特殊地段盾构掘进的沉降控制技术简易版

特殊地段盾构掘进的沉降控制技术简易版
特殊地段盾构掘进的沉降控制技术简易版

A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object

And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing.

编订:XXXXXXXX

20XX年XX月XX日

特殊地段盾构掘进的沉降控制技术简易版

特殊地段盾构掘进的沉降控制技术

简易版

温馨提示:本解决方案文件应用在对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。文档下载完成后可以直接编辑,请根据自己的需求进行套用。

特殊地段的沉降控制一直是盾构施工中的

难点、风险点,本文介绍了广州地铁某盾构区

间在经过“三区”(隧顶覆砂区、桩基础群区

和地面密集建筑物区)地段时所采取的技术措

施,以期对类似地层有借鉴和指导作用。

广州地铁某盾构区间为双线圆型隧道,内

径5.4m,外径6m,采用刀盘直径6.28m的土压

平衡盾构机施工。在临近吊出井时要经过一

“三区”特殊地段,即:隧顶覆砂区、桩基础

群区和地面密集建筑物区。为安全通过该特殊

段,项目部编制了一套详细、针对性强的施工方案,并在施工中逐一落实,最终盾构机安全到达吊出井。

1、特殊地段的工程情况

1.1地质水文情况:该地段长约300m,隧道覆土14~23m,洞身经过地层主要为7、8、9泥质砂岩,夹部分6全风化泥质粉砂岩;洞顶主要为32细砂层,夹少量42、52地层,32砂层厚3.5~9m,平均厚5m以上;通过现场试验,9微风化地层平均单轴极限抗压强度

16.0MPa左右。本区段地下水有第四系孔隙水及基岩裂隙水,第四系孔隙水埋深0~3m,水量丰富,由大气降水及江、河水补给。基岩裂隙水主要赋存于基岩强、中等风化带的裂隙中,埋

深随基岩面而起伏,一般为15~20m,32中细砂层富水性中等及渗透系数较大。

1.2地面建筑物及桩基础情况该段隧道顶部及其影响范围内主要有45栋建筑物,绝大部分是民房,层高3~7层,为框架结构;有8栋是一层高的制衣厂厂房,为砖混结构。房屋基础除12栋房屋是天然基础外,其余为r500~r600钻孔桩砼基础及r120的木桩基础。有16栋房屋的桩基础侵入隧道或接近隧顶,另有两栋房屋被鉴定为危房。

2、控制沉降的技术措施

2.1到达特殊段前的准备工作

1)在该特殊地段增设3个补勘点以掌握更准确、全面的地质情况。

2)对中轴线两边各30m内发生较大倾斜和结构老旧房屋进行鉴定,为危房的拆除或临迁。

3)对隧道上方建筑物进行详细的入室调查。对桩基侵入隧道或接近隧顶的建筑物采取托换加固措施,结构面发现裂缝的则作详细记录。

4)准备支顶加固材料、注浆加固材料、抢险机具设备、车辆、警戒标识物等以备用。

5)在到达特殊段前选择一开挖面自稳性较好的地段对盾构机进行全面检修,减少在特殊地段停机检修的风险:①对破损较大的盾尾刷进行更换;②全面检测刀具,对磨损超标的刀具进行更换;③对堵塞的注浆管进行疏通处理;④对分别通往开挖面、土仓、螺旋输送器

的主从泡沫管进行疏通,并在刀盘面中心附近增设1根泡沫管。

2.2通过时的掘进控制

2.2.1掘进模式、盾构机配置及掘进参数针对特殊段的情况,选用的掘进模式,盾构机械配

2.2.2刀具配置

本段洞身地层主要为7、8、9泥质砂岩、粉砂岩,易结泥饼,根据以往类似地层施工经验,采用全软土刀具将会出现盾构机推力增大、扭矩增大、掘进困难的现象,严重时由于盾构机长时间在一小范围扰动,隧道顶部的砂土层会塌落,进而导致地面塌陷的事故;若采用全硬岩刀具,则刀盘面开口率减少,结泥饼

的机会就会增加。故过本段时采用了混合式刀具配置:64把刮刀,16把铲刀,5把边缘双刃滚刀,8把正面双刃滚刀,6把中心双头齿刀。正面滚刀都高出刀盘盘面175mm,为开挖面破除下来的砟土留出了足够的出砟空间,刮刀超出刀盘盘面140mm,受到滚刀的保护,刀盘开口率约为29%。

2.2.3掘进过程的施工技术要求盾构在通过该特殊段时有序、平衡、平稳。有序

1)施工组织有序人、机、料的配置合理,工序的安排、衔接有序。

2)机械保养有序机械保养定人、定期、专业、规范,做到无遗漏、标准化。

3)信息管理有序技术交底、作业交底按部就班,自经理部至作业面指令畅通、反馈迅

速。

平衡

1)土仓压力与开挖面水土压力平衡严格控制土仓压力,尽量保持土压平衡,不要出现过大的波动;考虑本段地下水水压较高,土仓压力设置为上部1.3bar左右,下部1.8bar左右。

2)出土量与掘进进尺平衡严格控制出土量,做到进尺量与出土量均衡。本隧道开挖直径6.28m,考虑盾构姿态变化或其他原因引起的岩土损失和岩土的松散系数,每环出土量约66~69m3,即4.5节砟车。除量的控制外,还要坚持对每环砟样进行地质水文分析,发现与开挖断面地质情况不符(尤其是出现32砂层)时,则马上采取措施。

3)注浆压力与水土压力平衡除考虑注浆处的水土压力,还要考虑后方来水、开挖面来水的水压,故注浆压力是在注浆处水土压力基础上提高1~2kg/cm2,且应使浆液不进入土仓和压坏管片和不因注浆压力过大造成地表隆起。特殊段注浆压力设置:1#、4#注浆孔控制在1.5bar左右,2#、3#注浆孔控制在2.0bar左右。4)注浆量与进尺平衡考虑浆液失水固结、盾构推进时壳体带土使开挖断面大于盾构外径、部分浆液劈裂到周围地层,采用理论值的150%~200%进行注浆,即为6~8m3.要保证浆液配置与地质水文条件、掘进速度相适应,过本段时浆液配比设置为:水泥∶粉煤灰∶砂∶膨润土∶水=180∶371∶780∶35∶400(kg),浆液稠度控制在110~115mm,凝胶时

间控制在5h以内。

平稳

1)盾构姿态平稳推进过程应保持盾构机有良好的姿态,避免蛇行,每环姿态变化控制在±5mm内。千斤顶A区、C区油缸油压值差宜保持统一、恒定性,不宜出现过大的波动。

2)管片姿态平稳做好管片选型,现场对盾尾间隙实测实量,控制下部盾尾间隙在70mm以内,注意管片拼装的椭圆度,防止尾刷与管片碰撞导致盾尾密封、铰接密封损坏及管片变形。

3)推进速度平稳掘进过程中向土仓内及刀盘面注入泡沫等添加材料,改善砟土性能,提高砟土的流动性和止水性,防止涌水流砂、结泥饼和喷涌现象,有利于保持速度的稳定。推

进速度保持在25~40mm/min,日均进尺7~

9m。

2.3通过后的补强措施

1)二次注浆盾构同步注浆后,由于浆液的脱水,浆液体积收缩会加剧地表的后期沉降量,又由于盾构推力,衬砌和土层间会相互分离,二次注浆能有效地进一步充实背衬和提高止水能力。特殊地段每推进4环后补注双液浆一次,在破除桩基位置两环管片的范围内增注一次。

