三角函数在实际生活中地应用

三角函数在实际生活中地应用
三角函数在实际生活中地应用

三角函数在实际生活中的应用

目录

摘要: (1)

关键词: (2)

1引言 (3)

1.1三角函数起源 (3)

2三角函数的基础知识 (4)

2.1下列是关于三角函数的诱导公式 (4)

2.2两角和、差的正弦、余弦、正切公式 (6)

2.3二倍角的正弦、余弦、正切公式 (6)

3.三角函数与生活 (6)

3.1火箭飞升问题 (6)

3.2电缆铺设问题 (7)

3.3救生员营救问题 (8)

3.4足球射门问题 (8)

3.5食品包装问题 (9)

3.6营救区域规划问题 (10)

3.7住宅问题 (10)

3.8最值问题 (12)

4 总结 (12)

Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems.

Keywords:mathematics trigonometric function Application of trigonometric function

摘要:

三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,总之它在教学和其他领域中具有重要的作用。本文将对一些关于三角函数在解决实际问题中的应用做简单的讨论。

关键词:数学三角函数三角函数的应用

1引言

三角函数是高中学习的一类基本的、重要的函数,他是描述客观世界中周期性变化规律的重要数学模型。三角函数是高中数学重要的基础知识之一,有着广泛的实际背景和应用空间.三角函数包括三角函数的概念及关系、诱导公式、三角函数的图象和性质、正弦型函数()Y

x Asin ω?+=的图象及应用、三角

恒等变换、解三角形.它不但在生活中的很多方面都有很广的应用,如:潮汐和港口水深、气象方面有气温的变化,天文学方面有白昼时间的变化,地理学方面有潮汐变化,物理方面有各种振动波,生理方面有人的情绪、智力、体力等.测量山高测量树高,确定航海行程问题,确定光照及房屋建造合理性等。

在数学的很多问题研究方面都有着广泛的应用。三角函数是对函数概念的深化,也是沟通代数,几何,与平面向量等的一种工具。其中三角函数在导数的应用也颇为广泛。

1.1三角函数起源

“三角学”,来自拉丁文 trigonometry 。现代三角学一词最初见於希腊文。最先使用trigonometry 这个词的是皮蒂斯楚斯

()

,15161613BartholomeoPitiscus -,他在1595年出版一本著作《三角学:解三角学的简明处理》,创造了这个新词。它是由τριγωυου(三角学)及 μετρειυ(测量)两字构成的,原意为三角形的测量,或者说解三角形。当时三角学还没有形成一门独立的科学,而是依附于天文学。因此解三角形构成了古代三角学的实用基础。

后来阿拉伯数学家专门的整理和研究三角学,但是他们并没有创立起一门独立的三角学。最后是德国数学家雷基奥蒙坦纳斯,真正把三角学作为数学的一个独立学科进行阐释。

“正三角函数包含于最早被称为三角学,“三角学”一词来自拉丁文Trigonometry ,原意是三角形。与其他科学一样,三角学也是解决实际问题中发展起来的。近代三角学是从欧拉的《无穷分析引论》开始的。欧拉用小写的拉丁字母a 、b 、c 表示三角形的三边,进一步简化了三角公式。欧拉还引用sinz 、cosz 、tanz 等表示z 角的三角函数的简写符号,这是三角函数的现代形式。

由于上述数学家及19世纪许多数学家的努力,形成了现代的三角函数符号与手拿教学的完整理论。

2三角函数的基础知识

在直角三角形ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,∠C 为直角。则定义以下运算方式:

sin A=∠A 的对边长/斜边长,sin A 记为∠A 的正弦;sin A =a/c cos A=∠A 的邻边长/斜边长,cos A 记为∠A 的余弦;cos A =b/c

tan A=∠A 的对边长/∠A 的邻边长, tan A =sin A/cos A =a/ b tan A 记为∠A 的正切; 当∠A 为锐角时sin A 、cos A 、tan A 统称为“锐角三角函数”。 Sin A =cos B sin B =cos A

在平面直角坐标系xOy 中,从点O 引出一条射线OP ,设旋转角为θ,设OP=r ,P 点的坐标为(x,y)。

该直角三角形中,θ对边为y 临边为x 斜边为r ,运算方法见表一

表1

基本函数 英文 表达式 语言描述

正弦函数 Sine sin θ=y/r 角θ的对边比斜边 余弦函数 Cosine cos θ=x/r 角θ的邻边比斜边 正切函数 Tangent tan θ=y/x 角θ的对边比邻边 余切函数 Cotangent cot θ=x/y 角θ的邻边比对边 正割函数 Secant sec θ=r/x 角θ的斜边比邻边 余割函数

Cosecant

csc θ=r/y

角θ的斜边比对边

2.1下列是关于三角函数的诱导公式

①终边相同的角的同一三角函数的值相等。由此可得到下列公式:

公式一:

sin(2)sin ,cos(2)cos ,

tan(2.)tan .k Z.

k k k πααπααπαα+=+=+=∈其中

②P (x ,y ),直线OP 的反向延长线OE 交圆O 于F 点,则F 点的坐标为F(-x, -y)由此可得到下列公式: 公式二:

sin()sin ,cos()cos ,tan()tan .

πααπααπαα+=-+=-+= 公式三:

sin()sin ,cos()cos ,tan()tan .

αααααα-=--=-=- 公式四:

sin()sin ,cos()cos ,tan()tan .

