三角函数模型的实际应用

三角函数模型的实际应用
三角函数模型的实际应用

三角函数模型的实际应用

三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.下面通过几个具体实例,说明三角函数模型的实际应用.

1 直接给出三角函数模型的应用题

例1 (2012年青岛市调考题)某专业调查队在调查某商品的出厂价格和它的市场销售价格时发现:

信息1:该商品的出厂价格是在6元的基础上按月份随函数

y1=a1sin(ω1x+φ1)+b1波动的.已知3月份出厂价格达到最高,为8元,然后逐渐降低,到7月份出厂价格达到最低,为4元.

信息2:该商品的销售价格是在8元的基础上,按月份随函数

y2=a2sin(ω2x+φ2)+b2波动的.已知5月份销售价格达到最高,为10元,然后逐渐降低,到9月份销售价格达到最低,为6元.(1)根据上述信息,求该商品的出厂价格y1(元/件)和销售价格y2(元/件)与月份x之间的函数关系式;

(2)若某经销商每月购进该商品m件,且当月能售完,则在几月份盈利最大?并说明理由.

解析(1)依题意,得b1=8+42=6,a1=2,t1=2×(7-3)=8,

所以ω1=2πt1=π4,y1=2sinπ4x+φ1+6.

将点(3,8)代入函数y1=2sinπ4x+φ1+6,得φ1=-π4,

1.6 三角函数模型的简单应用

1.6 三角函数模型的简单应用 课堂训练 一、选择题 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1- D .6 2. 2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ) . A .-a B .2+a C .2-a D .4-a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .??? ??ππ,2 B .()π,0 C .?? ? ??2,0π D .?? ? ??2,4ππ 4.若函数 )(x f 是奇函数,且当0x 时,) (x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( ) A .y=x x x x cos cos 22-+ B .y=x x x x cos sin cos sin -+ C .y=2cosx D .y=lg(sinx+x 2sin 1+) 二、填空题 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知( )sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则()2f -=__________. 8.若?>30cos cos θ ,则锐角θ的取值范围是_________. 9.由函数??? ??≤≤=656 3sin 2ππx x y 与函数y =2的图象围成一个封闭图形,这个封闭图形 的面积是_________. 10.函数1 sin(2)2 y x θ=+的图象关于y 轴对称的充要条件是_________. 三、解答题 11.如图,表示电流强度I 与时间t 的关系式),0,0)(sin(>>+=ω?ωA t A I 在一个周期 内的图象. ①试根据图象写出)sin(?ω+=t A I 的解析式