2)三次复紧为防止因管片的变形引起地层的过度扰动,对管片螺栓拧紧要求三次复紧。

即拼装管片时一次拧紧,推出盾尾后二次拧紧,后续盾构掘进至每环管片拼装前,对相邻已成环的3环范围内管片螺栓进行全面检查

并复紧。

3)地表注浆作为应急预案,在盾构通过本段前,对有托换的建筑物预埋袖阀管,如盾构通过发生险情能在地面紧急进行地层注浆加固。

3、施工监测

3.1监测点的布设

区段范围布设监测主断面2个,次断面36个,分别设置11个和7个监测项目进行全面监测。

3.2监测在施工中的应用

1)监测-施工流程图为使监测结果能顺畅、快速到达作业面,作业面情况能迅速反馈到监测组和技术部,承包商制定了监测-施工流

程图,以最大限度实现信息化施工的目标,见图1。

2)沉降排列图通过对右线盾构经过特殊地段的监测报表数据统计归纳,采用排列图对盾构施工各阶段的沉降进行分析。由图2可见盾构到达、盾构通过、盾尾通过三个阶段的沉降和占最终沉降量的81.82%,是沉降变化的高峰期,必须采取有效和针对性的措施,如盾构机平稳、快速通过;确保同步注浆压力、注浆量、尤其是注浆质量,坚持二次补注浆,及时填补衬背间隙和减少地下水流失。监测报表还显示,盾构机切割桩基时建筑物沉降最大,最大一次达12mm/d,要降低风险,搞好房屋桩基托换是前提,切割时则应贯彻小推力,慢速

度,立足于磨的原则。

3)不均衡沉降通过对监测报表数据统计发现,距线路中心越近,沉降越大,反之则越小,这对上方建筑物会产生不均衡沉降。实际施工时,当监测结果显示同一建筑物横向沉降差超过2mm/d时,应严加关注和采取措施,严格控制沉降速率:严防盾构机姿态出现大的波动,土仓压力要适当加大和稳压,注浆切忌不够量;快速通过,减少沉降高峰期时间,如有必要应根据实际情况对建筑物本身及地基进行加固。

4、结束语

由于准备充分、措施到位,盾构机顺利通过该特殊地段,尽管监测结果统计仍有3.8%的

监测点沉降超标(允许沉降:-30~+10mm),有两栋房屋倾斜率超过允许倾斜值的12%(允许倾斜率4‰),但经鉴定超标的房屋均可安全使用,所以说对该段的沉降控制基本取得成功。

该位置可填写公司名或者个人品牌名

Company name or personal brand name can be filled in this position

盾构施工质量保证措施

1.1管片质量保证措施 (1)管片生产质量保证措施 1)严格控制管片模具的精度,按照精度要求对管片钢模定期进行检查和校正。 2)要求混凝土所使用的原材必须符合设计及施工规范的要求,应有出厂合格证和相应的试验报告。 3)严格审查管片生产工艺和质量保证措施,认真做好过程控制。指派专门的管片质量检查人员每周不定期去构件厂检查管片生产过程的质量、原材料及生产工艺的控制情况,要求构件厂提供从原材、生产及试验的所有资料,并结合检查记录分析等形成质量周报,并报业主及监理等单位。 4)要严格做好出厂检验及现场的验收工作,事先制定出厂检查及现场质量验收标准。 5)事先计划好现场管片的存放、运输及拼装作业。要有管片的使用计划。 (2)管片拼装质量保证措施 1)选取管片时要多方面考虑,选取管片时也要本着“勤纠偏、小纠偏”的原则进行,以减小片拼装时的错台。 2)确保质量合格、管片类型符合工程师指令的管片才准进洞。 3)严格按指定的拼装工艺进行拼装。 4)拼装过程中经尺量管片错台符合拼装要求后,再将管片就位。 (3)管片衬砌防水质量保证措施 1)确保管片的自身防水符合设计要求,并对管片弹性密封垫入洞前进行严格的验收。 2)严格控制拼装工艺,提高管片拼装的质量。 3)在管片拼装前先于弹性密封垫上涂抹润滑剂,以减少弹性密封垫在拼装中出现的错位。 4)安装管片螺栓接头前检验止水垫圈完整方可安装螺栓。 5)盾构掘进时盾尾空隙注浆要严格控制配比,以形成稳定均匀的管片防水层。

(1)盾构施工轴线控制措施 1)所使用盾构机须装备有高度现代化的自动实时监控测量指引系统。 2)在盾构隧道施工之前,要严格按要求建立起一套严密的人工测量和自动测量控制系统,根据自动的精度和工程的精度要求决定人工控制测量和复核的内容及频率。 3)认真做好盾构机的操作控制,按“勤纠偏、小纠偏”的原则,通过严格的计算,合理选择和控制各千斤顶的行程量,从而使盾构和隧道轴线在容许偏差范围内,切不可纠偏幅度过大,以控制隧道平面与高程偏差而引起的隧道轴线折角变化不超过0.4%。 4)合理使用超挖刀和铰接千斤顶来控制盾构机轴线,从而实现对隧道轴线的线形控制。 5)管片的类型和拼装方式的控制,依据隧道中线和设计中线以及盾构机和管片的关系,通过计算修正曲线来确定管片的类型和超前量。 (2)盾构施工沉降控制措施 认真进行现场环境条件的调查,并结合线路的走向做好地面的监测工作。准备进行的与沉降有关的监测项目有:地表沉降监测、地面建(构)筑物变形监测、地下管线变形监测、河底沉降监测、隧道收敛监测。 1)监测点的观测频率、范围与数据处理 2)盾尾注浆压力和注浆量是直接影响地面沉降的关键因素,在施工中要严格按规定程序和下达的施工指令进行注浆操作,精确控制注浆压力和注浆量。 3)严格控制盾构机的姿态 在盾构掘进施工过程中,盾构姿态变幅越大,盾构机越难控制,对地面沉降的影响也越大,要坚持“勤监测、勤纠偏、小纠偏”的原则,尽量实现盾构的平缓推进;严禁一次性大幅度纠偏,造成过大超挖和对周围土层的扰动。每次盾构机的纠偏量应不超过3cm(0.5%D)。 1.3联络通道施工质量保证措施 (1)测量放线准确,从地面引测后,尽早从隧道内进行检测。 (2)衬砌之间的防水板接缝严密,焊钢筋时设隔垫板保护。

