光学调制器

光学调制器
光学调制器

学院:物理与电子工程学院专业:电子信息科学与技术年级:2010级

学号:20100516007

姓名:曾艳

光学调制器

目前,对电介质光学性质及其应用的研究是电介质各种性质及其应用的研究中最为活跃的领域之一。电介质的光学性质主要包括三个最基本的光学效应—电光效应、弹光效应和非线性光学效应。

一、电光调制器

1 电光效应

电光效应也叫电致双折射效应。外加电场引起电介质折射率改变的现象称为电光效应。外加电场可以使单折射物质(光学各向同性)变为双折射物质(光学各向异性),也可使本来就具有双折射的物质进一步改变其各向异性性质,这类现象都属于电光效应。电光效应有克尔效应和泡克尔斯效应。

(1)克尔效应

▲ 不加电场→液体各向同性→P2 不透光;

▲ 加电场→液体呈单轴晶体性质,光轴平行电场强度E → P2 透光

——二次电光效应

k —克尔常数,U —电压

克尔效应引起的相位差为:

△φk=π时,克尔盒相当于半波片, P2 透光最强。

克尔盒的响应时间极短,每秒能够开关109 次。可用于高速摄影、光测距、光通讯等。

(2)泡克尔斯效应

光传播方向与电场平行,P1⊥P2,电极K 和K′透明,晶体是单轴晶体,光轴沿光传播方向。

泡克尔斯盒

▲不加电场→ P2不透光。

▲ 加电场→晶体变双轴晶体→原光轴方向附加了双折射效应→ P2透光。

克尔斯效应引起的相位差:

——线性电光效应

n o— o 光在晶体中的折射率;r —电光常数;U —电压。

时,P2透光最强。

应用:超高速开关(响应时间小于10-9s),显示技术,数据处理…

2 电光调制器的的原理

电光调制器是大容量光纤传输网络和高速光电信息处理系统中

的关键器件。电光调制的物理基础是电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变。电光调制根据所施加的电场方向的不同,可分为纵向电光调制和横向电光调制。利用纵向电光效应的调制,叫做纵向电光调制,利用横向电光效应的调制,叫做横向电光调制。

3 电光调制器的应用

电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。电光调制器除了用于上述的系统中用于产生高重复频率、极窄的光脉冲或光孤子(Soliton),在先进雷达的欺骗系统中用作为光子宽带微波移相器和移频器,在微波相控阵雷达中用作光子时间延迟器,用于光波元件分析仪,测量微弱的微波电场等。

二磁光调制器

1 磁光效应

磁光效应又叫做法拉第效应。磁光效应指的是具有固有磁矩的物质在外磁场的作用下, 电磁特性发生变化, 因而使光波在其内部的传输特性也发生变化的现象。1845 年, 英国物学家法拉第(Faraday) 发现, 入射光线在被磁化的玻璃中传播时, 其偏振面会发生旋转,这是物理学史上第一次发现的磁光效应, 称之为法拉第效应。随着科技的发展,各种以磁光效应为基础的磁光器件相继研制开发出来, 如磁光调制器、磁光隔离器、磁光传感器及磁光盘等。

2 磁光调制器的原理

①P为起偏器②A为检偏器③B为调制信号

磁光调制器是利用偏振光通过磁光介质发生偏振面旋转来调制光束。光调制器的原理如上图所示。在没有调制信号时, 磁光材料中无外场, 输出的光强随起偏器与检偏器光轴之间的夹角变化。在磁光材料外的磁化线圈加上调制的交流信号时, 由此而产生的交变磁场使光的振动面发生交变旋转。由于法拉第效应,信号电流B使光振动面的旋转转化成光的强度调制, 出射光以强度变化的形式携带调制信息。调制信号, 比如说是转变成电信号的声音信号, 经磁光调制, 声信息便载于光束上。光束沿光导纤维传到远处, 再经光电转换器,

把光强变化转变为电信号, 再经电声转换器(如扬声器)又可以还原成声信号。

3 磁光调制器的应用

磁光调制器有广泛的应用, 可作为红外检测器的斩波器, 可制

成红外辐射高温计、高灵敏度偏振计, 还可用于显示电视信号的传输、测距装置以及各种光学检测和传输系统。

三弹光效应

弹光效应又名压光效应,它是指介质由于受压力的作用而引起折射率的改变的现象。在应力作用下,单折射率物质变为双折射率物质,或者双折射率物质的双折射性质进一步改变,这类现象都称为弹光效应。弹光效应存在于一切透明介质中(无论是晶体还是非晶体,固体还是液体),自然也存在与压电晶体中。

将有机玻璃加力,发现有机玻璃变成各向异性。加力的方向即光轴的方向。在观察偏振光干涉的装置中,将有机玻璃取代晶片:

