《直线与方程及圆与方程》测试题_及答案

直线方程 一选择题 1. 已知直线经过点A(0,4)和点B(1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B.012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x y O A B C D 4.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =( ) A.32- B .32 C.2 3 -? D.23 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A. 23 B .32 C .32- ?D. 2 3 - 6、若图中的直线L 1、L 2、L 3的斜率分别为K ) A 、K1﹤K 2﹤K 3 B 、K2﹤K 1﹤K 3 C、K 3﹤K 2﹤K 1 D 、K 1﹤K 3﹤K 2 7、直线2x+3y-5=0关于直线y=x A、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y +5=0 D 、3x -2y -5=0 8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 9、直线5x -2y-10=0在x 轴上的截距为a,在y 轴上的截距为b ,则( ) A.a=2,b=5; B.a =2,b =5-; C.a=2-,b=5; D.a =2-,b=5-. 10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ?( ) A. 2 2 B.2?C .2 D.22 11、过点P(4,-1)且与直线3x-4y +6=0垂直的直线方程是( ) A 4x+3y -13=0 B 4x-3y-19=0 C 3x -4y-16=0 D 3x+4y -8=0 二填空题(共20分,每题5分) 12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __; x

《直线与圆的位置关系》教学公开课教案

《直线与圆的位置关系》教案 哈尔滨第一职业高级中学 李立 2014.10.15

《直线与圆的位置关系》教案 一、教学目标 1、知识与技能 (1)理解直线与圆的位置的种类; (2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. 2、过程与方法 通过学习,学会使用不同的方法来分析、判断直线与圆的位置关系。 3、情态与价值观 让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想. 二、教学重点、难点: 重点:直线与圆的位置关系的几何图形及其判断方法. 难点:用坐标法判直线与圆的位置关系. 三、教学设想: (一)创设情境 请同学们观察一段海上日出的视频,并提出问题:直线与圆存在几种位置关系?进而,引出今天所要研究的内容——直线与圆的位置关系。 (二)讲解知识

1.复习提问: (1)初中阶段,直线与圆的位置关系是如何定义? (2)若已知直线方程及圆的方程如何求它们的交点? (3)直线方程的一般式、圆的标准方程、圆的一般方程? 2.用判别式法判断直线与圆的位置关系 (1)例题示范: 已知:直线的方程为: 圆的方程为: 判断直线与圆的位置关系。 边分析边引导学生回答,教师示范板书。并引导学生总结求解过程,从而,引发学生思考得出结论: 相离0?? (2)练习2:已知:圆的方程: 直线的方程: 问:当 为何值时,直线与圆相切? 由学生示范解题过程并引导学生讲解,启发学生思考:是否还有其它方法判断直线与圆的位置关系。 3.比较圆心到直线的距离d 与半径r 的大小判断直线与圆的位置关系 (1)观察图形,引导学生总结三幅图中圆心到直线的距离d 与半径r 的大小得出结论:相离r d >?;相切r d =?;相交r d

高中数学直线与圆的方程知识点总结49648

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

直线与圆的方程单元测试题含答案

《直线与圆的方程》练习题1 一、 选择题 1.方程x 2+y 2 +2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值 依次为( B ) (A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-4 2.点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( A ) (A) 11<<-a (B) 10<-