武汉地铁2号线盾构施工对地表沉降影响分析

武汉地铁2号线盾构施工对地表沉降影响分析 【摘要】对武汉地铁2号线盾构掘进施工过程中地表沉降监测数据统计,并根据Peck理论进行拟合对比分析,得到盾构施工引起纵横断面地表沉降的特点:纵向上,盾构机切口前30m以内和后50m以内为影响区域,其中又以切口后50m为显著影响区,盾构通过该区域产生的沉降占总沉降量的80%~90%,盾构对某断面上影响范围在沿盾构中心轴线向左右两侧延伸10~18m;对武汉粉质黏土夹粉土粉砂层,盾构掘进引起的地表沉降数据累计变化控制指标宜为-40mm,盾构机切口通过监测断面6~20m范围内单次平均变化速率控制值宜为-15mm/d。 【关键词】地铁;盾构施工;地表沉降;Peck公式 武汉汉口地区工程地质、水文地质非常复杂,既有深厚软土,又有粉土、粉砂、互层及承压水的影响。在此种地质条件下进行地铁盾构施工,对变形控制有更加严格的要求。本文结合Peck理论对武汉地区盾构施工引起地表沉降变化情况进行初步分析,以期得到适用于武汉特殊地质情况下盾构施工对地表扰动的沉降控制标准。 1、工程概况 武汉地铁2号线一期工程某区间位于汉口,线路周边各种建筑物密集、地下管线密布,场地地貌为长江北岸冲积I级阶地。盾构起讫里程为:CK4右+743.906~CK5右+758.399,右线长1 014.493m,左线长1 017.576m,总长2 032.069m。区间设一个联络通道,与泵房合建,里程为:CK5(右)+220.000;设有2个平面曲线,最小曲线半径700m,线间距12~15m。线路最大纵坡坡度14‰,最小坡度2‰,区间结构平均覆土厚度约11m。 该区间隧道为外径6m、内径5.4m、管片拼装衬砌的单洞圆形隧道,管片环宽1.5m,管片采用C50,P12混凝土。 区间左线掘进采用新购法国维尔特EPB盾构机,开挖直径6 280mm,护盾直径6 262mm,主机长9.5m,整机长约77m,盾构及后配套总重450t(主机约300t),最小转弯半径250m,最大坡度35‰,整机使用寿命10km。 2、水文地质条件 盾构区间地层物理力学指标如表1所示。盾构隧道掘进地层主要在③4,③5层。地层静止水位埋深3.8m左右,且与长江、汉江有较密切的水系联系,整个盾构施工全部在地下水位以下。 3、地表沉降监测方法 3.1监测点布置 隧道纵向上沿中心轴线每隔20m布设一个监测断面;横向上,每个断面沿轴线中心点向两边每隔3m布设一个监测点,共5个。为减小路面结构对观测效果的影响,所有沉降监测点均埋设于原状土层内,由套管保护至地面。监测点埋深约1.5m,到原状土为止。

桥梁沉降控制技术措施

桥梁沉降控制技术措施 为控制桥梁沉降,对影响桥梁沉降的地基、桩基、承台、墩身、梁体、混凝土等采取如下方法和措施: ⑴地基、地质条件控制方法与措施 ①钻孔桩地质条件判定与核实 工程地质比较法:根据设计文件中所附地质条件说明,对钻孔中出砟的岩性和结构进行观察分析,与设计进行对比,判定其条件是否满足设计要求。若不满足设计要求,则据实进行变更。 ②补充钻孔勘探对地质条件进行判定与核实 当出现下列情况之一时,进行补充钻孔勘探,以对地质条件进行判定与核实: 当对地质资料发生怀疑时; 当实际地质情况与设计提供的地质情况不一致时; ⑵桩基、承台施工中的控制方法与措施 ①桩基础施工 采用泥浆护壁时,选用优质高性能泥浆,提高悬浮能力,降低泥皮厚度,并结合机械和高压风清孔、电子测孔仪检测孔底沉渣厚度等,从而提高成孔质量,有效降低沉砟厚度。 提前准备好钢筋笼、吊车,在成孔后尽快下钢筋笼、灌注混凝土,缩短空孔时间(将空孔时间控制在10小时以内),避免桩周土体对桩体的摩擦能力降低。 对成桩质量进行逐桩检测,确保不留隐患。 ②承台施工中的控制方法与措施 对桩顶与承台的连接面,认真清理干净,不留松散部分。对桩头凿除部分,确保将全部夹杂泥浆、石砟的部分凿除。 承台施工中,对承台下的土体尽量保持原状,尽量不受水浸泡,以期使其发挥一定的抗变形作用。 承台开挖后尽早浇筑混凝土,以免基坑暴露过久或受地表水浸泡而影响承载力。 ⑶墩身施工中的控制方法与措施 对桩顶与承台的连接面,认真清理干净,不留松散部分和浮浆。 墩身一次连续灌注。当分段浇筑时,其间隔时间尽量不超过3天。并对接触面严格按施工缝处理,加强对接缝处混凝土的振捣。 合理安排工期,墩身混凝土灌注至少在架梁前一个月完成,并尽可能提前,以使混凝

盾构施工近距离下穿地铁线路沉降控制技术

盾构施工近距离下穿地铁线路沉降控制技术 发表时间:2019-04-28T10:00:34.173Z 来源:《基层建设》2019年第6期作者:史天增[导读] 摘要:地铁工程的大量建设,让城市中盾构施工变得越来越多,如何控制盾构施工下穿地铁线路的沉降是施工中的一个重难点,对于保证地铁施工的高质量和安全性具有重要意义。 中铁十一局集团城市轨道工程有限公司摘要:地铁工程的大量建设,让城市中盾构施工变得越来越多,如何控制盾构施工下穿地铁线路的沉降是施工中的一个重难点,对于保证地铁施工的高质量和安全性具有重要意义。本文从盾构施工下穿地铁线路的五个阶段出发,结合工程实例,对不同阶段采取了有针对性的控制措施,保障了地铁施工的安全。 关键词:盾构施工;下穿地铁线路;沉降控制 一、工程概况 某市地铁区间为单洞单线区间,区间起点为机场北站,终点为吊出井,起点里程为YDK41+437.900,终点里程为YDK42+343.576(ZDK42+335.972),区间长度905.676m(左线898.072m),线路埋深在19m~27m之间,最小线间距12.05m。区间线路自机场北站先后以24‰、28‰及4‰坡度向下直至吊出井。机~吊区间右线在机场北站大里程端(对应里程:DK41+437.9)始发掘进,始发直线掘进211m后在里程DK41+659.8(对应环号:142环)处先后下穿既有运营的11号线右线、11号线入场线、11号线出场线及11号线左线。 盾构施工近距离下穿地铁线路是施工难点,特别是结合地下不良地质条件的影响,使得土体易受施工影响发生沉降,施工控制难度加大。 二、盾构施工下穿地铁线路沉降控制措施分析 盾构施工造成的土体沉降主要是因为施工过程对于土体的扰动和水土流失造成的。其可以分成五个阶段,第一阶段,盾构施工还未达到断面,地下水位降低导致沉降;第二阶段,盾构通过该断面前,因控制不足,导致前方土塑性变形引起沉降;第三阶段,盾构通过断面,由于刀盘与盾体之间存在15mm间隙及超挖、纠偏、盾构外侧与土体之间接触导致沉降;第四阶段,盾构通过该断面后产生的弹塑性变形,因衬砌处理不当导致的沉降;第五阶段,盾构通过断面后,发生的后续沉降。针对沉降五阶段分别采取不同控制措施: 1.前期沉降控制措施 为保证盾构顺利掘进上软下硬地层,在出入线与正线之间用A600@150垂用高压旋喷桩对隧道上软下硬段进行预加固处理。加固区域和深度见下图所示。 图1 盾构通过区域加固示意图盾构机下穿11 号线隧道前,在11号线隧道出入线洞内对11号线隧道下方土体进行注浆加固。注浆范围: (1)隧道深度范围内,加固范围为:既有地铁11号线隧道底部至强风化花岗岩岩面,若强风化花岗岩岩面位于机~吊区间隧道拱顶以下,则加固至机~吊区间隧道顶。 (2)在地面上使用WSS斜孔注浆对下穿11号线正线影响区进行使用WSS注浆进行预加固处理。 2.开挖面沉降控制措施 盾构掘进开挖面沉降主要通过土压控制、出土量、掘进参数调整进行控制。为了保证开挖面的稳定,保持开挖面土压平衡、对土仓压力进行实时监测,对土压设定进行试验。根据开挖面土压平衡、控制出土量。对总推力、推进速度、刀盘扭矩、千斤顶压力进行监测并分析其随地层条件变化的规律。 3.盾构通过时沉降控制措施 本工程选用海瑞克盾构机,刀盘设计直径为6980mm,前盾直径为6950mm,刀盘较盾体直径大30mm,为减少该阶段沉降,应尽量缩短盾体通过时间,因此需保证盾构能连续掘进,防止盾构机发生不必要的停机。而当盾构机应特殊原因在下穿地铁期间时,通过盾构机盾体上的径向孔向盾体周边注入厚浆土,以填充盾体周边的孔隙,减小盾体通过阶段的沉降。 4.盾尾空隙沉降控制措施 (1)同步注浆 盾尾与管片脱离后,管片与土体间会出现14cm建筑孔隙,掘进过程中盾尾同步注浆管在建筑孔隙中注入同步浆液填充,以防止盾尾与管片脱离后土体坍塌,造成地面沉降过大。 ①注浆量 同步注浆量理论上是充填盾尾建筑空隙,但同时要考虑盾构推进过程中的纠偏、浆液渗透(与地质情况有关)及注浆材料固结收缩等因素。注浆量按下式进行计算: Q=V?λ 式中: Q——注入量(m3) λ——注浆率(取1.2~1.5,曲线地段及沙性地层段取较大值,其它地段根据实际情况选定) V——盾尾建筑空隙(m3)