πααπααπαα-=-=--=- ()~2,,a k k z παπααα+∈-±我们可以用下面的话来概括公式一四:

的三角函数,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号。

公式五:

sin()cos ,

2cos()sin .2

π

ααπ

αα-=-= 由于

()22ππ

απα+=-- ,由公式四及公式五可得: 公式六:

sin(

)cos ,2

cos(

)sin .

2

π

ααπ

αα+=+=-

公式五、公式六可以概括如下:

2

π

α± 的正弦(余弦)函数值,分别等于α 的余弦(正弦)函数值,前面加上一个把α 看成锐角的符号。

2.2两角和、差的正弦、余弦、正切公式

sin()sin cos cos sin ,sin()sin cos cos sin ;cos()cos cos sin sin ,cos()cos cos sin sin ;

tan tan tan(),

1tan tan tan tan tan()1tan tan αβαβαβαβαβαβαβαβαβαβαβαβαβ

αβαβαβ

αβαβ

+=+-=-+=--=++=-+=

-

2.3二倍角的正弦、余弦、正切公式

2222222

sin 22sin cos ,cos 2cos sin 12sin 2cos 1,1cos 2sin ,

2

1cos 2cos 22tan tan 2,1tan ααααααααα

αα

αα

αα

==-=-=--=

+=

=-

3.三角函数与生活

实际生活中,三角函数可以用来模拟很多周期现象,如物理中简谐振动、生活中的潮汐现象,都可以建立三角函数的模型利用三角函数的性质解决有关问题;很多最值问题也可以转化为三角函数来解决,房地产、航海、测量、国防中都能找到三角函数的影子。因而三角函数解决实际问题应用极广,解决实际问题有一定的优越地位。

3.1火箭飞升问题

一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54。

(1)火箭到达B 点时距离发射点有多远? (2)火箭从A 点到B 点的平均速度是多少?

A

B O

C

解:(1)在Rt OCB △中,sin 45.54OB

CB

=

6.13sin 45.54 4.375OB =?≈(km )

火箭到达B 点时距发射点约4.38km (2)在Rt OCA △中,sin 43OA

CA

=

(3)6sin 43 4.09(km)OA =?=

()(4.38 4.09)10.3(km/s)v OB OA t =-÷=-÷≈

答:火箭从A 点到B 点的平均速度约为0.3km/s

3.2电缆铺设问题

如图,一条河宽a 千米,两岸各有一座城市

A B A B 和,与的直线距离是b 千米,今需铺设一

条电缆连A 与B ,已知地下电缆的修建费是c 万元/千米,水下电缆的修建费是d 万元/千米,假定河岸是平行的直线(没有弯曲),问应如何铺设方可使总施工费用达到最少?

分析:设电缆为AD DB +时费用最少,因为河宽AC 为定值,为了表示AD BD 和的长,不妨设.CAD θ∠=

解:设0090CAD θθ∠=<<(),

2222sec ,,tan AD a CB b a BD b a a θθ==-=--

∴总费用为

22sec tan y ad c b a a θθ=+--()

=22sin cos ad ac c b a θ

θ

-+-

问题转化为求sin cos ad ac u θ

θ

-=的最小值及相应的θ

值,而sin ?

cos d c u ac θθ

-=-表示点0d P c (,)与点

cos ,sin Q θθ()斜率-ac 倍0090θ<<(),有图可得Q 在

4

1

单位圆周上运动,当直线PQ 与圆弧切于点Q 时,u 取到最小值。然后通过三角函数的边角关系求出直线PQ 的斜率,再求出此时的最小值u 即可,可以根据实际问题带入求值。

A C D B

θ

3.3救生员营救问题

如图,某边防巡逻队在一个海滨浴场岸边的A 点处发现海中的B 点有人求救,便立即派三名救生员前去营救.1号救生员从A 点直接跳入海中;2号救生员沿岸边(岸边看成是直线)向前跑到C 点,再跳入海中;3号救生员沿岸边向前跑300米到离B 点最近的D 点,再跳入海中.救生员在岸上跑的速度都是6米/秒,在水中游泳的速度都是2米/秒.若45BAD ∠=,60BCD ∠=,三名救生员同时从A 点出发,请说明谁先到达营救地点B . 解:(1)在ABD △中,4590300A D AD ∠=∠==,,.

3002

cos 45AD

AB ∴==.

tan 45300BD AD ==.

在BCD △中,6090BCD D ∠=∠=,, 300

2003

sin 603

2BD BC ∴===.

300

1003

sin 603BD CD ∴===

1号救生员到达B 点所用的时间为3002

15022102=≈(秒),

2号救生员到达B 点所用的时间为

300100320032503

50191.7623-+=+≈(秒),

3号救生员到达B 点所用的时间为30030020062+=(秒)

191.7200210<<,2∴号救生员先到达营救地点B .

3.4足球射门问题

在训练课上,教练问左前锋,若你得球后,沿平行于边线GC 的直线EF 助攻到前场(如图,设球门宽AB a =米,球门柱B 到FE 的距离BF b =米),那么你推进到距底线CD 多少米时,为射门的最佳位置?(即射门角APB ∠最大时为射门的最佳位置)?请你帮助左前锋回答上述问题。 分析:此题关键在于求解射门时最大射门角,此时就是最佳位置。 若直接在非特殊APB 中利用边来求APB ∠的

G

E P

C

F

B

A

D A

B C

D

最值,显得比较繁琐,注意到APB APF BPF ∠=∠∠-,而后两者都在Rt 中,故可应用直角三角形的性质求解。

解:如图,设FP x APB BPF αβαβ=∠=∠=,,(、为锐角),()APF tg αβαβ∠=++=则,x b a +,tg β= x

b

, () [()]1()tg tg tg tg tg tg αββ

ααββαββ

+-=+=

++?-=

x

b b a x a

?++

)(。若令()a b b y x x +?=+,

则y ≥x

b b a x ?+?