应力双折射效应引起的相位差:

若应力均匀,则观察到均匀的干涉光强.;若应力不均匀,出现干涉条纹。应力变化大的地方,条纹密;应力变化小的地方,条纹疏。通过光弹性效应,可以用来研究材料内部的应力情况。

集成光学讨论题

聚合物电光波导调制器的研究 一.概述 聚合物电光调制器具有卓越的性能和潜在的巨大应用前景,因此自上世纪九十年代以来就开始受到人们的广泛关注。迄今,由于材料研究方面的进展,聚合物调制研究已经取得了巨大进步,但是仍然存在诸如器件稳定性问题和高损耗问题。 在学习了《集成光学》这门课程之后,受到老师和其他上台演示的同学的启发,我对聚合物电光调制器产生了浓厚的兴趣,思考如何能解决器件损耗的问题,在查阅了大量的资料后发现,有一种“包层调制”的方法可以降低器件损耗,即高损耗的电光聚合物材料被用于波导的包层,而其芯层则使用低损耗的非电光的有机或无机材料,由于线性电光效应,信号电场在包层中与其中的光导模消逝场发生耦合,将信号场的能量搭载到光载波上,从而实现信号调制。由于包层中弱的导模功率,因此可以预期包层调制下的材料光损耗是可以降低的,通过优化设计与分析发现适当降低波导芯层的尺寸可以弥补因包层调制引起的调制效率的下降。本文将简单介绍聚合物电光波导调制器的发展、研究、应用以及“包层调制”的基本概念。 二.光调制的基本概念和调制器的种类 1.光调制的一些基本概念 光调制就是将电信号加载到光波上并使得光波的可观测量,如位相、频率、振幅偏偏振,发生变化的过程。最简单直接的调制就是激光光源的内调制,它是利用调制信号直接控制激光器的振荡参数,使输出光特性随信号而变。在直接调制半导体激光二极管的过程中,不仅输出光强度随调制电流发生变化,而且输出光的频率也会发生波动,也就是说在幅度调制的同时还受到频率调制,特别是在信号频率进入微波时的高速调制情况下,这个现象称为“啁啾”特性。由于啁啾的存在,不仅使单个纵模的线宽展宽,而且在单模光纤中传播时,在色散的作用下将使信号的非线性失真加剧,从而限制了通讯系统的中继距离一般小于 80km。与内调制相对照,还存在另一种调制方式--外调制。所谓外调制,就是在激光器的外部设置调制器,利用调制信号作用于调制元件时所产生的物理效应(如电光、声光或磁光等),使通过调制器的激光束的某一参量随信号变化。相比于内调制,外调制方法不仅调制速率高,带宽大,而且无频率啁啾,因此成为当今大容量、长中继的WDM光纤通讯系统和高速光处理系统的标准方法。 调制时光波的任何一个特性参数(位相、频率、振幅、偏振)都可以被调制,相应地,光调制方式可以分为相位调制、振幅调制、频率调制、偏振调制。由于通常的光探测器的输出信号直接与入射光波的强度有关,探测器可以直接从强度调制波还原出调制信号。而相位调制或频率调制等必须采用外差接收来解调,在技术上比较复杂和困难,所以强度调制用的多。 2.光调制器的种类 按照调制器的工作原理,光调制器可以分为电光调制器、声光调制器、磁光调制器、电致吸收调制器。 电光调制器是利用介质的线性电光效应(Electro-optic Effect, EO )来工作的。由于电光效应,介质的折射率变化随信号电压线性改变,介质折射