盾构法隧道施工引起的地面沉降的原因与对策

盾构法隧道施工引起的地面沉降机理与控制 摘要:本文首先分析了盾构法隧道引起的地面沉降规律和沉降 影响范围,总结了盾构隧道地面沉降的主要影响因素;指明地面沉 降主要源于开挖面的应力释放和附加应力等引起的地层变形,并对地铁施工中的地面沉降安全判断标准和控制原则进行了探讨,为城市地铁工程建设提供有益的参考。 关键词:盾构隧道地铁工程地面沉降沉降控制 中图分类号:u45 文献标识码:a 文章编 号:1672-3791(2012)06(b)-0071-02 abstract:this paper analyzes the shield tunnel caused by land subsidence law and settlement of affected areas,and summarizes the main factors of land subsidence of the shield tunnel;specified land subsidence is mainly due to the excavation surface stress release and the additional stress causedstrata deformation,land subsidence and subway construction safety criteria and control principles are discussed to provide a useful reference for the construction of urban subway project. key words:shield tunnel;subway project;land subsidence;subsidence control 盾构法具有不影响地面交通、对周围建(构)筑物影响小、适应复

公路路基沉降病害及施工控制技术 郭胜利

公路路基沉降病害及施工控制技术郭胜利 发表时间:2019-08-06T14:17:46.627Z 来源:《房地产世界》2019年4期作者:郭胜利 [导读] 在高速公路的施工阶段,需要全面提升工程施工技术,有效解决所存在的路基沉降问题,大大提升了公路工程的建设施工速度。济宁鲁南公路工程公司山东济宁 272000 摘要:路基沉降问题是当前高速工程中非常常见的病害问题,出现该问题之后,就会导致工程结构的稳定性下降,如果未能采取有效的措施来处理这一问题,就会导致工程无法正常进行,严重者会造成重大的滑塌事故,安全隐患比较大,建筑工程的施工也会受到很大影响。因此在高速公路的施工阶段,需要全面提升工程施工技术,有效解决所存在的路基沉降问题,大大提升了公路工程的建设施工速度。 关键词:公路工程;路基沉降;病害 引言 随着社会的发展,大型民生项目建设的步伐也在加快。公路是关系国家竞争力和人们生活质量提高的关键项目,长时间以来始终受到政府部门和人们的广泛重视。而在公路施工中,唯有做好路基项目建设工作,方可为后期公路施工进度打好基础。所以,研究公路路基建设的质控对策是十分重要的,唯有科学合理的结论,方可更好提升公路建设质量。 1公路路基项目常见病害 1.1填料缺少适宜性 路基建设中,因为员工缺少必要的实践经验,在购置施工材料时极易忽视其性质,选取不合适的填料,下降了填料的适宜性,进而影响着路基建设质量,这样既会增多路基建设成本,甚至会延迟工期,影响着工程总体收益。 1.2中线移位现象 受到工作人员素质、工艺技术等因素的制约,路基施工阶段极易产生导线点破坏等现象。而且,目前工作人员忽视中线复查工作,也没有重视对控制桩的维护,进而造成中线偏移现象,与《路基施工标准》的内容相违背。 1.3存在安全生产问题 公路项目的建设环境比较复杂,尤其是地形环境,在施工阶段极易出现淤泥路段、软弱地基以及斜坡等,若未对这些地方采用科学的处理方法,将会导致路基出现严重的安全隐患,在后续投运过程容易产生滑坡、局域沉降等情况。 2公路产生路基沉降的原因 2.1地理因素导致的路基沉降 此处所指的地理因素主要就是地形与地势方面的因素。当前我国的公路建设数量持续的增大,公路网持续的扩张,很多复杂地形中也在大力开工建设高速公路项目,特别是很多的山岭与丘陵的地区中,地势变化非常明显,为了使整个高速公路项目运行更加的稳定,很多情况下都需要将路基建设得比较高。在这种情况之下,路基的高度逐渐提升,就容易发生沉降的问题,难以进行有效控制。 2.2水文因素导致的路基沉降 水文因素的影响是当前路基沉降中比较普遍的影响因素,目前我国的高速公路施工项目周边区域都存在地下水与江河水,路基表面也会直接受到这些水源的侵蚀或者冲击,路基底层也会因为地下水的移动而存在严重的冲击,进而导致路基出现沉降的问题,因此在进行高速建设施工的过程中,对于临近水源的工程施工项目需要多加注意,且进行准确的路基沉降监测和控制,从而可以保证公路工程的质量达到使用的需要。 2.3气候因素导致的路基沉降 这一方面的因素一般都是出现在我国的北方地区中,南方的昼夜温差比较大的地区也容易出现这一问题。具体分析,主要就是自然环境中的霜雪、严寒以及温差过大的情况下对于路基产生不良的影响,从而出现沉降问题。比如,气候比较寒冷的地区中进行路基的建设施工,很多情况下水源会冻结,只要温度上升,冰雪融化就会导致路基结构内部含水量的提升,承载性能自然会有所下降,路基沉降问题就会出现。这种路基沉降问题通常需要进行施工时间的调整来控制,但是因为高速公路施工周期一般比较长,要想全面消除这一问题难度比较高。 2.4土壤因素导致的路基沉降 土壤主要就是路基建设过程中所应用的工程材料土壤。从成本方面来考虑,也要考虑到工程的便捷性,路基施工的土壤需要从施工周边区域中进行选取,但是很多情况,施工周边的区域中土壤未必能够满足路基施工的需要,特别是要求比较高的高速公路施工项目。如果工程中应用大块的红砂岩,该种材料压实度会非常低,风化与渗透都比较强,所以整个土体结构的稳定性都非常差,未能够有效的调配就应用到工程中,就会导致路基出现沉降的问题。的控制,该方面容易受到工程机械、填筑施工的速度以及施工工艺方面的影响。 2.5设计因素导致的路基沉降 设计因素对于路基沉降的影响是非常直接的,主要是因为设计错误所导致的。高速公路设计方案确定的过程中,首先就是要进行交通量的预估,然后才能进行承载载荷的计算,从而确定路基的承载能力。但是如果交通量超出了规定的要求,公路路基需要长期承受汽车动载荷的影响,预期之外的路基沉降也会出现。这种沉降多数都是在公路施工结束之后所存在的,具备有明显的滞后性,所以控制难度较高。 1.6施工因素导致的路基沉降 从上文中可以发现,施工的过程中需要进行路基沉降的控制,该方面容易受到工程机械、填筑施工的速度以及施工工艺方面的影响。比如,目前我国很多的高速公路为了严格的控制含水量参数,为进行路基的沉降控制,很多情况下都是进行水平填筑施工,施工效果比较高。填筑施工的速度选择与控制要结合工程的沉降来控制。 3高速公路路基沉降及施工控制技术 3.1沉降监控技术 沉降监测是进行路基沉降与变形控制的方法,具体的施工流程如下所示:施工准备→观测布点→结构的统计和分析→结果综合分析→