)(2=b b a ?+)(2,当()a b b

x x +?=,即()x a b b =+?时,y 取到

最小值b b a ?+)(2,从而可知()x a b b =+?时,tg α取得最大值,即

2()a

tg a b b

α=

+?时,α有最大值。故当P 点距底线CD 为b b a ?+)(米时,为

射门的最佳位置。依图像知,在白天的9—15时这个时间段可供冲浪爱好者进行冲浪运动。

3.5食品包装问题

某糖果厂为了拓宽其产品的销售市场,决定对一种半径为1的糖果的外层包装进行设计。问能否设计出一个封闭的圆锥形状的外包装,其体积最小和所用材料达到最省?如果能,如何设计这个圆锥的底面半径和高?此时所用的外包装体积是多少?用料是多少?

分析:要求该圆锥的全面积和体积,需要知道它的下底面半径AC 、母线PA 及高PC ,这些变量之间的关系可以通过一个“角”把它们联系起来。

解:如图,设∠OAC=θ,则OC=1,下底面半径AC=R=cot θ,母线长l=θ

2cos R

,高h=Rtan2θ,θ∈(0,

4

π)。则S 锥=πRl+πR 2=πR(θ2cos R +R)=π

R 2(θ2cos 1+1) =πcot 2θ(2211tan 1tan θθ

-++1)=22

2tan (1tan )

πθθ?-; V=31πR 2h=31πR 2 ·Rtg2θ=31πR 3tg2θ=31πctg 3θθθ2

12tg tg -=31π)

1(2

22θθtg tg -

P A

B

C O

∴当且仅当tg 2θ=1-tg 2θ,即tg θ=

2

2

时,能使S 锥和V 同时取到最小值,此时R=2,h=2,即当圆锥的下底面半径和高分别为2、2时能同时满足条件,

外包装用料是8π,体积是π3

8

3.6营救区域规划问题

如图,在南北方向直线延伸的湖岸上有一港口A ,一机艇以60千米/小时的速度从A 出发,30分钟后因故障而停在湖里,已知机艇出发后先按直线前进,以后又改成正东,但不知最初的方向和何时改变方向。如何去营救,用图示表示营救的区域。

分析:1、要表示出一个区域,一般可在直角坐标系中表示,所以应首先建立直角坐标系;

2、题中涉及到方向问题,所以不妨用方向角θ作为变量来求解。

解:以A 为原点,过A 的南北方向直线为y 轴建立直角坐标系,如图:设机艇的最初航向的方位角为θ,设OP 方向前进m 到达点P ,然后向东前

进n 到达点Q 发生故障而抛锚。则30m n +=,令点Q 的坐标为(x,y ),

则???=+=θθcos sin m y n m x θ∈[0,2π]。

2222222222900AQ x y m n mnsin m n mn m n θ=+=++≤++=+=() ∵机艇中途东拐,22900x y ∴+<。…………① 又∵x+y=m(sin θ+cos θ)+n=2msin(θ+

4

π

)+n ≥m+n=30, ∴x+y ≥30…………②

满足不等式组①和②的点Q (x,y )所在的区域,按对称性知上图阴影区域所示。

3.7住宅问题

在某小区内,有一块地,这块地有这样三种情况: (1)是半径为10米的半圆;

(2)是半径为10米,圆心角为60的扇形; (3)是半径为10米,圆心角为120的扇形;

在这块地里种块矩形的草皮,具体见下图,应如何设计,使得此面积最大?面积

的最大值是多少。

分析1:第一种情况,如图所示:连结OC , 设BOC θ∠=,则10sin BC θ=,10s OB co θ=,

220c o s A B O B

θ== 200sin cos 100sin 2S AB BC θθθ

=?==矩形

sin 2 1 S 100

θ≤∴≤矩形

29045θθ==即,

这时10cos 4552,52BO AO BC ====

此时,点A 、D 分别位于点O 的左右方52处时S 取得最大值100。 分析2:第二种情况,连结OC ,

设BOC θ∠=,则10sin BC θ=,10s OB co θ=, 103

cot 60sin 3OA BC θ==

()103

(10cos sin )10sin 3S AB BC OB OA BC θθθ=?=-?=-

?矩形

2

1003100sin cos sin 3

503

50sin 2(1cos 2)3θθθθθ=-=--

1003503

sin(2)363πθ=

+-

当且仅当sin(2)16πθ+=时,即6πθ=时,2

max 5033S m

= 分析3:如图所示:连结OB,

设AOB θ∠=,则10sin AB θ=,10s OA co θ=, 100sin cos 50sin 2S OA AB θθθ

=?==矩形

A

θ

D B F

E C

O

θ

A

D

B F

E

C

O

A θ

D

B

E

C

O

当且仅当sin 21θ=时,即4π

θ=

时,max 50S =

3.8最值问题

如图,ABCD 是一块边长为100m 的正方形地皮, 其中

AST 是一半径为90AT m =的扇形小山,其余部分都是平地。

一开发商想在平地上建一个矩形停车场,使矩形的一个顶点 P 在弧ST 上,相邻两边CQ CR ,落在正方形的边BC CD ,上, 求矩形停车场PQCR 面积的最大值和最小值。 解:设θ=∠PAB , )900(00≤≤θ,延长RP 交AB 于M , 易得PQ=MB=AB —AM=100—90θcos ,RP=RM —PM=100—90θsin ,

从而θθθθθθcos sin 8100)cos (sin 900010000)sin 90100)(cos 90100(++-=--=PQCR S 矩形令

θθcos sin +=t ,)21(≤≤t ,

则2

181009000100002-?