基于液晶空间光调制器相位调制的波面转换

?激光元件与器件? 基于液晶空间光调制器相位调制的波面转换 范君柳1,冯秀舟2,方建兴2,朱爱敏1 1.苏州科技学院数理学院物理实验中心,苏州 215009; 2.苏州大学物理科学与技术学院,苏州 215006 提要:本文介绍了一种基于液晶空间光调制器(LCS LM )相位调制特性的波面转换方法,可将入射光变换成任意波面。测量了液晶空间光 调制器相位调制特性,得到相位和灰度的对应关系;分别以几何理论和G-S 算法为基础计算出衍射光学元件(DOE )的表面相位分布;将DOE 表面的相位分布转换为灰度分布显示在LCS LM 上,使得LCS LM 具有波面实时转换功能;并以高斯激光为入射光对其进行波面转换实验,实验结果证明了设计方法的准确性及可行性。 关键词:液晶空间光调制器;相位调制;波面转换中图分类号:O439,O436.1,O438 文献标识码:A 文章编号:0253-2743(2009)06-0007-02 Conversion of w ave front based on phase modulation of liquid crystal spatial light modulator FAN Jun -liu 1,FE NG X iu -zhou 2,FANGJian -xing 2,ZHU Ai -m in 1 1.Center of Physics Laboratory ,School of M athematical and Physical Sciences ,University of Science and T echnology of Suzhou ,Suzhou 215009,China ; 2.School of Physical Science and T echnology ,S oochow University ,Suzhou 215006,China Abstract :A method of wave -front conversion based on phase m odulation of liquid crystal spatial light m odulator (LCS LM )is proposed.W e obtain the rela 2tion between phase and scale through measuring the phase -m odulation characteristics of LCS LM.Phase distribution of diffractive optical element ’s (DOE )are calculated using geometrical theory and G-S alg orithm ,the LCS LM is capable of wave -front conversion by changing phase distribution into gray distribution which is displayed on LCS LM.Experiments of G auss beam ’s wave -front conversion prove the accuracy and feasibility of the design method. K ey w ords :liquid crystal spatial light m odulator ;phase m odulation ;wave -front conversion 收稿日期:2009-08-13 基金项目:苏州科技学院教学质量工程建设项目(2008YK A -03)资助。 作者简介:范君柳(1983-),男,助理实验师,主要从事信息光学和衍射光学的研究。 在激光技术的许多应用领域中,光束质量至关重要。例 如在激光加工、光学信息处理、存储与记录以及惯性约束核聚变(ICF )中往往需要使用形状各异甚至大小可变的激光光斑,而经常使用的单模激光光束的横截面上光强呈高斯分布,因此在实际应用中,根据不同的要求,人们常常需要将激光束波面进行转换,以达到改变激光束强度分布的目的。 目前主要有这样几种典型的光束波面变换方法:光楔列 阵(SW A )聚焦光学系统〔1〕、双折射透镜组〔2〕 、随机相位板及 二元光学元件(BOE )〔3〕 等方法。其中二元光学元件对入射光进行波面变换具有衍射效率高,光斑轮廓可调等优点,但是其质量水平受微精细加工技术发展水平的制约,且它的激光损伤阈值较低,在强激光系统的应用上还有困难。在本文中我们提出利用液晶空间光调制器(LCS LM )的相位调制特性〔4-8〕结合几何理论〔9,10〕和G-S 算法〔11,12〕实现对入射激光的波面变换,得到了预期的实验结果,该方法不仅成本、功耗低,尺寸小,重量轻,而且具有更大的设计自由度,通过算法的改变可以将入射光变换成任意波面。 1 理论分析 1.1 波面转换理论 波面转换通常需要衍射光学器件(Diffraction Optical E le 2ment -DOE )来实现,为了达到目标光强分布,需要设计器件表面的相位分布。而该设计过程是一个逆向过程,即已知输入光强分布和输出光强分布,来求解DOE 的相位分布,在这里我们主要利用几何理论和G-S (G erchberg -Saxton )算法来计算DOE 表面的相位分布。 我们首先运用这两种算法分别计算出DOE 的表面相位分布,然后在计算机上模拟入射高斯光经过具有如此表面相位分布的DOE 后的衍射结果(见图1)。其中图1(b )为运用几何理论将入射高斯光的波面转换成正方框形光束,图1(c )为运用G-S 算法将入射高斯光转换成椭圆光。模拟过程中,主要参数选取为:波长λ=532nm ,DOE 所在处光腰半径ω(z )=3.0mm ,DOE 衍射焦距选取为f =250mm ,物面与像面抽样点数均为800×800。1.2 LCS LM 的相位调制特性 对于由扭曲向列型液晶构成的液晶空间光调制器(Liq 2uid Crystal S patial Light M odulator -LCS LM )(结构如图2),运用 琼斯矩阵方法〔13〕 可得 T =cos γ〔cos (Ψ1-Ψ2+α)〕+αγ sin γ×sin (Ψ1-Ψ2+α)2 + β γsin γcos (Ψ1+Ψ2- α)(1)图1 计算模拟结果 图2 液晶空间光调制器结构图 7 范君柳等:基于液晶空间光调制器相位调制的波面转换 《激光杂志》2009年第30卷第6期 LASER JOURNA L (V ol.30.N o.6.2009)