盾构下穿建筑物沉降分析与控制技术研究-本科毕业论文

盾构下穿建筑物沉降分析与控制技术研究-本科毕业论文

中国矿业大学(北京) 本科生毕业设计(论文) 中文题目:盾构下穿建筑物沉降分析与控制技术研究 英文题目:Research on Subsidence Analysis and the Relevant Encountering Measures for TBM undergoing the Buildings 姓名:学号: 学院: 专业:班级: 指导教师:职称: 完成日期: 2012 年 05 月 31 日

中国矿业大学(北京)本科生毕业论文任务书 学院专业 班级学生姓名 任务下达日期:2012年1月18日 完成日期:2012年5月31日 题目:盾构下穿建筑物沉降分析与控制技术研究 专题题目: 主要内容和要求: 1、盾构工法的发展和应用: ①盾构工法发展概况。 ②盾构工法在中国的应用。 2、盾构施工沉降问题的提出: ①阐述对盾构施工沉降的认识。 ②国内外盾构施工沉降分析及控制技术研究现状。 3、对盾构下穿建筑物沉降问题的认识: ①简述盾构下穿建筑物的安全风险。 ②对盾构下穿建筑物沉降规律进行分析与归纳。 4、盾构施工引起建筑物沉降控制技术分析: ①分析盾构施工引起建筑物沉降的主要影响因素。

②阐述控制建筑物沉降的方法及其适用条件和优缺点。 ③工程实例分析与研究。 5、结论和展望: ①谈谈自己对盾构下穿建筑物的理解,通过研究人们对盾构下穿建筑物沉降的分析、控制和处理方法得出自己的结论以及对今后发展趋势的展望。 ②对完善盾构下穿建筑物沉降控制方法以保证施工安全,提出自己一家之言。

院长签字:指导教师签字:

盾构法施工引起地面沉降原因分析及防治措施

盾构法施工引起地面沉降原因分析及 防治措施

盾构法施工引起地面沉降原因分析及控制方法进入21世纪,世界经济的迅猛发展使城市化建设得到了大幅度的提速。当前,人口不断地向城市聚集,使城市人口和建筑的密集度快速上升,造成能被利用的地面空间越来越少,因此,当今城市现代化建设的重要课题之一便是开发地下空间,为人类创造价值。但各种用途的管线被布置在地下,这便产生了在地下工程施工背景下的一种最佳方法——盾构法。盾构法施工虽然优点颇多,可是也存在诸多问题。本文就盾构法施工过程中引起的地面沉降问题展开讨论,分析产生的原因及寻找控制方法。 一,地面沉降产生原因 1、地层隆沉的发展过程 盾构推进引起的地面沉降包括五个阶段:最初的沉降、开挖面前方的沉降、盾构机经过时沉降、盾尾空隙的沉降以及最终固 结沉降,如图l所示。 第一阶段:最初的沉降。该压缩、固结沉降是因为地基有效上覆土层厚度增加而产生的沉降,也是盾构机向前掘进时因为地下水水位降低造成的。指从盾构开挖面距地面沉降观测点还有一

定距离(约3~12m)的时候开始,直至开挖面到达观测点这段时间内所产生的沉降。第二阶段:开挖面前方的沉降(或隆起)。这种地基塑性变形是由土体应力释放、开挖面的反向土压力、或机身周围的摩擦力等作用而产生的。它是从开挖面距观测点约几米时开始至观测点处于开挖面正上方这段时间所产生的沉降(或隆起)。第三阶段:盾构机经过时沉降。该沉降是在土体的扰动下,从盾构机的开挖面到达测点的正下方开始到盾构机尾部经过沉降观测点该段时期产生的沉降(或隆起)。第四阶段:盾尾空隙沉降。该沉降产生于盾尾经过沉降观测点正下方之后。土的密实度下降,应力释放是其土力学上的表现。第五阶段:固结沉降,它是一种由地基扰动所产生的残余变形沉降。经前人研究发现,第一阶段沉降占总沉降的0~4.5%,第二阶段沉降占总沉降的0~44%,第三阶段沉降占总沉降的15~20%,第四阶段沉降占总沉降的20~30%,第5阶段沉降占总沉降的5~30%。 2、地表沉降的因素影响分析 该因素影响分析的平台是当前使用较为广泛的大型三维有限元分析软件ANSYS,盾构开挖面掘进引起的地表沉降的客观因素包括盾构直径、土体刚度、隧道埋深、施工状况等设计条件;而其主观因素包含施工管理、盾构机的选用形式、盾尾注浆、辅助施工方法等。下面对盾尾同步注浆、覆土厚度、管片宽度、掌子面顶进压力、土体弹性模量和盾构直径六个方面的因素进行分析。