+-=t t S PQCR

矩形-=t (4050950)9102+,故当910=t 时,PQCR S 矩形有最小值2950m ;当2=t 时,PQCR S 矩形有最大值2)2900014050(m -

涉及到角与边之间的相互关系,可以用边为变量建立函数关系,求解过程一

般可以利用三角函数的相关知识,如正弦、余弦定理、数形结合、三角函数的有界性、基本不等式、函数单调性等。

4 总结

三角函数的发展已经趋于完善,虽然一些不常用的函数接近舍弃,但其余的三角函数仍然在实际生活中发挥着重要的作用。国防、铁路建设、房地产建设、竞技比赛以及安全问题上都可以广泛应用,极大地方便了我们的日常生活。

参考文献

[1]史彩玉. 三角函数在实际中的应用[J]. 高中生,2005,04:37.

[2]慕泽刚. 三角函数在生活中的应用尝试[J]. 数学爱好者(高一人教大纲),2008,No.3802:49-50.

[3]许伟. 浅谈三角函数在三角形解题中的应用[J]. 湖州师范学院学报,2003,S1:32-35.

[4]刘兴文,谢日勤. 三角函数在铁路工程中的应用技术[J]. 科技创新导报,2008,No.9321:33-34.

[5].祝全力.三角函数的最值问题探索.中国科教创新导刊[J],2009,(3):72-77.

[6].张顺燕.数学教育与数学文化.数学通报,2005,2

三角函数在物理学中的应用

三角函数的应用 高考物理试题的解答离不开数学知识和方法的应用,三角函数在物理学中的应用最为广泛。借助物理知识渗透考查数学能力是高考和自主招生命题的永恒主题。高考物理考试大纲对学生应用数学工具解决物理问题的能力作出了明确要求。下面对三角函数的应用做一小总结。 公式总结 1.利用二倍角公式求极值 正弦函数二倍角公式 θθθcos sin 22sin = 如果所求物理量的表达式可以化成 θθcos sin A y = 则根据二倍角公式,有 θ2sin 2 A y = 当 0 45=θ时,y 有最大值 2 max A y = 2.利用和差角公式求物理极值 三角函数中的和差角公式为 βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =± 在力学部分求极值或讨论物理量的变化规律时,这两个公式经常用到,如果所求物理量的表达式为θθcos sin b a y +=,我们可以通过和差角公式转化为 )cos sin ( 2 2 2 2 22θθb a b b a a b a y ++++= 令 φcos 2 2 =+b a a , φsin 2 2=+b a b 则 )sin(22φθ++= b a y 当 0 90=+φθ时,y 有最大值 22max b a y += 3.利用求导求物理极值 4.三角函数中的半角公式 2cosa -12a sin = 2 cosa 12cos +=a

a a a a a cos 1sin sin cos 1cos 1cosa -12a tan +=-=+= a a a a a sin cos 1cos 1sin cos 1cosa 12a cot +=-=-+= 典型例题解析: 1、一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流离房顶,要设计好房顶的坡度,设雨滴沿房顶下淌时做无初速度无摩擦地运动,那么图1所示四种情况中符合要求的是( ) 【解析】雨滴沿房顶做初速度为零的匀加速直线运动,设房顶底边长为L ,斜面长为S ,倾角为θ,根据运动学公式2at 21S = 有θθsin gt 2 1cos 2L 2?=,解得θ θθ2s i n gL 2cos sin gL t = ?= ,当0 45=θ时,t 有最小值. 【答案】C 2、如图2所示,一辆1/4圆弧形的小车停在水平地面上。一个质量为m 的滑块从静止开始由顶端无摩擦滑下,这一过程中小车始终保持静止状态,则滑块运动到什么位置时,地面对小车的静摩擦力最大?最大值是多少? 【解析】设圆弧半径为R ,滑块运动到半径与竖直方向成θ角时,静摩擦力最大,且此时滑块速度为v ,根据机械能守恒定律和牛顿第二定律,应有 2 2 1cos mv mgR = ?θ ① R v m mg N 2 cos =-θ ② 由①②两式联立可得滑块对小车的压力 θcos 3mg N = 而压力的水平分量为 θθθθ2sin 2 3 cos sin 3sin mg mg N N x = ?=?= 设地面对小车的静摩擦力为f ,根据平衡条件,其大小 θ2sin 2 3 mg N f x = = 从f 的表达式可以看出,当θ=450 时,θ2sin =1有最大值,则此时静摩擦力的最大值 图2 图1

初中数学《锐角三角函数的应用》教案

初中数学《锐角三角函数的应用》教案 31.3锐角三角函数的应用 教学目标 1.能够把数学问题转化成数学问题。 2.能够错助于计算器进行有三角函数的计算,并能对结果的意义进行说明,发展数学的应用意识和解决问题的能力。过程与方法 经历探索实际问题的过程,进一步体会三角函数在解决实际问题过程中的应用。 情感态度与价值观 积极参与探索活动,并在探索过程中发表自己的见解,体会三角函数是解决实际问题的有效工具。 重点:能够把数学问题转化成数学问题,能够借助于计算器进行有三角函数的计算。 难点:能够把数学问题转化成解直角三角形问题,会正确选用适合的直角三角形的边角关系。 教学过程 一、问题引入,了解仰角俯角的概念。 提出问题:某飞机在空中A处的高度AC=1500米,此时从飞机看地面目标B的俯角为18,求A、B间的距离。 提问:1.俯角是什么样的角?,如果这时从地面B点看飞机呢,称ABC是什么角呢?这两个角有什么关系?