三角函数模型的简单应用

课题(章节)1.6 三角函数模型的简单应用(二) 教学目标 能正确分析收集到的数据,选择恰当的三角函数模型刻画数据所蕴含的规律; 能根据问题的实际意义,利用模型解决有关实际问题; 通过三角函数模型的简单应用,培养学生应用数学知识解决问题的能力。 教学重点用三角函数模型解决具有周期变化规律的实际问题 教学难点将某些实际问题抽象为三角函数模型,对实际意义的数学解释 课的类型新授课时间45分钟 教学时数1课时教具几何画板课件,计算器 板书设计 (提纲)三角函数模型的简单应用(二) 将实际问题抽象为三角函数模型:建模的基本思路: 例题:1.根据数据作散点图 2.根据图像进行函数拟合 3.选择恰当的函数模型 本题小结:4.利用函数模型解决实际问题 教学过程: 新课引入: 问题:对于三角函数模型,我们都学习了哪几个方面的应用? 引入:利用三角函数模型我们还可以解决哪些问题呢? 教学情景: 将实际问题抽象为三角函数模型: 例:海水受日月的引力,在一定时候发生涨落的现象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋。下面是某港口在某季节每天的时间与水深关系表: 时刻水深/米时刻水深/米时刻水深/米 0:00 5.0 9:00 2.5 18:00 5.0 3:00 7.5 12:00 5.0 21:00 2.5 6:00 5.0 15:00 7.5 24:00 5.0 选用一个函数来近似描述这个港口的水深与实间的函数关系,给出整点时的水深的近似数值(精确到0.001); 一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),该船何时能进入港口?在港口能呆多久? 若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3米的速度减少,那么该船在什么时候必须停止卸货,将船驶向较深的水域? 分析:1.观察表格中的数据,你发现了什么规律?(从所给数据中发现周期性变化规律); 2.要求学生根据数据作出散点图,观察徒刑,你认为可以用怎样的函数模型来刻画其中的规律?(引导学生根据散点图的特点选择函数模型); 3.引导学生与“五点法”联系,求出函数模型的解析式; 4.根据所得的函数模型,求出整点时的水深;(利用计算器) 5.引导学生正确理解题意,利用函数模型解决实际问题,求出第(2)问,并对答案进行合理地解释;(利用计算器进行计算) 6.引导学生正确理解第(3)问,用函数模型刻画安全水深,并对答案做出合理地解释 解:(1)以时间为横坐标,水深为纵坐标,在直角坐标系中画出散点图: 根据图像,可以考虑用函数 sin() y A x h ω? =++刻画水深与时间之间的对应关系。从数据和图象可以得出: 2.5,5,12,0 A h T? ====,由 2 12 T π ω == ,得6 π ω= 。所以,这个港口的水深与时间的关系可用 2.5sin5 6 y x π =+ 近似描述。 由上述关系式,易得港口在整点时水深的近似值: 时刻0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 水深5.000 6.250 7.165 7.500 7.165 6.250 5.000 3.754 时刻8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 水深2.835 2.500 2.835 3.754 5.000 6.250 7.165 7.500 时刻16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 水深7.165 6.250 5.000 3.754 2.835 2.500 2.835 3.754 (2)货船需要的安全水深为4+1.5=5.5(米),所以 5.5 y≥时就可以进港。

三角函数实际应用

1.如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号) 2.如图,甲乙两幢楼之间的距离BD=30m,自甲楼顶端A处测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为26.6°,求甲、乙楼两幢楼的高度. (参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50) 3.如图,哨兵在灯塔顶部A处测得遇难船只所在地B处的俯角为60°,然后下到灯塔的C 处,测得B处的俯角为30°.已知AC=40米,若救援船只以5m/s 的速度从灯塔底部D处出发,几秒钟后能到达遇难船只的位置?(结果精确到个位). 4.如图,大楼AB的高为16m,远处有一塔CD,小在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)

5.在一次数学活动课上,老师带领学生去测一条南北流向河流的河宽,如图所示,某学生在河东岸点A处观测河对岸水边点C,测得C在A北偏西30°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西60°的方向上.请你根据以上数据,帮助该同学计算出这条河的宽度.(精确到0.1,参考数据:). 6.校园中的一棵大树PC在下的影长为AC,在树的影长端点A处测得∠PAC=30°,在B点(点B在直线AC上)测得∠PBC=60°,如果AB=12m,求树高PC和树的影长AC. 7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,试求CD的长. 8.在一个明媚、清风徐徐的周末,小明和小强一起到郊外放风筝.他们把风筝放飞后,两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高? (2)求风筝A与风筝B的水平距离.(结果精确到0.01m,≈1.414,≈1.732)

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

三角函数模型的简单应用教案

三角函数模型的简单应用一、教学目标 1 、基础知识目标: a 通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法; b 根据解析式作出图象并研究性质; c 体验实际问题抽象为三角函数模型问题的过程; d 体会三角函数是描述周期变化现象的重要函数模型. 2、能力训练目标:让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想从而培养学生的建模、分析问题、数形结合、抽象概括等能力. 3、个性情感目标:让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用,让学生切身感受数学建模的过程,体验数学在解决实际问题中的价值和作用从而激发学生的学习兴趣,培养锲而不舍的钻研精神;培养学生勇于探索、勤于思考的精神。 二、教学重点:精确模型的应用——即由图象求解析式,由解析式研究图象及性质 三、教学难点: a 、分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型,并调动相关学科的知识来解决问题. b 、由图象求解析式时的确定。 四、教学过程及设计意图 教学过程 设计意图 (一)课题引入 情景展示,引入课题(多媒体显示) 同学们看过海宁潮吗?……?今天我就带大家去看一看天下奇观一一海宁潮. 在潮起潮落中