沉降控制技术

客运专线路基沉降控制与变形观测技术研究 一、成果简介 1、工程概况 京津城际轨道交通工程是我国已开工的第一条全线采用无碴轨道,设计时速350km/h的铁路客运专线。为保证列车能高速运行,除了对施工质量采取高标准之外,对线下工程的沉降控制也非常严格。 京津地区的地质为松软土,此类地质对路基沉降控制的危害较大,路基基础(京津项目 DK81+228.08~DK84+210.22)处理采用桩板结构(CFG桩和PHC打如管桩+钢筋混凝土筏板)。部分段落设扶壁式钢筋混凝土挡墙,基床表层以下路基采用A、B组填料填筑,基床表层采用级配碎石填筑。在对京津城际路基进行高标准、严要求的施工过程中进行沉降控制及变形观测技术研究很有必要。 另外,京津城际轨道交通工程的无碴轨道板采用的是德国博格公司的博格板技术,对于国外无碴轨道路基施工来说,施工周期一般较长,少有工期紧张的情况出现,一般是要等到预压土预压自然沉降后,工后沉降满足施工要求后再铺设轨道板。而在国内,大部分工程项目都有工期紧张的现象存在,在没有自然沉降的过程时,沉降控制就起了决定性的作用。 2、主要技术内容 (1)、沉降观测应独立建网,精度按二等精度(即变形点的高程中误差±0.5mm,相邻变形点的高程中误差±0.3mm)控制。为了检查水准基点本身的高程有否变动,可将其成组地埋设,每组三点,并形成一个边长约为100m的等边三角形。水准基点采用钢管桩设置在稳固和观测方便的位置,其打入深度不小于6m,桩顶部50cm深度采用混凝土加固,并在地面上浇筑 1.0m×1.0m×0.2m的混凝土观测平台,桩顶露出平台15cm。 (2)、观测断面设置:路基沿线路方向每50m设置1个观测断面,过渡段设2个观测断 面,分别设置于台后5m和20m处;涵洞的过渡段中部各1个观测断面。每个观测断面上设剖面沉降管、观测桩、沉降板及挡墙观测点。 (3)、观测频率 填筑、堆载阶段:1次/天;路基施工完毕:1次/周;无砟轨道铺设后:1次/2周。 (4)、无砟轨道铺设条件评估 路基填筑完成或堆载预压后,最终的沉降预测时间应满足下列条件: S(t)/S(t=∞)≥75?

盾构近距离下穿既有隧道沉降控制技术

盾构近距离下穿既有隧道沉降控制技术 盾构近距离下穿既有隧道沉降控制技术 摘要:深圳地铁3号线购物公园站~福田站区间盾构施工需下穿已运行的1号线隧道,其中两隧道最小净距为1.23米。通过对工程现场条件综合分析及力学模型研究和计算,综合各方论证结果,确定施工方案并进行盾构施工关键技术研究,为下穿施工中提供全面的技术参数,施工完成后,既有运行线内各项控制指标得到了有效控制,未对已运行线结构及道床、轨道产生不利影响。 关键词:盾构隧道;实时监测;控制指标;参数;沉降 中图分类号:U456.3文献标识码:A 文章编号: 1前言 1.1工程背景 深圳地铁3号线购物公园站~福田站区间右线下穿隧道与正在 运营的深圳地铁1号线隧道之间的最小净距为1.46 m,左线最小净距为1.23 m。区间下穿隧道主要位于全风化花岗岩层和强风化花岗岩层,隧道覆土厚度约为18m,线路坡度为-5‰,采用通用型管片,管片外径6.0m,内径5.4m,管片厚度300mm,管片宽度1.5m,分块数为6块(一块封顶块、两块邻接块、三块标准块)。 1.2难点及风险分析 1、技术难点 新建地铁与下穿的既有运行线最小净距1.23米,盾构掘进对既有运行线影响较大,根据深圳市地铁公司《城市轨道交通安全保护区施工管理办法(暂行)》规定,运营线路轨道竖向变形±4mm,两轨道横向高差<4mm,水平及水平三角坑高低差<4mm/10m,轨距+6mm~-2mm;控制指标严格,对盾构掘进控制要求高。 2、工程安全方面存在的风险 正在运营的地铁1号线因沉降过大影响营运,甚至造成停运的风

险,社会责任重大;下穿区域全强风化地层中存在球状风化体的风险;盾构机选型及后配套设备故障导致停机引起的安全风险。 2施工模型研究及方案确定 2.1施工模型研究 1、施工力学行为数值分析―力学模型 1)正交段最小净距仅为1.2m,上洞埋深为10.6m; 2)综合判定围岩级别为Ⅴ级,夹土体围岩按加固考虑; 3)主要模拟新建隧道开挖对既有1号线运营线隧道的影响; 4)采用FLAC3D进行力学分析。 图1力学模型示意图 2、施工力学行为数值分析―计算结果 1)地表沉降为7.7mm,既有隧道(1号线)最大沉降3.9mm,附加拉应力达到1.25MPa。 2)上下两洞之间地层的最大主应力值将达到0.25MPa,下洞(3号线)最大轴力为616kN,最大弯矩为28kN?m,均位于两侧边墙部位。 目标地表与既有1号线隧道随施工的下沉情况如图2和图3所示。 图2目标面地表随施工沉降情况图3既有隧道(1号线)随施工下沉情况 2.2控制指标 根据深圳市地铁集团《城市轨道交通安全保护区施工管理办法(暂行)》的规定,参照多次专家论证会的论证意见,新建盾构隧道施工对既有1号运行线影响的控制指标按三级预警制度进行管理,即,预警值、报警值、控制值三级。预警值取控制值的50%,报警值取控制值的80%,结构变形控制指标如下: 表1结构变形控制指标(单位:mm)

盾构施工对地表沉降影响的预估

盾构施工对地表沉降影响的预估 摘要:以杭州地铁1号线过江隧道为背景,采用经验公式法和有限元数值模拟方法研究分析盾构隧道施工引起的钱塘江北岸标准海塘地表沉降规律,比较两种方法的计算结果,验证了有限元数值模型的合理性,为隧道工程的顺利实施提供参考依据。关键词:盾构隧道;数值模拟;地层变形 杭州地铁1号线南起萧山湘湖杭州乐园,穿过滨江新中心,至钱塘江时在最低冲刷高程以下通过江底,直达江北岸进入婺江路下,并沿该路西行。过江隧道采用加泥式土压平衡盾构施工,采用钢筋混凝土管片单层装配式衬砌。盾构隧道外径6.2m,内径5.5m,衬砌厚度35cm,环宽1.2m,衬砌环全环由6块组成,环与环、块与块间均采用弯螺栓连接。 过江隧道盾构掘进时不可避免地引起地层扰动,引起地层变形及地面沉降。扰动导致土体强度和压缩模量的降低,这将引起长时间的固结和次固结。当地层变形超过一定范围时,会严重危及周围建筑物的安全。因此,掌握地层沉降规律并预先评估其影响程度,对工程的顺利实施极为重要。本文采用经

验公式法和有限元数值模拟方法对钱江通道盾构隧道施工过程中明清鱼鳞石塘的地表沉降规律进行研究,以期对海塘的保护措施及隧道工程的顺利实施提供参考依据。 1盾构隧道引起土层变形的发展过程盾构推进引起的地面沉降分为5个阶段[1-2]: 1)初期沉降:即盾构开挖面到达某一位臵之前,在盾构推进前方的土体滑裂面以外产生的沉降。因初期沉降量较小,所以一般不被人们觉察。 2)盾构到达时的地面变形:为在开挖面靠近观测点并到达观测点下方过程中所产生的沉降或隆起现象。当盾构机的正面土压力等于开挖面静止土压力时,掘进对土体影响最小;当盾构机推力不足,其正面土压力小于开挖面的静止土压力时,开挖面土体下沉;当盾构机推力过大则会引起开挖面土体的隆起。 3)盾构通过时的地面变形:为盾构机开挖面到达观测点至盾构机尾部通过观测点这一过程所产生的沉降。该沉降主要是由于盾构机的通过破坏了原来的土体状况,造成土体的扰动所致。