2.这个△ABC是什么三角形?图中的边角在实际问题中的意义是什么,求的是什么,在这个几何图形中已知什么,又是求哪条线段的长,选用什么方法? 教师通过问题的分析与讨论与学生共同学习也仰角与俯角 的概念,也为运用新知识解决实际问题提供了一定的模式。 二、测量物体的高度或宽度问题. 1.提出老问题,寻找新方法 我们学习中介绍过测量物高的一些方法,现在我们又学习了锐角三角函数,能不能利用新的知识来解决这些问题呢。 利用三角函数的前提条件是什么?那么如果要测旗杆的高度,你能设计一个方案来利用三角函数的知识来解决吗? 学生分组讨论体会用多种方法解决问题,解决问题需要适当的数学模型。 2.运用新方法,解决新问题. ⑴从1.5米高的测量仪上测得古塔顶端的仰角是30,测量仪距古塔60米,则古塔高()米。 ⑵从山顶望地面正西方向有C、D两个地点,俯角分别是45、30,已知C、D相距100米,那么山高()米。 ⑶要测量河流某段的宽度,测量员在洒一岸选了一点A,在另一岸选了两个点B和C,且B、C相距200米,测得ACB =45,ABC=60,求河宽(精确到0.1米)。 在这一部分的练习中,引导学生正确来图,构造直角三角形

三角函数实际应用

1.如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号) 2.如图,甲乙两幢楼之间的距离BD=30m,自甲楼顶端A处测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为26.6°,求甲、乙楼两幢楼的高度. (参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50) 3.如图,哨兵在灯塔顶部A处测得遇难船只所在地B处的俯角为60°,然后下到灯塔的C 处,测得B处的俯角为30°.已知AC=40米,若救援船只以5m/s 的速度从灯塔底部D处出发,几秒钟后能到达遇难船只的位置?(结果精确到个位). 4.如图,大楼AB的高为16m,远处有一塔CD,小在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)

5.在一次数学活动课上,老师带领学生去测一条南北流向河流的河宽,如图所示,某学生在河东岸点A处观测河对岸水边点C,测得C在A北偏西30°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西60°的方向上.请你根据以上数据,帮助该同学计算出这条河的宽度.(精确到0.1,参考数据:). 6.校园中的一棵大树PC在下的影长为AC,在树的影长端点A处测得∠PAC=30°,在B点(点B在直线AC上)测得∠PBC=60°,如果AB=12m,求树高PC和树的影长AC. 7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,试求CD的长. 8.在一个明媚、清风徐徐的周末,小明和小强一起到郊外放风筝.他们把风筝放飞后,两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高? (2)求风筝A与风筝B的水平距离.(结果精确到0.01m,≈1.414,≈1.732)

三角函数公式大全81739

三角函数公式大全三角函数定义 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系: 记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项 数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

高中三角函数公式大全

三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) = cot(A+B) =cot(A-B) = 倍角公式 tan2A =Sin2A=2SinA?CosA Cos2A =Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 半角公式 sin()=cos()= tan()=cot()= tan()== 和差化积 sina+sinb=2sincossina-sinb=2cossin cosa+cosb = 2coscoscosa-cosb = -2sinsin tana+tanb= 积化和差 sinasinb = -[cos(a+b)-cos(a-b)]cosacosb = [cos(a+b)+cos(a-b)] sinacosb = [sin(a+b)+sin(a-b)]cosasinb = [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(-a) = cosacos(-a) = sina sin(+a) = cosacos(+a) = -sina sin(π-a) = sinacos(π-a) = -cosa sin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数在实际中的应用

专题3 锐角三角函数在实际中的应用 解题技巧: 1.如果图形不是直角三角形,一定要考虑添加适当的辅助线(作平行线或作垂线),构造直角三角形,然后选择恰当的三角函数(正弦、余弦或正切); 2.在求线段长度的时候,如果不能直接求出长度,可以考虑列方程求值。 一仰角、俯角问题 1.某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上). (1)求小敏到旗杆的距离DF.(结果保留根号) (2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7) 2.如图所示,某古代文物被探明埋于地下的A处,由于点A上方有一些管道,考古人员不能垂直向下挖掘,他们被允许从B处或C处挖掘,从B处挖掘时,最短路线BA与地面所成的锐角是56°,从C处挖掘时,最短路线CA与地面所成的锐角是30°,且BC=20m,若考古人员最终从B处挖掘,求挖掘的最短距离.(参考数据:sin56°=0.83,tan56°≈1.48,≈1.73,结果保留整数)

3.(2014潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB. 4.一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m 到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°, (1)求∠BPQ的度数; (2)求该电线杆PQ的高度.(结果精确到1m) 5.如图,为了开发利用海洋资源,某勘测飞机测量一岛屿两端A、B的距离,飞机以距海平面垂直同一高度飞行,在点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,已知岛屿两端A、B的距离541.91米,求飞机飞行的高度.(结果精确到1米,参考数据:≈1.73,≈1.41)

锐角三角函数及应用

锐角三角函数【知识梳理】 【思想方法】 1. 常用解题方法——设k法 2. 常用基本图形——双直角 【例题精讲】 例题1.在△ABC中,∠C=90°. (1)若cosA=1 2 ,则tanB=______;(?2)?若cosA= 4 5 ,则tanB=______. 例题2.(1)已知:cosα=2 3 ,则锐角α的取值范围是() A.0°<α<30° B.45°<α<60° C.30°<α<45° D.60°<α<90° (2)当45°<θ<90°时,下列各式中正确的是() A.tanθ>cosθ>sinθ B.sinθ>cosθ>tanθ C.tanθ>sinθ>cosθ D.sinθ>tanθ>cosθ 例题3.(1)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,∠CAB=60°,?CD=3,BD=23,求AC,AB的长. 例题4.“曙光中学”有一块三角形状的花园ABC,有人已经测出∠A=30°,AC=40米,BC=25米,你能求出这块花园的面积吗? 例题5.某片绿地形状如图所示,其中AB⊥BC,CD⊥AD,∠A=60°,AB=200m,CD=100m,?求AD、BC的长.