空间光调制器的应用

DOI 10.1007/s11141-015-9547-8 Radiophysics and Quantum Electronics,Vol.57,Nos.8–9,January,2015 (Russian Original Vol.57,Nos.8–9,August–September,2014) APPLICATION OF THE PHASE LIGHT MODULATOR IN THE IMAGE OPTICAL ENCRYPTION SCHEME WITH SPATIALLY INCOHERENT ILLUMINATION A.P.Bondareva,N.N.Evtikhiev,V.V.Krasnov,? and S.N.Starikov UDC004.932.4+004.942 +535.42+535.8 We describe application of the phase liquid-crystal spatial light modulator HoloEyePLUTOVIS as an encoding element in the image optical encryption scheme with spatially incoherent illumi- nation.Optical encryption and numerical decryption of test images were conducted.The results of experiments demonstrate the e?ciency of the constructed optical encryption scheme. 1.INTRODUCTION Currently,we are witnessing the existence and intense development of the optical encryption meth-ods characterized by a high speed,simultaneous multichannel processing,and the absence of concomitant radiation in the radio-frequency band.Encryption systems in spatially coherent monochromatic light are widespread.One of the best-known systems uses the double random-phase encryption[1–5].In this case, encryption is performed in monochromatic spatially coherent light using two random phase masks.Appli-cation of random phase masks as two-dimensional encoding keys leads to the fact that such systems have a high cryptographic strength.However,because of the need to record phase,such systems require holo-graphic methods of recording and,correspondingly,complex optical schemes.Moreover,the use of random phase masks leads to a poor-quality encryption of images. To simplify the encryption schemes and improve the decryption quality,one can pass from spatially coherent to spatially incoherent radiation.In this case,recording of the encrypted image is no longer required and the holographic recording scheme becomes unnecessary.The encryption is performed by transmission of monochromatic spatially incoherent radiation from the encrypted object through a di?ractive optical element,resulting in the formation of an intensity distribution described by the object image convolution with a point spread function,namely,an impulse response of the di?ractive optical element in intensity[6, 7].This intensity distribution is the encrypted image recorded by a matrix photosensor. The fundamental possibility of optical encryption in incoherent light was demonstrated in[8],but using a random phase mask as the encoding di?ractive optical element precluded the achievement of an acceptable decryption quality.This is because the point spread function of a random phase mask is virtually unlimited in space and signi?cantly exceeds the size of the encrypted image.As a result,the photosensor records only the central part of the encrypted image,which leads to distortions of the decrypted image.To solve this problem,we suggest that the encoding element is not used as a random phase mask,but as a di?ractive optical element having a given spatially limited point spread function,with length smaller than the size of the encrypted image. ?vitally.krasnov@mail.ru National Nuclear Research University(NNRU),Moscow,Russia.Translated from Izvestiya Vysshikh Ucheb-nykh Zavedenii,Radio?zika,Vol.57,No.8–9,pp.693–701,August–September2014.Original article submitted November11,2013;accepted March31,2014. 0033-8443/15/5708-0619c 2015Springer Science+Business Media New York619

集成温度传感器

集成温度传感器AD590及其应用[ 标题:集成温度传感器AD590及其应用 htkj 等级:超级版主文章:199 积分:2698 门派:无门无派 注册:2005年...集成温度传感器AD590及其应用集成温度传感器AD590及其应用点击浏览该文件 温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段: 1.传统的分立式温度传感器(含敏感元件),主要是能够进行非电量和电量之间转换。 2.模拟集成温度传感器/控制器。 3.智能温度传感器。目前,国际上新型温度传感器正从模拟式想数字式、集成化向智能化及网络化的方向发展。 温度传感器的分类 温度传感器按传感器与被测介质的接触方式可分为两大类:一类是接触式温度传感器,一类是非接触式温度传感器。 接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这是的示值即为被测对象的温度。这种测温方法精度比较高,并可测量物体内部的温度分布。但对于运动的、热容量比较小的及对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。 非接触测温的测温元件与被测对象互不接触。常用的是辐射热交换原理。此种测稳方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测量温度场的温度分布,但受环境的影响比较大。 温度传感器的发展 1.传统的分立式温度传感器——热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精度;测量范围广,可从-50~1600℃进行连续测量,特殊的热电偶如金铁——镍铬,最低可测到-269℃,钨——铼最高可达2800℃。 2.模拟集成温度传感器 集成传感器是采用硅半导体集成工艺制成的,因此亦称硅传感器或单片集成温度传感器。模拟集成温度传感器是在20世纪80年代问世的,它将温度传感器集成在一个芯片上、可完成温度测量及模拟信号输出等功能。 模拟集成温度传感器的主要特点是功能单一(仅测量温度)、测温误差小、价格低、响应速度快、传输距离远、体积小、微功耗等,适合远距离测温,不需要进行非线性校准,外围电路简单。 2.1光纤传感器 光纤式测温原理