盾构施工沉降分析

目录 1.地表沉降原因 (1) 1.1.地层损失 (1) 1.2.受扰动土的固结 (2) 1.3.地下水流失 (3) 2.地表沉降的发展过程 (4) 2.1.初期沉降 (5) 2.2.开挖面沉降 (6) 2.3.尾部沉降 (6) 2.4.尾部空隙沉降 (6) 2.5.长期延续沉降 (6) 3.引起地表沉降的因素 (6) 3.1.主观原因 (6) 3.2.客观原因 (7) 4.穿越建(构)筑物掘进参数的控制 (8) 5.结语 (9)

盾构施工沉降分析 针对地铁工程而言,进行沉降控制的重要性体现在两个方面: (1) 城市地铁工程一般位于城市的繁华地段,周围建筑物密集、各种地下管线纵横复杂交错,一旦沉降事故发生,将可能造成建筑物开裂、倾斜,地下管线断裂等事故。影响市民正常生活,造成各种纠纷,进而影响工程施工的进度,增加工程的费用。 (2) 沉降事故在地铁工程的施工中属于多发事故。同时其发生的直接表现为地下隧道拱顶的下沉或坍塌,而这种塌陷的发生又多由涌水、涌泥,环片支护失效等原因引起。这些原因的存在和发生,可以导致施工现场的人员伤亡、设备损坏,进而影响工程进度、增加工程费用,造成严重的后果。 1.地表沉降原因 在软土地层中开挖隧道,不论采取任何施工技术都将引起地层运动,产生地面沉降。盾构施工中引起的地层损失和盾构隧道周围受扰动或受剪切破坏的重塑土的再固结,是地面沉降的基本原因。 1.1.地层损失 地层损失是盾构施工中实际开挖土体体积与竣工隧道体积之差(地层损失率指地层损失体积占盾构理论排土体积的百分比)。周围土体在弥补地层损失中发生地层移动,引起地面沉降。 引起地层损失的施工及其他因素是: (1) 开挖面土体移动 当盾构掘进时,开挖面土体受到的水平支护应力小于原始侧向

地铁隧道盾构施工引起的地面沉降规律分析

土压平衡盾构施工引起的地面沉降规律分析 城轨公司杨小飞 【摘要】本文对广州地铁6号线盾构2标区间盾构隧道施工过程的地面沉降监测数据进行分析,探讨了盾构施工过程地表沉降规律及其影响范围和程度,包括沉降槽分布形式、沉降随时间发展规律、沉降量概率分布的统计分析等,并用数学函数加以表达。研究结果对今后类似工程施工过程的隧道周边建(构)筑物的保护,施工参数的优化以及工程的顺利实施具有参考价值。 【关键词】盾构沉降拟合 1.引言 地铁交通在我国正处于发展阶段,由于盾构施工法的安全性和先进性,盾构技术在城市地铁隧道施工中得到越来越广泛的应用。由于地铁隧道多位于城市中心繁华地带,地下管线和地面建筑物众多,施工过程多少都会扰动地层,要完全消除地表沉降是很困难的。盾构施工过程的沉降会对地面建筑物的安全造成威胁甚至引起破坏,国内外已对施工沉降进行了大量研究,提出了许多沉降计算模型[1,2],如Peck 模型(1969),Attewell 模型(1981),O’Reilly-New 模型(1982),藤田模型(1982)等。国内专家也对国内地铁盾构施工过程的沉降规律进行了总结 [3 ]- [5 ],得到了许多具有共性的认识。但由于广州地区地质条件复杂,对沉降规律的定量研究还比较少。本文对广州地铁6号线2标区间盾构隧道施工过程的地表沉降规律及其影响范围进行研究,以期对今后类似工程建(构)筑物的保护,施工参数的优化提供参考依据。 2.工程概况 广州地铁6号线2标区间隧道采用盾构法施工。区间隧道由两条并行的单线隧道组成,其中已完成施工的【大坦沙站-如意坊站盾构区间】左右线隧道间距8.1~26m,左右线隧道总长2859.2m,隧道埋深4.7~27.8m,线路最小水平曲线半径500m,最大坡度30‰。盾构机采用德国HERRENK AG 公司生产的土压平衡式盾构(EPB),盾构机刀盘直径6280mm,采用盾尾同步注浆(砂浆)方式。隧道衬砌采用预制钢筋混凝土管片,管片环外径6000mm,内径5400mm,管片宽度1500mm。【大-如盾构区间】上覆第四系为人工填土层、淤泥层、淤泥质土层、淤泥质粉细砂层、粉质粘土、粉土层、冲积-洪积粉细砂层、冲积-洪积中、粗、砾砂层、冲积-洪积土层、可塑或稍密~中密残积土层、硬塑或密实状残积土层。下伏基岩白垩系、石炭系棕红色、红褐色岩石,风化程度不均一,软硬夹层较多。 3.沉降观测方法 3.1 观测仪器及要求 采用精密水准尺仪,铟钢水准尺、30m 检定过的钢卷尺进行沉降观测。线路沿线一般的多层建筑物和地表沉降,按国家三等水准测量技术要求作业,高程中误差≤±2.0mm,相邻点高差中误差≤±1.0mm。 3.2 沉降观测点的布设 正常情况下,沿隧道中线上方地面每隔5m 布设一个沉降观测点,每隔20m 建立一个监测横断面,该断面垂直于隧道中线,每个断面上布设5个观测点,其中隧道中线上方一个点,左右间隔5m 各一个点。对于软弱土层、或埋深较浅的区域,应根据隧道埋深和围岩地质条件,加密监测断面和测点。 当隧道上方为混凝土路面时,常布设两种沉降观测点,即分混凝土路面及路面以下土层两种,路面部分沿线路中线每20m布设一个观测断面,观测点直接布设在路面上,以量测路面沉降量;为了防止路面硬壳层不能及时、准确反映地层实际沉降情况,造成路面下方虚空,需钻穿混凝土路面并在路面以下地层中打入短钢筋布设观测点,以便对地层的沉降情况进行监测。 3.3 项沉降观测频率 盾构机机头前10m和后20m范围每天早晚各观测一次,并随施工进度递进;范围之外的监测点

特殊地段顶管施工沉降控制技术

特殊地段顶管施工沉降控制技术 摘要:随着城市的日益发展,地下、地上的管线和建筑也随之增加,顶管施工往往会遇到穿越公路、铁路、地下管线、河流、地上重要建筑等特殊地段。这些特殊地段的顶管施工对地面的沉降控制要求更高。为此就特殊地段的顶管施工沉降控制技术在顶管机选型、工仓压力的确定、泥浆套、土体最大沉降量的预测、监控点的布置、测量和纠偏、顶管进出洞13处理方面进行探讨,并结合工程实践取得较好的效果。 关键词:顶管施工、特殊地段、沉降控制、顶管机、泥浆套、监控点、测量 1 顶管机选型 在穿越公路、铁路、地下管线、河流、地上重要建筑等地段(以下简称特殊地段)的顶管施工一般采用多刀盘土压平衡式顶管机或泥水、泥浆平衡式顶管机。土压平衡式顶管机出土为固体形式,较泥水、泥浆平衡式顶管机出土为液体形式在土方处置方面较为便利,故在能满足沉降要求的情况下,通常采用土压平衡式顶管机。该机型适用于饱和含水地层中的粘土、粉质粘土、淤泥质粘土、粉砂土或砂性土。 2 工仓压力的确定 多刀盘土压平衡式顶管机在顶进过程中,顶管机工仓内的压力P小于顶管机所处土层的主动土压力Pa时,地面就会产生沉降;当P大于顶管机所处土层的被动土压力Pb时,地面就会产生隆起。 为防止地表的沉降和隆起,工仓压力P必须控制在Pa