8.一束光线从点(1,1)A -出发,经x 轴反射到圆22 :(2)(3)1C x y -+-=上的最短路径是 ( A ) A .4 B .5 C .321- D .26 9.直线0323=-+y x 截圆x 2 +y 2 =4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π 10.如图,在平面直角坐标系中,Ω是一个与x 轴的正半轴、y 轴的正半轴分别相切于点C 、D 的定圆所围成的区域(含边界),A 、B 、C 、D 是该圆的四等分点.若点P (x ,y )、点P ′(x ′,y ′)满足x ≤x ′且y ≥y ′,则称P 优于P ′.如果Ω中的点Q 满足:不存在Ω中的其它点优于Q ,那么所有这样的点Q 组成的集合是劣弧 ( ) A.AB B.BC C.CD D.DA [答案] D [解析] 首先若点M 是Ω中位于直线AC 右侧的点,则过M ,作与BD 平行的直线交ADC 于一点N ,则N 优于M ,从而点Q 必不在直线AC 右侧半圆内;其次,设E 为直线AC 左侧或直线AC 上任一点,过E 作与AC 平行的直线交AD 于F .则F 优于E ,从而在AC 左侧半圆内及AC 上(A 除外)的所有点都不可能为Q ,故Q 点只能在DA 上. 二、填空题 11.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是 (13,13)- . 12.圆:0642 2 =+-+y x y x 和圆:062 2 =-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 390x y --= 13.已知点A(4,1),B(0,4),在直线L :y=3x-1上找一点P ,求使|PA|-|PB|最大时P 的坐标是 (2,5) 14.过点A (-2,0)的直线交圆x 2+y 2 =1交于P 、Q 两点,则AP →·AQ →的值为________. [答案] 3 [解析] 设PQ 的中点为M ,|OM |=d ,则|PM |=|QM |=1-d 2,|AM |=4-d 2.∴|AP →|=4-d 2 -1-d 2,|AQ →|=4-d 2+1-d 2 ,

导学设计18直线与圆的方程的应用

山西大学附中高二年级(上)数学导学设计编号18 直线与圆的方程的应用 【学习目标】理解直线与圆的位置关系的几何性质;利用平面直角坐标系解决直线与圆的位置关系. 【学习重点】会建立适当的平面直角坐标系解决直线与圆的问题. 【学习难点】会建立适当的平面直角坐标系解决直线与圆的问题. 【学习过程】 一.导学 用坐标法解决具体问题. 用坐标法解决实际问题(或几何问题)的步骤: 第一步:建立适当的,用坐标和方程表示问题中的要素(或几何元素),将实际问题(或平面几何问题)转化为代数问题; 第二步:通过代数,解决代数问题; 第三步:将代数运算结果“翻译”成实际结论(或几何结论). 补充:某圆拱桥的圆拱跨度为16m,拱高4m,建造时每隔4m需要用一根支柱支撑,求靠 )。 边的一根支柱的高度(精确到0.1m,21 4.58 二.导练 1. 圆拱桥的一孔圆拱如图所示,该圆拱是一段圆弧,其跨度AB=20米,拱高OP=4米,在建造时每隔4米需用一根支柱支撑. (1)建立适当的坐标系,写出圆弧的方程; (2)求支柱A2B2的高度(精确到0.01米). 2.已知内接于圆的四边形的对角线互相垂直,求证圆心到一边的距离等于这条边所对边长的一半。 3.如图,某台机器的三个齿轮,A与B啮合,C与B也啮合.若A轮的直径为200cm,B 轮的直径为120cm,C轮的直径为250cm,且∠A=45°.试建立适当的坐标系,用坐标法求出A,C两齿轮的中心距离(精确到1cm).

三.当堂检测: 1.某种体育比赛的规则是:进攻队员与防守队员均在安全线l 的垂线AC 上(C 为垂足),且距C 分别为2,(0)a a a >的点A 和B ,进攻队员沿直线AD 向安全线跑动,防守队员沿直线沿直线方向向前拦截,设AD 和BM 交于M ,若在M 点,防守队员比进攻队员先到或同时到,则进攻队员失败,已知进攻队员的速度是防守队员速度的两倍,且他们双方速度不同,问进攻队员的路线AD 应为什么方向才能取胜? 2.有一种大型商品,A ,B 两地都有出售,且价格相同,某地居民从两地之一购得商品后回运的运费是:每单位距离A 地的运费是B 地运费的3倍,已知A 、B 两地相距10km ,居民选择A 或B 地购买这种商品的标准是:包括运费和价格的总费用较低。求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货 4.求通过直线230x y -+=与圆222410x y x y ++-+=的交点,且面积最小的圆的方 程。 5.已知,x y 是实数,且2246120x y x y +--+=,求下列各式的最大值和最小值: ⑴x y -;⑵ y x ;⑶22x y +。

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程 一、直线的方程 1、倾斜角: ,范围0≤α<π, x l //轴或与x 轴重合时,α=00。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 1、 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b)