2 相位调制器的结构

2 相位调制器的结构 2.1 “lxl”形式的光相位调制器 传统的光学相位调制器 (体相位调制器或波导相位调制器),只有一条基本的光路,仅考虑单频光通过一个相位调制器的基本结构,即如图3所示的形式,我们称之为“lxl”形式的光相位调制器。 图3 相位调制器的基本结构图 当光信号通过相位调制器之后,输出光场的表达式为公式为: () () 0+2+=A =A m j t jf t j f t jf t LW LW out E e e ωπ (4) 本论文中,假设f(t)是单频正弦波信号,即: ()()() 00sin 2sin RF RF m m f t A f t A t π?ω?=+=+ (5) 2.1.1 体相位调制器 我们知道单轴晶体妮酸铿晶体 (3LiNbO ) 以及与之同类型的 3L iT aO 、3 BaTaO 酸铿等晶体,属于同一类晶体点群。它们光学均匀性好,不潮解,因此在光电子技术中经常使用。并且此类晶体在被施加外加电场之后,其折射率椭球就会发生“变形”。 以妮酸铿电光材料为例,将该晶体用于相位调制器,可以有以下几种基本的应用方式: 情况1:入射光沿 1 x 方向入射 精况1.l :入射光沿3x 方向偏振 情况1.2:入射光沿 2 x 方向偏振 情况2:入射光沿3x 方向入射 这里只讨论情况1.1,如下图(图4)所示:

图4 体相位调制器的基本结构图 如果入射光是万方向的线偏振光,外加电场信号V(t),则在该方向上的折射率变为: ' 3 23333 12 e e n n n n E γ==- (7) 光通过该调制器后的相位变化为: ()3 23312z e e V t n l n n l c c d ω ω?γ? ?= = - ??? (8) 体相位调制器是一种电光调制器,具有较大体积的分离器件。为了使通过的光波受到调制,需要改变晶体的光学性质,而这需要给整个晶体施加外加相当高的电压。 2.1.2 波导相位调制器 光波导相位调制器件可以把光波限制在微米量级的波导区中,并使其沿一定的方向传播。 光波导相位调制器是通过使用电光材料(如 lithium niobate(LN), lithium tantalate(LT),gallium arsenide(GaAs)等等)的电光特性以及一定的光波导结构,来实现光的相位调制的。 光波导相位调制器能使介质的介电张量(折射率)产生微小的变化,从而使两传播模式之间有一定的相位差,并且由于外场的作用导致波导中本征模传播特性的变化以及两不同模式之间的藕合。 以 3 LiNbO 晶体为例子,实际应用中常见的光波导相位调制器结构如下图(图5)所示:

光学传感器在医学中的应用

光学传感器在医学中的应用 生物医学传感器的研制越来越趋向于无创伤、集成化、智能化的方向发展。研制的多功能血流血氧传感器顺应了这一趋势。它利用先进的激光多普勒技术和光谱技术实现了微循环血流脉搏血氧饱和度人体生理信号的采集和转换该多功能传感器,为医学与生理学研究提供了极大的便利。 随着电子技术、激光技术和计算机技术的飞速发展生物医学仪器也有了长足的进步研究无创伤、集成化和智能化的生物医学传感器已成为国内外学者关注的热点。文中成功地使血流参数、脉搏血氧和脑血氧饱和度的检测传感器一体化研制出多功能血流血氧传感器。测定组织的血流在微循环基础研究和临床检查中具有重要意义 目前测定方法有同位素、荧光示踪、局部温度、红外摄像、超声多普勒、激光多普勒等,其中基于激光多普勒技术的传感器以其无创伤、适应范围广、操作简便而得到广泛的应用。但目前国内外用于临床的该类传感器均存在诸多不足,它们在光源和光电转换元件上分别采用氦氖激光器和光电倍增管,两者均体积庞大,需高压供电,使得整套仪器笨重、不安全、稳定性差。为解决上述技术问题,多功能血流血氧传感器采用体积小巧、低压省电、长寿命的红光、红外半导体激光器作为光源,光电转换采用小巧、廉价而灵敏度高的达林顿光敏三极管,使之具有小型化、灵敏度高、稳定性好、价格低廉等优点。血氧饱和度(SaO2)是血液中氧合血红蛋白(HbO2)的容量占全部血红蛋白(氧合血红蛋白HbO2和还原血红蛋白Hb之和)容量的百分比,它直接反映了人体供氧和氧代谢的状况,是呼吸循环系统的重要生理参数。传统用于血氧饱和度检测的血气分析法有创且步骤繁琐,不能进行连续的监测。而多功能血流血氧检测传感器则实现了脉搏血氧、脑血氧饱和度的无创实时监测。 血流检测原理血流检测原理基于生物组织中的激光多普勒效应。激光光源产生一定波长Κ的激光束进入人体微循环组织,在测量深度内的活动颗粒(主要是快速移动的血红细胞RBC)表面发生散射,其频率会发生改变,这种现象叫做多普勒频移(DopplerShift)效应。多普勒频移幅度与RBC的运动速度成正比,如下式。 由于微循环网络分布的复杂性、各微血管中血流速度的差异性以及激光在组织中散射的随机性,传感器检测到的多普勒频移信号,并不是单一频率的信号,而是有一定频谱宽度的信号。利用该信号的功率谱可以计算出各血流参数,如:流量(Q)、流速(V)、移动红细胞浓度(CMBC)等,在局部组织三者有如下关系: 血氧饱和度的检测基于朗伯—比尔定律(TheLambertBeerLaw)和光散射理论。朗伯—比尔定律是