也蕴含着数学知识. 又如大家熟悉的“物理中单摆对平衡位置的位移与时间的关系”、“交流电的电流与时间的关系”、“声音的传播”等等也都蕴含着三角函数知识。 通过上面的例子引发学生的兴趣,贴近生活,可以告诉学生生活离不开数学,身边充满了数学;同时可以让学生知道数学的重要性,不仅仅是课本上的内容,还有生活都可以用到数学,所以学生更应该努力学习,才能更懂得生活。 这样的例子还有很多,比如: 二.由图象探求三角函数模型的解析式 例1 ?如图,某地一天从6?14时的温度变化曲线近似满足函数. (1 )求这一天6?14时的最大温差; (2 )写出这段曲线的函数解析式. 解:( 1 )由图可知:这段时间的最大温差是; (2)从图可以看出:从6?14 是的 半个周期的图象, 又… - ??? 将点代入得: ??,取,??。 问题的反思】

锐角三角函数的实际应用问题

锐角三角函数的实际应用问题 一、《数学新课程标准》课标要求 《数学新课程标准》中要求:运用三角函数解决与直角三角形有关的简单实际问题,考纲中的能级要求为C(掌握)。 数学离不开生活,生活也离不开数学。在实际生活中,有不少问题的解决都涉及到数学中直角三角形的边、角关系。而锐角三角函数的实际应用注重联系学生的生活实际,侧重于解决与学生生活比较接近的实际问题,突出了学数学、用数学的意识与过程。 二、考向分析 结合近五年中考试题分析,锐角三角函数的内容考查主要有以下特点: 1.命题方式为运用锐角三角函数解决与直角三角形有关的实际问题. 题型解答题,以中档题出现.分值都是9分; 2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题; 三、锐角三角函数的实际应用这道题的价值 1.它是代表初中几何图形的计算中的一个最高水平; 2.此题蕴含的数学思想比较多,如化归思想、方程思想等; 3.能加入实际生活的背景,增强学生的数学应用意识; 4.能把学生的基本思想、基本方法、基本能力呈现出来。 四、近五年锐角三角函数的实际应用中考试题变与不变 1.价值不变

2.基本模型不变; 3. 2012.201 4.201 5.2016四年都是考察解直角三角形的应用-仰角俯 角问题.2013年考察解直角三角形的应用-坡度坡角问题. 4. 2012. 2013. 2016年的都能在图中找到与已知和未知相关联的直 角三角形,2014.2015年要通过作高或垂线构造直角三角形,把实际 问题划归为直角三角形中边角关系问题加以解决. 5.外形变化,实际背景变化,一些条件和结论的变化。 五、近五年锐角三角函数的实际应用中考试题回顾 1.(河南省2012)(9分)某宾馆为庆祝开业,在楼前悬挂了许 多宣传条幅。如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直 固定。小明为了测量此条幅的长度,他先测得楼顶A 点的仰角为45°,已知点C 到大厦的距离BC =7米,∠ABD =90°.请根据以上数据求条幅 的长度(结果保留整数。参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86). 考点: 解直角三角形的应用- 【解析】设AB x =米, ∴45,90.AEB ABE BE AB x ??∠=∠=∴== 在Rt ABD 中,tan ,AB D BD ∠= 即tan 31.16x x ?=+ ∴16tan 31160.624.1tan 3110.6 x ???=≈=-- 第20题