3 泥浆套 泥浆套不仅起到减摩作用,同时也起到一定的土体稳定作用,减少顶管对沉降的影响。一般顶管机的外径较管道外径大2~4cm.因此顶管机顶过后管道外围产生环形空隙导致地层损失。另外,由于管节制作及安装过程中的误差,管节的外围有不少凹凸处,加大了顶进摩阻力,再加上顶进中发生的纠偏过程.导致顶管机后面的管节在不断地往前顶进过程中会多多少少地带走一些泥土,特别是中继间在使用中往往会带走较多的泥土,产生较多的空隙。因此通过及时压浆充填,补充以上因素导致的空隙,在管道外围形成一个良好的泥浆套显得极为重要。 3.1 浆液配比 浆液的配制要求应满足粘滞度高.失水量小,稳定性好。工程中使用的浆液配比主要有以下几种(均为重量比)。 1)膨润土矿粉:水=1:9; 2)膨润土矿粉:纯碱:化学浆糊(CMC):水=104:3.05:1.05:80 0; 3)膨润土矿粉:纯碱:水=100:2:300。 搅拌透后.再加入含PH—PAM一11/800的水溶液.经搅拌均匀后可用于注浆。 实际施工中第一、三种配比比较容易操作,关键是要根据现场土质进行试配以达到浆液配制要求。 3.2 压浆孔布置

盾构施工地面沉降的控制技术

盾构施工地面沉降的控制技术 现在对环境控制的要求越来越高,对盾构穿过城市中心重要建筑时的影响要求极为严格 (如上海,广州的多座地铁隧道的建设.一般要求施工时地面沉降控制在+10mm~-30mm 之内) 。盾构施工不可避免地干扰原土层的平衡状态,虽从理论上可实现无沉降施工,但限于目 前工艺和施工手段、操作质量,几乎无法做到地面无沉降或隆起。目前,国内外许多学者从事这一方面的研究,内容包括盾构施工引起的地表沉降、地层沉降以及盾构施工对邻近建筑物(桩基及已建隧道等)的影响等。研究的方法主要有经验公式法、离心模型试验和有限元法等。 第一节盾构施工引起的沉降理论和基本规律 1、盾构施工引起的沉降理论 盾构施工必然扰动地层土体,引发地层损失、隧道周围受扰动或受剪切破坏的重塑土的再固结,这是构成地面沉降的根本原因.在软土地层中用盾构法施工隧道,因地层损失和土体扰动, 必然引起地表变形.表现在盾构机掘进的前方和顶部会产生微量的隆起,盾构机部分通过地表 开始下沉, 盾尾脱离后地表下沉加快,并形成一定宽度的沉降槽地带,下沉的速率随时间而逐渐 衰减,且与盾构经过的地质,施工工况和地表荷载等有密切的关系,并表现出相当大的差异性。 土体的扰动或扰动土多是针对原状土而言,大体是指由于外界机械作用造成的土的应力 释放,体积、含水量或孔隙水压力的变化,特别是土体结构或组构的破坏和变化(如填土路基 等)[2]。 图5-1-1 盾构施工对土体的扰动 盾构前进过程中需要克服盾构外壳与周围土体的摩擦力F1、切口切入土层阻力F2、盾构机和配套车架设备产生的摩擦力F3、管片与盾尾间的摩擦力F4、开挖面的主动土压力F5,当 千斤顶推力T≥F1+F2+F3+F4+F5 时,盾构前方土体经历加载阶段,产生如图5-1-1 所示的 挤压扰动区①,开挖面受挤压作用引起土体压缩并使土体前移和隆起,盾构机工作正常时为此状况;当T<F1+F2+F3+F4+F5 时,盾构机处于静止状态,该状态对应于千斤顶漏油失 控,土体严重超控,盾构机前方土体则要经历卸载阶段,产生土体向内临空面移动,地表出现下沉.为减少开挖面土体的扰动,应尽量保持密封舱内压力Pi 稍大于主动侧压力Ph 和水压 力Pw 之和,开挖面正前方区域内土体由于刀盘的挤压搅削作用,将受到强烈的扰动而发生破 坏,含水量降低,其力学参数将发生很大的变化。 盾构推进过程中盾壳与周围土体之间产生摩擦阻力,该力作用的结果则在盾壳周围土体 中产生剪切扰动区②,该区的特点是范围较其它区小。 在剪切扰动区②以外,由于盾尾建筑间隙的存在,土体向间隙内移动,引起土体松动、 塌落而导致地表下沉,盾构上方土体由于自重和地面超载(当有地面超载时)往下移动而形成卸

Peck法计算的盾构隧道地面沉降量及沉陷槽计算公式

8.1.4 地层变形预测与分析 通常设计阶段的地面沉降预测方法可分为两类,一是根据实测数据的统计方法—Peck 公式是其典型代表:二是采用有限元和边界元的数值方法。 采用Peck 法计算的盾构隧道地面沉降量及沉陷槽计算公式如下式;其沉陷槽横向分布见图。 exp(max )(S x S -22 2i x )

? ?? ? ? Φ-?= 2452tg Z i π 式中:V —地层损失(地表沉降容积); i —沉降槽曲线反弯点; z —隧道中心埋深 根据本标段的地质条件和埋深等,得i=6.9m ,由此根据以往的工程实践及经验公式,沉陷槽宽度B ≈5i ,可得单个隧道盾构推进引起的地表横向沉陷槽宽度约为35m ,两座隧道盾构推进引起的地表横向沉陷曲线叠加后其沉陷槽宽度约为50m ,并且沉陷槽的主要围在隧道轴线两侧6m 围,离轴线3m 的沉降量约为最大沉降量的60%~70%,离轴线6m 的沉降量约为最大沉降量的25%。 地层损失V 值主要是由盾尾空隙引起的土体损失量,它与盾构机盾壳厚度、盾构推进时粘附在盾构上的土体厚度及注浆量等有关,即 V=V 尾+V 粘-V 浆 盾构推进时粘附在盾构钢板上的土体厚度约为20~40mm ,盾壳厚度为70mm ,则:V=V 尾+V 粘-V 浆=1.36+0.58α-(1.36+0.58)β α为折减系数, β为同步注浆的充填系数。 取α=0.6 β=0.5 得 V=0.73m2 由此可得地表最大沉陷值:Smax=23.4mm 最大斜率:Qmax=0.0013 以上分析值主要是在以往工程经验基础上结合本地铁盾构标段的实际情况,隧道埋深16m 左右情况下得出的,最大沉降量满足规和标书要求。 虽然地表沉降形态是大体相同或相似的,但其最大沉降量总是随着施工工况和地质条件的改变而千差万别,目前控制沉降的主要手段是同步注浆和二次注浆,而注浆的环节常有各种各样的问题发生,如缺量、过量、滞后、漏浆等等,不同的沉降情况常是施工工况和工作状态的反映,同时不同的地质条件沉降亦有所不同,如粉砂土较粘土隆降起量要少,沉降速率要快,淤泥质粘土后期固结沉降则要大点。以上这些都要求盾构施工时要加强监测工作,以随时了解地面沉降信息,以便及时采取有效措施,以达到控制沉降和减少损失的目的。 8.2 理论分析

相关文档
最新文档