集成光学考试总结讲解学习

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必 要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较

把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

纯相位空间光调制器动态控制光束偏转

文章编号:025827025(2006)0720899204 纯相位空间光调制器动态控制光束偏转 刘伯晗,张 健 (哈尔滨工业大学超精密光电仪器工程研究所,黑龙江哈尔滨150001) 摘要 提出并设计了一个采用液晶空间光调制器(L CSL M )作为光束动态偏转器件的无机械光束扫描系统,实现了光束的方向和强度的可编程控制,解决了远场任意图形的激光光束动态逼近问题。逼近方法采用纯相位调制技术和傅里叶迭代优化算法结合的衍射图形相位优化设计方法。介绍了点阵图形发生原理并给出实验装置图。实验结果显示,用该方法产生的二维阵列式光束,其光斑强度偏差度小于8%,图形发生响应时间小于100ms ,该实验结果能够满足多光束准确动态偏转的要求。该系统具有精确、响应快、无机械惰性等特点,在激光寻的、制导以及多目标威胁预警和反击中有着重要的研究价值。 关键词 激光应用;空间光调制器;光束偏转;优化算法;相位调制中图分类号 TN 249 文献标识码 A Dynamical Laser Beams Steering with Phase 2Only Spatial Light Modulator L IU Bo 2han ,ZHAN G Jian (I nstitute of Ult ra 2Precision O ptoelect ronic I nst rument Engineering ,H arbin I nstitute of Technology ,H arbin ,Heilong j iang 150001,China ) Abstract A non 2mechanical beam steering system is proposed and designed to resolve the problem of approaching the far 2field diff ractive pattern with laser beams.A beam steering method based on the phase only modulation with a liquid crystal spatial light modulator (L CSL M )is studied and described to control the light beams programmably.The Fourier iterative optimal algorithm is adopted to design the optimal phases approaching the expected far 2field diffractive pattern.The schematic diagram and the experimental set 2up are given.Results show that the method can generate 22D spots arrays with the intensity error rate less than 8%.The response time of generating the dynamical diffractive pattern is less than 100ms.With the merits of lightness ,precision and quick response ,this scanning system is of value in the fields of multi 2object tracing ,laser guiding and multi 2object defense.K ey w ords laser application ;spatial light modulator ;beam steering ;optimal algorithm ;phase modulation 收稿日期:2005210231;收到修改稿日期:2006202224 作者简介:刘伯晗(1977—),男,吉林人,哈尔滨工业大学博士研究生,主要从事光电测试、空间光信息处理方面的研究。E 2mail :hit_bohanliu @https://www.360docs.net/doc/a716198081.html, 导师简介:张 健(1944— ),男,江苏无锡人,哈尔滨工业大学教授,博士生导师,主要从事光电精密测量及信息处理方面的研究。E 2mail :zjlab @https://www.360docs.net/doc/a716198081.html, 1 引 言 目前,传统的激光雷达因采用万向节等具有机械惯性的扫描装置而使其性能受到限制,迫切需要一种精确、快速响应的无机械惯性的扫描元件来代替[1]。基于光学相位阵列技术的液晶空间光调制器,作为具有克服以上诸多缺点潜力的新型可编程衍射光学元器件正在得到广泛应用[1,2]。由于纯相位液晶空间光调制器可以实现相位的连续调制,这一点使其非常适用于空间光束偏转,因而其在激光 相控阵雷达和自由空间光互连等领域有广阔的应用前景[3,4]。据现有资料,国内对液晶空间光调制器 的研究尚处于起步阶段[5~8]。本文设计了一个能够发射任意衍射点阵图形的系统装置。设计中的一个核心部件是液晶空间光调制器(L CSL M ),是美国BNS (Boulder Nonlinear Systems )公司的专利产品,是近年发展起来的微电子机械(M EMS )领域的最新研究成果[9]。该系统采用液晶空间光调制器,通过对一组激光束的相位进行控制和波束合成,成   第33卷 第7期2006年7月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.33,No.7 J uly ,2006

电光调制器

第三章电光调制器

内容 ?电光调制的基本原理 ?铌酸锂(LiNbO3)电光调制器?半导体电吸收调制器(EAM)