中考数学专题复习——锐角三角函数的实际应用

课题:锐角三角函数的实际应用 【基础知识回顾】 知识点1:锐角三角函数的概念(正弦、余弦、正切、余切) 技巧点拨: ①弦——分母都是斜边 ②正弦——分子是正对的边(谐音“正邪”) ③切——垂直的意思,只与直角边有关 ④正切——分子是正对的边 ⑤余——剩余的意思 余弦——分子是剩下的直角边(即邻边) 余切——分子是剩下的直角边(即邻边) 简记为:正弦——对比斜(或正比斜) 正切——对比邻 余弦——邻比斜 知识点2:常见的锐角三角函数值 三角函数 30° 45° 60° 技巧点拨 sin α 21 22 23 分母都是2,分子分别是 √13 cos α 2 3 22 21 分母都是2,分子分别是 3√1 tan α 33 1 3 分母都是3,分子分别是 3、1、3 【新课知识讲解】 知识点3:解直角三角形 1、解直角三角形的概念

在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直 角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。 2、解直角三角形的理论依据 在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90°(三角形角和) (3)边角之间的关系:(锐角三角函数) b a B a b B c a B c b B a b A b a A c b A c a A ========cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin 知识点4:直击中考——解直角三角形的实际应用:测距、测高、测长 等 例1、如图,直升飞机在跨河大桥AB 的上方点P 处,此时飞机离地面的高度PO =450 m ,且A ,B ,O 三点在一条直线上,测得∠α=30°,∠β=45°,求大桥 AB 的长(结果保留根号). 【分析】 第一步:确定相关直角三角形 本题中∠α、∠β分别在Rt ΔAOP 、Rt ΔBOP 中(由平行线错角相等转化已知角) 第二步:分别在直角三角形中列出已知角的锐角三角函数值 第三步:代入已知条件求值,并简答 【答案】 由题意得,ΔAOP 、ΔBOP 均为直角三角形, ∠PAO=∠α=30°,∠PBO=∠β=45°,PO=450m

三角函数在实际中的应用

专题3 锐角三角函数在实际中的应用 解题技巧: 1.如果图形不是直角三角形,一定要考虑添加适当的辅助线(作平行线或作垂线),构造直角三角形,然后选择恰当的三角函数(正弦、余弦或正切); 2.在求线段长度的时候,如果不能直接求出长度,可以考虑列方程求值。 一仰角、俯角问题 1.某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上). (1)求小敏到旗杆的距离DF.(结果保留根号) (2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7) 2.如图所示,某古代文物被探明埋于地下的A处,由于点A上方有一些管道,考古人员不能垂直向下挖掘,他们被允许从B处或C处挖掘,从B处挖掘时,最短路线BA与地面所成的锐角是56°,从C处挖掘时,最短路线CA与地面所成的锐角是30°,且BC=20m,若考古人员最终从B处挖掘,求挖掘的最短距离.(参考数据:sin56°=0.83,tan56°≈1.48,≈1.73,结果保留整数)

3.(2014潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB. 4.一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m 到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°, (1)求∠BPQ的度数; (2)求该电线杆PQ的高度.(结果精确到1m) 5.如图,为了开发利用海洋资源,某勘测飞机测量一岛屿两端A、B的距离,飞机以距海平面垂直同一高度飞行,在点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,已知岛屿两端A、B的距离541.91米,求飞机飞行的高度.(结果精确到1米,参考数据:≈1.73,≈1.41)

1.6 三角函数模型简单应用练习题(解析版)

1.6 三角函数模型简单应用 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1 - D .6 2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4-a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .?? ? ??ππ,2 B .()π,0 C .??? ??2,0π D .?? ? ??2,4ππ 4.若函数)(x f 是奇函数,且当0x 时, )(x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( ) A .y=x x x x cos cos 22-+ B .y= x x x x cos sin cos sin -+ C . y=2cosx D .y=lg(sinx+x 2sin 1+) 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知()3s i n 4 f x a x b x = ++(其中a 、b 为常数),若()52=f ,则()2f -=__________. 8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数?? ? ??≤≤=6563sin 2ππ x x y 与函数y =2的图象围成一个封闭图形, 这个封闭图形的面积是_________.