【当堂检测】 1.若∠A 是锐角,且cosA=sinA ,则∠A 的度数是( ) A.300 B.450 C.600 D.不能确定 2.如图,梯形ABCD 中,AD ∥BC ,∠B=450,∠C=1200,AB=8,则CD 的长为( ) A.638 B.64 C.328 D.24 3.在Rt △ABC 中,∠C=900,AB=2AC ,在BC 上取一点D ,使AC=CD ,则CD :BD=( ) A.213+ B.13- C.2 3 D.不能确定 4.在Rt △ABC 中,∠C=900,∠A=300,b=310,则a= ,c= ; 5.已知在直角梯形ABCD 中,上底CD=4,下底AB=10,非直角腰BC=34, 则底角∠B= ; 6.若∠A 是锐角,且cosA=5 3,则cos (900-A )= ; 7.在Rt △ABC 中,∠C=900,AC=1,sinA= 23,求tanA ,BC . 8.在△ABC 中,AD ⊥BC ,垂足为D ,AB=22,AC=BC=52,求AD 的长. 9. 去年某省将地处A 、B 两地的两所大学合并成一所综合性大学,为了方便两地师生交往,学校准备在相距2km 的A 、B 两地之间修一条笔直的公路,经测量在A 地北偏东600方向,B 地北偏西450方向的C 处有一个半径为0.7km 的公园,问计划修筑的这条公路会不会穿过公园?为什么? B A D C A B C D C A B 第2题图 第8题图 第9题图

三角函数公式推导和应用大全

三角函数公式推导和应用大全 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数看似很多、很复杂,但只要掌握了三角函数的本质及部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的部规律及本质也是学好三角函数的关键所在 中文名 三角函数公式 外文名 Formulas of trigonometric functions 应用学科 数学、物理、地理、天文等 适用领域围 几何,代数变换,数学、物理、地理、天文等 适用领域围 高考复习 目录 1 定义式 2 函数关系 3 诱导公式 4 基本公式 ?和差角公式 ?和差化积 ?积化和差 ?倍角公式 ?半角公式 ?万能公式 ?辅助角公式 5 三角形定理 ?正弦定理 ?余弦定理 三角函数公式定义式 编辑 锐角三角函数任意角三角函数 图形 直角三角形

任意角三角函数正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典. 三角函数公式函数关系 编辑 倒数关系: ; ; 商数关系: ; . 平方关系: ; ; . 三角函数公式诱导公式 编辑 公式一:设 为任意角,终边相同的角的同一三角函数的值相等:

公式二:设 为任意角, 与 的三角函数值之间的关系: 公式三:任意角 与 的三角函数值之间的关系: 公式四: 与 的三角函数值之间的关系: 公式五: 与 的三角函数值之间的关系:

锐角三角函数的实际应用问题

锐角三角函数的实际应用问题 一、《数学新课程标准》课标要求 《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(掌握)。 数学离不开生活,生活也离不开数学。在实际生活中,有不少问题的解决都涉及到数学中直角三角形的边、角关系。而锐角三角函数的实际应用注重联系学生的生活实际,侧重于解决与学生生活比较接近的实际问题,突出了学数学、用数学的意识与过程。 二、考向分析 结合近五年中考试题分析,锐角三角函数的内容考查主要有以下特点: 1.命题方式为运用锐角三角函数解决与直角三角形有关的实际问题. 题型解答题,以中档题出现.分值都是9分; 2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题; 三、锐角三角函数的实际应用这道题的价值 1.它是代表初中几何图形的计算中的一个最高水平; 2.此题蕴含的数学思想比较多,如化归思想、方程思想等; 3.能加入实际生活的背景,增强学生的数学应用意识; 4.能把学生的基本思想、基本方法、基本能力呈现出来。 四、近五年锐角三角函数的实际应用中考试题变与不变 1.价值不变

2.基本模型不变; 3. 2012.201 4.201 5.2016四年都是考察解直角三角形的应用-仰角俯 角问题.2013年考察解直角三角形的应用-坡度坡角问题. 4. 2012. 2013. 2016年的都能在图中找到与已知和未知相关联的直 角三角形,2014.2015年要通过作高或垂线构造直角三角形,把实际 问题划归为直角三角形中边角关系问题加以解决. 5.外形变化,实际背景变化,一些条件和结论的变化。 五、近五年锐角三角函数的实际应用中考试题回顾 1.(河南省2012)(9分)某宾馆为庆祝开业,在楼前悬挂了许 多宣传条幅。如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直 固定。小明为了测量此条幅的长度,他先测得楼顶A 点的仰角为45°,已知点C 到大厦的距离BC =7米,∠ABD =90°.请根据以上数据求条幅 的长度(结果保留整数。参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86). 考点: 解直角三角形的应用- 【解析】设AB x =米, ∴45,90.AEB ABE BE AB x ??∠=∠=∴== 在Rt ABD 中,tan ,AB D BD ∠= 即tan 31.16x x ?=+ ∴16tan 31160.624.1tan 3110.6 x ???=≈=-- 第20题