电光调制 电光调制:将电信息加载到光载波上,使光参量随着电参 量的改变而改变。光波作为信息的载波。 强度调制的方式 作为信息载体的光载波是一种电磁场:()() 0cos E t eA t ωφ=+r r 对光场的幅度、频率、相位等参数,均可进行调制。在模拟信号的调制中称为AM 、FM 和PM ;在数字信号的调制中称为ASK 、FSK 和PSK 。调制器:将连续的光波转换为光信号,使光信号随电信号的变化而变化。性能优良的调制器必须具备:高消光比、大带宽、低啁啾、低的偏置电 压。

电光调制的主要方式 直接调制:电信号直接改变半导体激光器的偏置电流,使输出激光强度随电信号而改变。 优点:采用单一器件 成本低廉 附件损耗小 缺点:调制频率受限,与激光器弛豫振荡有关 产生强的频率啁啾,限制传输距离 光波长随驱动电流而改变 光脉冲前沿、后沿产生大的波长漂移 适用于短距离、低速率的传输系统

电光调制的主要方式 外调制:调制信号作用于激光器外的调制器上,产生电光、热光或声光等物理效应,从而使通过调制器的激光束的光参量随信号 而改变。 优点:不干扰激光器工作,波长稳定 可对信号实现多种编码格式 高速率、大的消光比 低啁啾、低的调制信号劣化 缺点:额外增加了光学器件、成本增加 增加了光纤线路的损耗 目前主要的外调制器种类有:电光调制器、电吸收调制器

调制器调制器连续光源 光传输 NRZ 调制格式 其他调制格式: ?相位调制 ?偏振调制 ?相位与强度调制想结合光传输RZ 调制格式 脉冲光源电光调制 折射率的改变通过 电介质晶体Pockels 效应和半导体材料 中的电光效应 光吸收的改变通过半导体材料中的Franz-Keldysh效应量子阱半导体材料中的量子限制的Stark 效应光与物质相互作用 相位调制 偏振调制 (双折射材料) 强度调制强度调制通过-干涉仪结构-定向耦合

光学鼠标传感器

光学鼠标传感器 光电134 苗书凡2013151415 光学鼠标传感器是生活中常见的传感器。它主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎以及控制芯片组成。 一.光学传感器的组成及光学特性: 1.光学鼠标控制芯片 光学鼠标控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。 CMOS传感器是一款非接触式芯片,集成有数字信号处理器(DSP)、双通道正交输出端口。芯片底部有感光眼,对物体拍照、传输、处理,得到移动的方向和距离。DSP产生的位移值,转换成双通道正交信号,配合鼠标控制器,将它转换成单片机能够处理的PS/2数据格式。 鼠标中OMO2芯片为CMOS型传感器,因此必须配有与之适应的高强度发光二极管。按标准安装配合之后,在一定范围之内,OMO2芯片可以进行正常的数据接收检验。 2. 光学透镜组件 光学透镜组件被放在光学鼠标的底部位置,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。 透镜中的光焦度为正值称为正透镜,因为对光起到汇聚作用,在光学鼠标中两面的透镜都是正透镜。按照形状不同,正透镜又可分为双凸、平凸和月凸三种。 3.发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 LED有非可见光和可见光两个系列。非可见光系列LED用辐射度来度量起

PZT型相位调制器1

OPE A K ? PZT-LSM 型相位调制器是一款光纤缠绕在压电陶瓷(PZT ) 上,利用PZT 压电效应所构成的相位调制器件,采用独特的多层缠绕方法,使得该产品具有高稳定性、高速调制特性,可选配多种类型光纤(见订购信息),可应用于开环相位调制解调、可变光纤延迟线、光纤干涉仪、& OTDR 、光纤震动校准等光学传感领域。该模块外形紧凑小巧,方便客户进行系统集成。低的电压驱动能力,适用于标准信号源驱动能力。 ? 极小封装尺寸。 ? 多种光纤类型可选(SM/PM )。 ? 高速调制速率。 ? 低电压驱动能力。 ? 独特缠绕方式。 应用领域 ? 光学(光纤)干涉仪 ? 相位调制器 ? 光纤延迟线 ? &OTDR ? 光纤传感

测试图谱 性能参数 最小值 典型值 最大值 备 注 1注:插入损耗在单模时含连接器损耗,保偏时不含连接器损耗。 性能指标 图1搭建等臂长马赫曾德干涉仪测试图谱 测试数据 图2 驱动频率29KHz 时,驱动电压与光纤膨胀量

订购参数 ESD Protection The laser diodes and photodiodes in the module can be easily destroyed by electrostatic discharge. Use wrist straps, grounded work surfaces, and anti-static techniques when operating this module. When not in use, the module shall be kept in a static-free environment. Laser Safety The module contains class 3B laser source per CDRH, 21CFR 1040.10 Laser Safety requirements. The module is Class IIIb laser products per IEC 60825-1:1993. 外形尺寸