《三角函数模型的简单应用》练习

《三角函数模型的简单应用》练习 一、选择题 1.函数f(x)的部分图象如图所示,则f(x)的解析式可以是( ) (x)=x+sinx (x)= (x)=xcosx (x)=x·· 2.如图,某港口一天6时到18时的水深变化曲线近似满足函数y=3sin+k,据此函数可知, 这段时间水深(单位:m)的最大值为( ) B.6 3.如图,小明利用有一个锐角是30°的三角板测量一棵树的高度,已知他与树之间的水平距离BE为5m, AB为1.5m(即小明的眼睛距地面的距离),那么这棵树高是( ) 4.电流强度I(安)随时间t(秒)变化的函数I=Asin(ωt+φ)的图 象如图所示,则当t=秒时,电流强度是( ) 安安 安安 5.已知函数y=f(x)的图象如图所示,则函数y=f(-x)sinx的大致图象是( )

二、填空题 6.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y=a+Acos(x=1,2, 3,…,12)来表示,已知6月份的平均气温最高,为28℃,12月份的平均气温最低,为18℃,则10月份的平均气温值为________℃. 7.某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上 标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=________,其中t∈[0,60]. 8.国际油价在某一时间内呈现出正弦波动规律:P=Asin+60(美元)(t(天),A>0,ω>0),现 采集到下列信息:最高油价80美元,当t=150(天) 时达到最低油价,则ω的最小值为__________. 三、解答题 9.某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系: f(t)=10-cos t-sin t,t∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差. 10.如图,某动物种群数量1月1日低至700,7月1日高至900,其总量在此两值之间依正弦型曲线变化. (1)求出种群数量y关于时间t的函数表达式(其中t以年初以来的月为计量单位,如t=1表示2月1日). (2)估计当年3月1日动物种群数量. 《三角函数模型的简单应用》巩固练习 一、选择题 1.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针

三角函数的图像及模型的简单应用

参数A ,ω,φ对函数图象变化的影响. 2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 学习过程: 一. 知识梳理: 3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤 注意:细细体会上述两种变换的区别。 二. 问题探究: 1.画出下列函数在长度为一个周期的闭区间上的简图: )3 sin( )2( sin )1(π - ==x y x y 3. 经过怎样的变化得到(注意定义域): ),0[),7 3sin(3 1)2( );,0[),8 4sin( 8)1(+∞∈+ =+∞∈-=x x y x x y π π

4.若函数f(x)=sin(2x +φ)的图象关于y 轴对称,则φ值是________. 5.画出函数x y sin =的图像并观察期周期和奇偶性: 三. 拓展升华: 1. 由函数的图像的图像要得到 )sin(sin ?ω+==x A y x y 经过怎样的变化可以得到? 2. 在直角坐标系中?? ?+=+=θ θsin cos r b y r a x 表示什么曲线?(其中a,b,r 是常数,且r 为正数,θ在)2,0[π内变化) 3.函数f(x)=3sin(2x -π 3)的图象为C ,下列结论中正确的是( ) A .图象C 关于直线x =π6对称 B 由y =3sin2x 向右平移π 3个单位长度可得到图象C C .图象C 关于点(-π6,0)对称 D .函数f(x)在区间(-π12,5π 12 )内是增函数 4.已知函数f (x )=A sin(ωx +φ)+b (ω>0,|φ|<π 2 )的图象 的一部分如图所示: (1)求f (x )的表达式; (2)试写出f (x )的对称轴方程. 5.已知函数f(x)=sin 2 ωx +3sin ωxsin(ωx + π2 )+2cos 2 ωx ,x∈R (ω>0),在y 轴右侧的第一个最高点的横坐标为π 6 . (1)求f(x)的对称轴方程; (2)求f(x)的单调递增区间. 四. 规律总结:

中考数学 全面突破:第十二讲 锐角三角函数及其实际应用

第十二讲 锐角三角函数及其实际应用 命题点分类集训 命题点1 特殊角的三角函数值 【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分). 【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现. 1. sin 60°的值等于( ) A . 12 B . 22 C . 3 2 D . 3 1. C 2. 下列式子错误.. 的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30° 2. D 选项 逐项分析 正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1 tan75° ×tan75°=1 √ C sin 2A +cos 2A =1 √ D ∵sin60°= 32,2sin30°=2×1 2 =1,∴sin60°≠2sin30° × 3. 已知α,β均为锐角,且满足|sin α-12 |+(tan β-1)2 =0,则α+β=________. 3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =1 2,tan β =1,又因为α、β均为锐角,则α=30°, β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系 【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边 及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值. 【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注. 4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34 B . 43 C . 35 D . 45

锐角三角函数的实际应用

广州卓越一对一初中数学教研部编著

1.边与边关系:a 2+b 2=c 2 2.角与角关系:∠A +∠B =90° 3.边与角关系,sinA =a c ,cosA =b c ,tanA =a b ,cota =b a 4.仰角、俯角的定义:如右图,从下往上看,视线与水平线的夹角 叫做 仰角,从上往下看,视线与水平线的夹角 叫做俯角。右图中的∠1就是仰角,∠2就是俯角。 坡角、坡度的定义:坡面的铅垂高度与水平宽度的比叫做坡度 (或坡比),读作i ,即i =AC BC ,坡度通常用1:m 的形式,例如上图的1:2 的形 式。 坡面与水平面的夹角叫做坡角。 从三角函数的概念可以知道, 坡度与坡角的关系是i =tanB 。显然,坡度越大,坡角越大,坡面就越 陡。 例:如图,若∠CAB = 90°,∠C = ∠α,∠BDA = ∠β,CD = m ,求AB.

解法:设AB = x ,在R t △BAD 中,tan tan AB x DA ββ = =, 在R t △ABC 中,tan tan AB x CA αα == ∵ CA = CD + DA ∴ tan tan x x m αβ =+ 通过解方程求出知数x 的值 例1:某人在D 处测得大厦BC 的仰角∠BDC 为30°,沿DA 方向行20米至A 处,测得仰角∠BAC 为45°,求此大厦的高度BC 。 变式训练1:(2011广东)如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30o,∠ABD =45o,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈). 变式训练2:如图所示,小明家住在32米高的A 楼里,小丽家住在B 楼里,B 楼坐落在A 楼的正北面,已知当地冬至中午12时太阳光线与水平面的夹角为30 . (1)如果A B ,两楼相距A 楼落在B 楼上的影子有多长? (2)如果A 楼的影子刚好不落. 在B 楼上,那么两楼的距离应是多少米?

三角函数模型简单练习(含答案)

三角函数模型简单应用练习题 1.你能利用函数sin y x =的奇偶性画出图象吗?它与函数sin y x =的图象有什么联系? 2.已知:1sin 2α=-,若(1),22ππα∈-?? ??? ; (2)(0,2)απ∈; (3)α是第三象限角;(4)α∈R .分别求角α。 3.已知[]0,2θπ∈, sin ,cos θθ分别是方程2 10x kx k -++=的两个根,求角θ. 4.设A 、B 、C 、D 是圆内接四边形ABCD 的四个内角,求证: (1)sin A =sin C ; (2)cos (A +B )=cos (C +D ); (3)tan (A +B +C )=-tan D . 5.某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元,该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元,假设商店每月购进这种商品m 件,且当月销完,你估计哪个月份盈利最大? 6.把一张纸卷到圆柱形的纸筒面上,卷上几圈.用剪刀斜着..将纸筒剪断,再把卷着的纸展开,你就会看到:纸的边缘线是一条波浪形的曲线,试一试动手操作一下.它是正弦曲线吗? 7.如图,铁匠师傅在打制烟筒弯脖 时,为确保对接成直角,在铁板上的下 剪线正好是余弦曲线:cos x y a a =的一 个周期的图象,问弯脖的直径为12 cm 时,a 应是多少cm ? 8.已知函数f (x )=x 2cos 12-,试作出该函数的图象,并讨论它的奇偶性、周期性以及区间[0, 2 π ]上的单调性。

专题一 三角函数的实际应用

专题一三角函数的实际应用 1.(2005?深圳)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度. 2.(2007?深圳)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A 处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由. 3.(2008?深圳)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在 地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/ 秒,求这架无人飞机的飞行高度.(结果保留根号)

4.(2010?深圳)科技改变生活,手机导航极大方便了人们的出行,如图35-17,小明一家自驾到古镇C 游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4 km至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离. 5.(2012?深圳)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5 m,上面五层居住,每层高度相等.测角仪支架离地1.5 m,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14 m.求居民楼高度(精确到0.1 m,参考数据:3≈1.73). 6.(2015?深圳)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1 m,备用数据:3≈1.7,2≈1.4).