锐角三角函数及其应用真题练习

锐角三角函数及其应用 命题点1 直角三角形的边角关系 1. (怀化6题4分)如图,在平面直角坐标系中,点A的坐标为(3,4),那么sinα的值是() A. 3 5B. 3 4C. 4 5D. 4 3 第1题图第3题图 2. (怀化10题4分)在Rt△ABC中,∠C=90°,sin A=4 5,AC=6 cm.则BC的长度为() A. 6 cm B. 7 cm C. 8 cm D. 9 cm 3. (株洲15题3分)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AB=10,EF=2,那么AH 等于________. 4. (张家界16题3分)如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD= 30°,tan∠BAC=23 3,CD=3,则AC=________. 第4题图 命题点2 锐角三角函数的实际应用 5. (益阳7题5分)如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB =α,则拉线BC的长度为(A、D、B在同一条直线上)() A. h sinα B. h cosα C. h tanα D. h·cosα

第5题图第6题图第7题图 6. (益阳8题3分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等,小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为() A. 1 1-sinα B. 1 1+sinα C. 1 1-cosα D. 1 1+cosα 7. (岳阳14题4分)如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了________米. 8. (邵阳22题8分)图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC、OB与水平面所形成的夹角∠OCA、∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm,温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73). 第8题图 9. (郴州22题8分)如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100 km为半径的圆形区域,请问计划修建的这条高速铁路是否

中考数学专题复习——锐角三角函数的实际应用

课题:锐角三角函数的实际应用 【基础知识回顾】 知识点1:锐角三角函数的概念(正弦、余弦、正切、余切) 技巧点拨: ①弦——分母都是斜边 ②正弦——分子是正对的边(谐音“正邪”) ③切——垂直的意思,只与直角边有关 ④正切——分子是正对的边 ⑤余——剩余的意思 余弦——分子是剩下的直角边(即邻边) 余切——分子是剩下的直角边(即邻边) 简记为:正弦——对比斜(或正比斜) 正切——对比邻 余弦——邻比斜 知识点2:常见的锐角三角函数值 三角函数 30° 45° 60° 技巧点拨 sin α 21 22 23 分母都是2,分子分别是 √13 cos α 2 3 22 21 分母都是2,分子分别是 3√1 tan α 33 1 3 分母都是3,分子分别是 3、1、3 【新课知识讲解】 知识点3:解直角三角形 1、解直角三角形的概念

在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直 角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。 2、解直角三角形的理论依据 在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90°(三角形角和) (3)边角之间的关系:(锐角三角函数) b a B a b B c a B c b B a b A b a A c b A c a A ========cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin 知识点4:直击中考——解直角三角形的实际应用:测距、测高、测长 等 例1、如图,直升飞机在跨河大桥AB 的上方点P 处,此时飞机离地面的高度PO =450 m ,且A ,B ,O 三点在一条直线上,测得∠α=30°,∠β=45°,求大桥 AB 的长(结果保留根号). 【分析】 第一步:确定相关直角三角形 本题中∠α、∠β分别在Rt ΔAOP 、Rt ΔBOP 中(由平行线错角相等转化已知角) 第二步:分别在直角三角形中列出已知角的锐角三角函数值 第三步:代入已知条件求值,并简答 【答案】 由题意得,ΔAOP 、ΔBOP 均为直角三角形, ∠PAO=∠α=30°,∠PBO=∠β=45°,PO=450m

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度( 坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 :i h l =h l α

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数在解题中的应用

论文提要 三角函数是高中数学的重点内容,也是历年高考的重点和热点内容,在高考数学试卷中占有很大的比例,三角函数的性质和图象是三角函数的重要知识点.三角函数是数学教学中的重要内容之一在解题过程中,三角函数常常与三角形密切结合在一起,灵活运用三角函数的知识以及三角形本身的独特性质.三角函数是学习高等数学的必备基础知识之一,学习时要注重三角知识的基础性,突出三角函数的周期性、单调性、奇偶性等性质.以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识.本文介绍了在平时教学中我们应有意识地将各种数学思维方法贯穿在其中,有效的训练学生的思维能力,并举例说明巧用三角函数的一些性质解决一些求值、求参数范围、三角函数的单调性、奇偶性等问题.

论三角函数在解题中的应用 王宪 摘要:三角函数是高中数学的重点内容,也是历年高考的重点和热点内容,在高考数学试卷中占有很大的比例,三角函数的性质和图象是三角函数的重要知识点.三角函数是数学教学中的重要内容之一在解题过程中,三角函数常常与三角形密切结合在一起,灵活运用三角函数的知识以及三角形本身的独特性质。本文介绍了在平时教学中我们应有意识地将各种数学思维方法贯穿在其中,有效的训练学生的思维能力,并举例说明巧用三角函数的一些性质解决一些求值、求参数范围、三角函数的单调性、奇偶性等问题。 关键词:三角函数三角形公式定理 高中数学的三角函数是比较难学的,也是高考必考内容.其涉及的基础知识、数学思想方法在数学和其它学科中都有广泛的运用.本文通过实例介绍几种常用的数学解题思想在三角函数中的应用. 一.培养三角函数应用于解题的思想 1. 分类的思想 分类讨论方法又称逻辑划分,中学数学最常用的数学思想方法之一,也是高考数学中常考常新的数学思想. 分类讨论就是依据一定的标准,对问题进行分类、求解,然后综合出问题的答案.在三角函数中主要对角的终边所在的象限的三角函数值等进行分类. 2. 数形结合的思想 数形结合方法是指将数(量) 与图形结合起来进行分析、研究、解决问题的一种思维策略,数形结合思想可以使抽象的复杂的数量关系通过几何图形直观地表现出来.在三角函数的学习过程中,应把三角函数的性质融于函数的图形之中,充分利用三角函数的图像来解决实际问题. 3. 函数与方程思想 方程思想是指对所求的问题通过列方程(组) 使问题获解,有些三角函数问题通过引入一个新的变量,转化命题的结构,经过变形与比较,建立起含有特定字母系数的方程组,进而