集成光学考试总结

第一章 1. 集成光学的分类: ?按集成的方式划分:个数集成和功能集成 ?按集成的类型划分:光子集成回路(PIC)和光电子集成回路(OEIC) ?按集成的技术途径划分:单片集成和混合集成 ?按研究内容划分:导波光学和集成光路 2. 集成光学的定义 (1)集成光学是在光电子学和微电子学基础上,采用集成方法研究和发展光学器件和混合光学-电子学器件系统的一门新的学科。 (2)集成光学是研究介质薄膜中的光学现象,以及光学元器件集成化的一门学科。 (3)集成光学是研究集成光路的特性和制造技术以及与微电子学相结合的学科。 3. 集成光学的主要应用 光纤通信,光子计算机,光纤传感 4. 集成光学系统有什么优点? 1)集成光学系统与离散光学器件系统的比较 (1)光波在光波导中传播,光波容易控制和保持其能量。 (2)集成化带来的稳固定位。 (3)器件尺寸和相互作用长度缩短;相关的电子器件的工作电压也较低。 (4)功率密度高。沿波导传输的光被限制在狭小的局部空间,导致较高的功率密度,容易达到必要的器件工作阈值和利用非线性效应工作。 (5)体积小,重量轻。集成光学器件一般集成在厘米尺度的衬底上,其体积小,重量轻。 2)集成光路与集成电路的比较 把激光器、调制器、探测器等有源器件集成在同一衬底上,并用光波导、隔离器、耦合器和滤波器等无源器件连接起来构成的光学系统称为集成光路,以实现光学系统的薄膜化、微型化和集成化。 用集成光路代替集成电路的优点包括带宽增加,波分复用,多路开关。耦合损耗小,尺寸小,重量轻,功耗小,成批制备经济性好,可靠性高等。由于光和物质的多种相互作用,还可以在集成光路的构成中,利用诸如光电效应、电光效应、声光效应、磁光效应、热光效应等多种物理效应,实现新型的器件功能。 第二章 1. 光波导的分类 (a)平板波导(slab waveguide) (b)条形波导(strip waveguide) (c)圆柱波导(cylindrical waveguide) 2. 会利用射线光学方法分析平板波导的覆盖层辐射波、衬底层辐射波和传导波的形成条件。

ADPD188BI集成光学模块及其应用

Product Feature I产品特写 摘要:ADPD188BI是?种针对烟雾探测器性能更好而采用双波长技术设计的集成光学模块, 以优异的性能改善了电源管理,减少了烟雾探测器的误报,为用户提供了一种全新的烟雾探 测解决方案。介绍了该模块的特点和工作原理,并给岀了一种基于ARM Cortex-M0的烟雾探 测解决方案。 关键词:烟雾;ADPD188BI;探测器;单片机;ARM 中图分类号:TP212文献标识码:B文章编号:1006-883X(2019)03-0027-06 收稿日期:2019-02-22 ADPD188BI集成光学模块及其应用 曹婉新 上海大众工业学校,上海201800 —、前言 半国ADI公司生产了一种利用双波长技术进行光学烟雾和气雾检测的集成光学模块ADPD188BI"1,这是一种光电式烟雾检测系统,提供了一种全新的烟雾探测的解决方案。该模块集成高效率的光电式测量前端、蓝光和红外(IR)发光二极管(LED)以及光电二极管(PD)。这些器件釆用特制的封装,防止光线未先经过烟雾探测腔而直接从LED照进光电二极管。 其专用集成电路的前端(ASIC)由一个控制块、一个带有20位累加器的14位模数转换器(ADC)和三个可灵活独立配置的LED驱动器组成。控制电路包括灵活的LED信号和同步检测。模拟前端(AFE)功能优异,可以抑制通常由环境光引起的调制干扰所导致的信号偏移和损坏。可以通过1.8V的FC接口或串行外围接口(SPI)的端口进行数据输出和功能配置。 二'引脚功能和主要特点 1、引脚功能 ADPD188BI的引脚排列如图1所示,各引脚说明如表1所示。 2、主要特点 ADPD188BI的主要特点如下: ?性能优异,可减少烟雾探测器误报,满 足新监管标准; ?模拟前端(AFE)和集成设计可以改善电 源管理,从而延长电池寿命; -1.8V工作电压,能耗更低; ?精简的设计,体积更小,抗干扰能力更强: ?内含一个蓝光LED、一个红外LED和两 个光电探测器; Q Z 8 Q z o < 密 > S Q > - Z - I F X W PDC EXTJN2 NIC VDD2 VLED1 VLED3 NIC 图 ADPD188BI cs SCLK MOSI MISO GPIO1 GPIOO SDA J o s Q Z 2 s s U N O / B OJ J O N Q 二 G T 1 1ADPD188BI引脚图 传感器世界2019.03R] Vol.25NO.03Total285 KM

相关文档
最新文档