题型锐角三角函数的实际应用

二、解答题重难点突破 题型三锐角三角函数的实际应用 针对演练 仰角、俯角问题 1.某数学课外活动小组利用课余时间,测量了安装在一幢楼房顶部的公益广告牌的高度.如图,矩形CDEF为公益广告牌,CD为公益广告牌的高,DM为楼房的高,且C、D、M三点共线.在楼房的侧面A处,测得点C与点D的仰角分别为45°和37.3°,BM=15米.根据以上测得的相关数据,求这个广告牌的高(CD的长).(结果精确到0.1米,参考数据:sin37.3°≈0.6060,cos37.3°≈0.7955,tan37.3°≈0.7618) 第1题图

2. (2014潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB. 第2题图

3. (2015丹东10分)如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈错误!,tan37°≈错误!,sin48°≈错误!,tan48°≈错误!) 第3题图 4. 如图,在电线杆上的C处引拉线CE,CF固定电线杆,拉线CE和地面成57.5°角,

在离电线杆6米处安置测角仪AB,在A处测得电线杆上C处的仰角为30°.已知测角仪AB 的高为1.5米,求拉线CE的长.(结果精确到0.01米,参考数据:sin57.5°≈0.843,cos57.5°≈0.537,tan57.5°≈1.570,\r(3)≈1.732,\r(2)≈1.414) 第4题图 5.(2015本溪12分)张老师利用休息时间组织学生测量山坡上一棵大树CD的高度,

三角函数模型的简单应用试题(含答案)6

一、选择题 1.函数的2cos 3cos 2y x x =-+最小值为( ) A .2 B .0 C .4 1 - D .6 2.2sin 5cos )(+-?=x x x x f ,若a f =)2(,则)2(-f 的值为( ). A .-a B .2+a C .2-a D .4 -a 3.设A 、B 都是锐角,且cosA >sinB 则A+B 的取值是 ( ) A .?? ? ??ππ,2 B .()π,0 C .?? ? ? ?2,0π D .?? ? ??2,4ππ 4.若函数)(x f 是奇函数,且当0x 时,)(x f 的表达式为( ) A .x x 2sin 3cos + B .x x 2sin 3cos +- C .x x 2sin 3cos - D .x x 2sin 3cos -- 5.下列函数中是奇函数的为( )

A .y=x x x x cos cos 22-+ B .y= x x x x cos sin cos sin -+ C .y=2cosx D .y=lg(sinx+x 2sin 1+) 二、填空题 6.在满足 x x 4 πtan 1πsin +=0的x 中,在数轴上求离点6最近的那个整数值是 . 7.已知( )sin 4f x a x =+(其中a 、b 为常数),若()52=f ,则 ()2f -=__________. 8.若?>30cos cos θ,则锐角θ的取值范围是_________. 9.由函数?? ? ??≤ ≤=656 3sin 2ππ x x y 与函数y =2的图象围成一个封闭图形,这个封闭图形的面积是_________. 10.函数1sin(2)2 y x θ=+的图象关于y 轴对称的充要条件是 三、解答题 11.如图,表示电流强度I 与时间t 的关系式