浅谈“单位圆”在三角函数中的应用(1)

浅谈“单位圆”在三角函数中的使用 胡海光 (宝鸡文理学院数学系陕西宝鸡721013) 摘要:新课程用单位圆定义任意角的三角函数,提升了单位圆、三角函数线的地位,三角函数的知识结构和方法体系也发生了一些变化,利用单位圆本身直观、形象、准确、方便等特点,再结合相关的数学知识,可以使问题化难为易,化繁为简,思路清晰,方法明确。探究它在新课程三角函数公式推导和性质中的使用及解题中的使用,这样不但能使学生掌握用单位圆解题的方法,而且能激发学生的学习兴趣。 关键字:单位圆;诱导公式;三角函数;使用 1.引言 新课标指出:学生的数学活动不应只限于接受、记忆、模仿和练习,应倡导自主探索、动手实践、合作交流、阅读自习等学习数学的方式,通过各种不同形式的自主学习、探索活动,不但能让学生体验数学发现和创造的历程,培养他们的数学思维能力和创新意识,而且可以大大减少课堂的教学时间。因此,我们在教学中应充分挖掘教材的问题背景,逐渐培养学生的自主学习、自主探索等学习习惯。基于这种目的,在新课改下,我们可以将三角函数章节学习统一在单位圆和三角函数线之下,利用数形结合让学生理解知识的来龙去脉、推导过程,最主要的是使学生学会用联系的观点看三角函数,研究三角函数的定义、公式、图象和性质,明白如何用单位圆和三角函数线研究问题,动态地分析问题和解决问题。 2.单位圆的认识 单位圆是新课标里刚引进的新概念,学生受老教材的影响对单位圆的认识很模糊,为了让学生能很好的利用单位圆解决三角函数问题,笔者认为首先要了解单位圆的概念、为什么用单位圆上点的坐标定义三角函数及用单位圆上点的坐标定义三角函数的意义。 2.1单位圆的定义 所谓单位圆,就是在直角坐标系中,以原点O为圆心,以单位长度为半径的圆。如下图所示: 2.2为什么用 单位圆上点的坐标定义三a

2020-2021学年九年级中考专题复习:锐角三角函数及其应用(含答案)

2020-2021中考专题复习:锐角三角函数及其应用 一、选择题 1. (2020·玉林)sin 45°的值是( ) A .12 B .2 C .2 D .1 2. (2019?天津) 60sin 2的值等于 A .1 B .2 C .3 D .2 3. 在 Rt △ABC 中,∠C =90°,sin A =4 5,AC =6 cm .则BC 的长度为( ) A . 6 cm B . 7 cm C . 8 cm D . 9 cm 4. 某简易房示意图如图所示,它是一个轴对称图形,则房屋顶上弦杆AB 的长为( ) A.95sin α m B.95cos α m C.59sin α m D.59cos α m 5. (2019·浙江杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在 同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于 A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx

6. (2020?湘西州)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上, 矩形的另一个顶点D 在y 轴的正半轴上,矩形的边AB =a ,BC =b ,∠DAO =x ,则点C 到x 轴的距离等于( ) A .a cos x +b sin x B .a cos x +b cos x C .a sin x +b cos x D .a sin x +b sin x 7. 如图,以 O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵ 上一点(不与A ,B 重合), 连接OP ,设∠POB =α,则点P 的坐标是( ) A . (sin α,sin α) B . (cos α,cos α) C . (cos α,sin α) D . (sin α,cos α) 8. 如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E , 若∠A =30°,则sin ∠E 的值为( ) A . 12 B . 22 C . 32 D . 33 二、填空题 9. 【题目】 (2020·攀枝花)sin60?= . 10. 如图,在Rt △ABC 中,∠C =90°,BC =15,tanA = 15 8 ,则AB =________. 11. (2019·浙江衢州)如图,人字梯AB ,AC 的长都为2米,当α=50°时,人字梯顶端离地面的 高度AD 是__________米(结果精确到0.1m .参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).

中考数学 全面突破:第十二讲 锐角三角函数及其实际应用

第十二讲 锐角三角函数及其实际应用 命题点分类集训 命题点1 特殊角的三角函数值 【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分). 【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现. 1. sin 60°的值等于( ) A . 12 B . 22 C . 3 2 D . 3 1. C 2. 下列式子错误.. 的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30° 2. D 选项 逐项分析 正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1 tan75° ×tan75°=1 √ C sin 2A +cos 2A =1 √ D ∵sin60°= 32,2sin30°=2×1 2 =1,∴sin60°≠2sin30° × 3. 已知α,β均为锐角,且满足|sin α-12 |+(tan β-1)2 =0,则α+β=________. 3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =1 2,tan β =1,又因为α、β均为锐角,则α=30°, β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系 【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边 及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值. 【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注. 4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34 B . 43 C . 35 D . 45

相关文档
最新文档