高中数学必修二《直线与方程及圆与方程》测试题-及答案

直线方程 一选择题 1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( ) A.3 B.-2 C. 2 D. 不存在 2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( ) x y O x y O x y O x y O A B C D 4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( ) A .32- B .32 C .2 3 - D . 2 3 5.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( ) A . 23 B .32 C .32- D . 2 3 - 6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K 3 B 、K 2﹤K 1﹤K 3 C 、K 3﹤K 2﹤K 1 D 、K 1﹤K 3﹤K 2 7、直线2x+3y-5=0关于直线y=x 对称的直线方程为( ) A 、3x+2y-5=0 B 、2x-3y-5=0 C 、3x+2y+5=0 D 、3x-2y-5=0 8、与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=0 9、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( ) A.a=2,b=5; B.a=2,b=5-; C.a=2-,b=5; D.a=2-,b=5-. 10.平行直线x -y +1 = 0,x -y -1 = 0间的距离是 ( ) A . 2 2 B .2 C .2 D .22 11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( ) A 4x+3y-13=0 B 4x-3y-19=0 C 3x-4y-16=0 D 3x+4y-8=0 二填空题(共20分,每题5分) 12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 __; 13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是 14、两平行直线0962043=-+=-+y x y x 与的距离是 。 15空间两点M1(-1,0,3),M2(0,4,-1)间的距离是 L 1 L 2 x o L 3

中职数学直线与圆的方程教案讲课教案

中职数学直线与圆的 方程教案

x x 职业技术教育中心 教案 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 复习引入: 新授: 1.平面内两点间的距离 设A ,B 为平面上两点.若A ,B 都在x 轴(数轴)上(见图7-3(1)),且坐标为A (x 1,0), B (x 2,0),初中我们已经学过,数轴上A ,B 两点的距离为 |AB |=|x 2-x 1|. 同理,若A ,B 都在y 轴上(见图7-3(2)), 坐标为A (0,y 1), B (0,y 2),则A ,B 间的距离 |AB |=|y 2-y 1|. 若A , B 至少有一点不在坐标轴上,设 A , B 的坐标为A (x 1,y 1), B (x 2,y 2).过A ,B 分别作x ,y 轴的垂线,垂线延长交于 C (见 图7-3(3)),不难看出C 点的坐标为(x 1,y 2), 则 |AC |=|y 2-y 1|,|BC |=|x 2-x 1|, 由勾股定理 |AB |=2 2 BC AC +=2 212 21)()(y y x x -+-. 由此得平面内两点间的距离公式:已知平面内两点A (x 1,y 1), B (x 2,y 2),则 图7-x y O y y ? ? B A 图7-x y O x 1 x 2 ? ? B A 图7-3(3)

|AB |=221221)()(y y x x -+-. (7-1-1) 例1 求A (-4,4),B (8,10)间的距离|AB |. 解 x 1=-4, y 1=4;x 2=8, y 2=10,应用公式(7-1-1), |AB |=)()(21221y y x x -+-=2210484)()(-+--=180=65. 例2 已知点A (-1,-1), B (b ,5),且|AB |=10,求b . 解:据两点间距离公式, |AB |=36)1()]1(5[)]1([222++=--+--b b =10, 解得 b =7或b =-9. 例3 站点P 在站点A 的正西9km 处,另一站点Q 位于P ,A 之间,距P 为5km ,且东西向距A 为6km ,问南北向距A 多少? 解 以A 为原点、正东方向为x 轴正向建立坐标系如 图7-4,则P 的坐标为(-9,0),|PQ |=9.设Q 坐标为(x ,则x =-6,据题意要求出y . 据两点间距离公式(7-1-1) |PQ |=22069)()(y -++-=5, 解得 y =±4, 即站点Q 在南北向距A 是4km . 例4 如图7-5,点A ,B ,C ,D 构成一个平行四边形, 求点D 的横坐标x . 解 因为ABCD 是平行四边形,所以对边相等, |AB |=|CD |, |AC |=|BD |. 图7-4

相关文档
最新文档