45三角函数模型的应用

§4.5 三角函数模型的应用 1.如果某种变化着的现象具有周期性,那么它就可以借助____________来描述. 2.三角函数作为描述现实世界中________现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测其未来等方面都发挥着十分重要的作用.具体的,我们可以利用搜集到的数据,作出相应的“散点图”,通过观察散点图并进行____________而获得具体的函数模型,最后利用这个函数模型来解决相应的实际问题. 3.y =||sin x 是以______为周期的波浪形曲线. 4.太阳高度角θ、楼高h 0与此时楼房在地面的投影长h 之间有如下关系:________________. 自查自纠: 1.三角函数 2.周期 函数拟合 3.π 4.h 0=h tan θ 已知某人的血压满足函数解析式f (t )=24sin160πt +110.其中f (t ) 为血压(mmHg),t 为时间(min),则此人每分钟心跳的次数为( ) A .60 B .70 C .80 D .90

解:由题意可得f =1T =160π 2π =80.所以此人每分钟心跳的次数为80.故选C. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α 的四个等腰三角形及其底边构成的正方形所组成,该八边形的面积为( ) A .2sin α-2cos α+2 B .sin α-3cos α+3 C .3sin α-3cos α+1 D .2sin α-cos α+1 解:四个等腰三角形的面积之和为4×1 2×1×1×sin α=2sin α.再由余弦定理可得正方形的边长为 12 +12 -2×1×1×cos α=2-2cos α,故正方形的面积为2-2cos α,所以所求八边形的面积为2sin α-2cos α+2.故选A.

(完整版)2020中考数学九年级下册锐角三角函数在实际问题中的应用(含答案)

2020 中考数学锐角三角函数在实际问题中的应用(含答案) 1. 如图,B小军和小兵要去测量一座古塔的高度,他们在离古塔60米的A处用测角仪 参考答案:解:过A作AE∥DC交BC于点 E 则AE=CD=60米,则∠ AEB=90°, EC=AD=1.5 在Rt △ ABE中, BE 即tan30o 60 ∴ BE 60tan30o 60 330 3 2 所以,古塔高度为:CB BE EC 20 3 1.5 米 2. 如图,小强在家里的楼顶上的点A处,测量建在与小明家楼房同水平线上相邻的电梯楼的高,在点A处看电梯楼顶点 B 处的仰角为60°,看楼底点C的俯角为45°,两栋楼之间的距离为30 米,则电梯楼的高BC为多少米? B C 参考答案:解:过A作AD∥地面,交BC于D 则在Rt △ ABD中,tan 60o BD,即tan 60o BD, ∴ BD30 3 AD30 在Rt △ ACD中,tan 45o DC, DC 即tan 60o,∴DC30 AD30 ∴楼高BC为:BD DC 30 30 3 AD=1.5 米,则塔CB的高为多少米?

3. 小明在热气球 A 上看到正前方横跨河流两岸的大桥 BC ,并测得 B ,C 两点的俯角分别为 45°, 35°。已知大桥 BC 与地面在同一水平面上,其长度为 100 米,请求出热气球离地面 即热气球的高度为 AD 700 米 3 4. 如图,某建筑物 BC 顶部有一旗杆 AB ,且点 A ,B ,C 在同一直线上.小红在 D 处观测旗杆 顶部 A 的仰角为 47°,观测旗杆底部 B 的仰角为 42°.已知点 D 到地面的距离 DE 为 1.56m , EC=21m ,求旗杆 AB 的高度和建筑物 BC 的高度(结果保留小数点后一位, 参考数据: tan47 ° ≈1.07 ,tan42 °≈ 0.90 ). 的高度。(结果保留整数,参考数据: sin35o 172 ,cos35o 6,tan35 10 ) 参考答案 : 解:过 A 作 AD ⊥BC 于点 D 则 AD 即为热气球的高度,且∠ 1=∠ 2=45° ∴可设 AD=BD=x 则 CD=x+100 在 Rt △ ADC 中 AD o x tanC ,即 tan35o DC x 100 得: x 700 参考答案 : 解:根据题意, DE=1.56,EC=21, ∠ACE=90° , ∠ DEC=90°. 过点 D 作 DF ⊥AC,垂足为 F . 则∠ DFC=90°, ∠ ADF=47° , ∠BFD=42°.

相关文档
最新文档