压力容器设计综合知识要点

压力容器设计综合知识要点
压力容器设计综合知识要点

压力容器设计综合知识要点

第一部分总论

填空:

1《特种设备安全监察条例》是一部行政法规。

2《压力容器安全技术监察规程》中规定,压力容器设计总图上必须压力容器设计资格印章(复印章无效),该总图是指蓝图。

3极限载荷是相对一次加载而言;安定载荷是相对反复加载而言。

2 5

4低循环和低频是不同的概念,低循环是指循环次数10?10间,而低频是循环频率均

300?600次/分。

5容器计算中所用的弹性名义应力是指材料进入塑性后,假定应力与应变关系仍服从虎克定律。

6GB150规定,超压泄放装置不适用于操作过程中可能产生压力剧增,反应速度达到爆

轰时的压力容器。

7有一只压力容器,其最高工作压力为真空度670mmHg设计压力为0.15Mpa,其容器

类别为无类别。按《容规》第2条

8压力容器检验孔的最少数量:《容规》表3-6

300mm v Di < 500mm: 2 个手孔;

500mm r Di < 1000mm: 1个人孔或2个手孔(不能开设手孔);

Di>1000mm : 1个人孔或2个手孔(不能开设手孔)。

9符合下列条件之一的压力容器可不开设检查孔:《容规》第46条

1)筒体内径小于等于300 mm的压力容器。

2)压力容器上设有可以拆卸的封头、盖板或其他能够开关的盖子,它的尺寸不小于所规定的检查孔尺寸。

3)无腐蚀或轻微腐蚀,检查和清理的。

4)制冷装置用压力容器。5)换热器。

10常温下盛装混合液化石油气的压力容器(储存容器或移动式压力容器罐体)应进行炉内整体热处理。《容规》第73条

11按《容规》规定,压力容器安全附件包括:安全阀、爆破片装置、紧急切断装置、压力

表、液面计、测温仪表和快开门式压力容器的安全联锁装置。《容规》第2条

12《钢制压力容器》GB150-1998不适用于设计压力低于0.1MPa ;真空度低于0.02MPa 的

容器;要求作疲劳分析的容器。GB150 1.3条

选择

1《压力容器安全技术监察规程规定》规定:压力容器介质为混合物质时,应按《压力

容器安全技术监察规程规定》毒性程度或易燃介质的划分原则,由(d)提供介质毒性程

度或是否属于易燃介质的依据。

a )设计单位的技术部门

b )使用单位的生产技术部门

c )压力容器检测单位

d)设计单位的工艺设计和使用单位的生产技术部门

2《压力容器安全技术监察规程规定》规定下列容器中,

(a)是反应容器;(b)是换热容器;(c)是分离容器;(d)是储存容器。

a )聚合釜

b )烘缸

c )干燥塔

d )液化石油气储罐

3下列压力容器属于《压力容器安全技术监察规程规定》监察范围的是(a)a)低温液体罐式集装箱

b)超高压容器

c)气瓶

d)非金属制造的压力容器

4下列压力容器中,(c)属于《压力容器安全技术监察规程》监察范围。

a)核压力容器b)船舶和铁路机车上的附属压力容器

c)内筒处于真空下工作的夹套(带压)的压力容器

d)国防或军事装备用的压力容器

5下列压力容器(a)属于《压力容器安全技术监察规程》监察范围。

a)低温液体罐式集装箱b)超高压容器c)气瓶d)非金属材料制造的压力容器

6 HG20660《压力容器中化学介质危害和爆炸危险程度分类》标准中,极度危害是指(b)

a)(W级)最高允许浓度》10mg/m3 b)(I级)最高允许浓度v 0.1mg/m3

7对充装LPG的球罐,计算物料质量m3时所用的物料密度p 3应采用(d)下的液体密度。

a)常温b )操作温度c )最高设计温度d )最低设计温度

说明:

(!)介质为液化气体(含液化石油气)固定式压力容器p 为设计温度下的密度;

(2)介质为液化气体移动式压力容器为按介质为50C时罐内留有8%气相空间及该

设计温度下介质的密度确定。

8 容器内的压力若有可能小于大气压力,该容器又不能承受此负压条件时,容器上应装设(c)

a)拱形防爆片b )正拱形防爆片c )防负压的泄放装置d )非直接式安全阀

9无保冷设施的盛装液化气体的固定式压力容器设计压力应不低于( c )。

a)气体工作压力b)夏季最高温度下的工作压力

c) 50 C [wiki]饱和蒸汽压[/wiki] 力(临界温度》50C )或最大充装量时50C的气体压力(临界温度v 50C)

10固定式液化石油气储罐的设计压力应按不低于(b )C时混合液化石油气组分的实际

饱和

蒸汽压来确定。

a)40 b) 50 c) 20 d) 0

11 压力容器的法兰垫片不能使用石棉橡胶板的是( d ) 。

a) 液化石油气储罐b) 液氨储罐HG20583 3.2.1.5 条

c) 液氯储罐d) 真空容器( 应采用橡胶垫或缠绕垫)

12 在下列厚度中能满足强度(刚度、稳定性)及使用寿命要求的最小厚度是( a ) 。

a) 设计厚度b) 最小厚度c) 计算厚度d) 名义厚度

判断

1最高工作压力小于0.1Mpa ,但设计压力高于0.1Mpa 的压力容器也应接受《容规》的

监察。(X)

2螺旋板式换热器、容积小于0.025m3的高压容器也应接受《容规》的监察。(X)

3带外加热盘管(半圆管DN100 PN0.8Mpa、V= 0.03m3)的真空容器(DN= 2500、L = 2900)

不接受《容规》的监察。(X)(因为半圆管的容积大于0.025m3)

4《钢制压力容器》GB150-1998适用于工作压力[设计压力]不大于35MPa的容器。(X )

5GB150-1998《钢制压力容器》不适用于[适用于]真空容器。(X )

6GB150对真空度低于0.02MPa的容器不适用。(V )

7GB150-1998标准的管辖范围包括:……非受压元件与容器的连接焊缝,不包括焊缝以外的元件,如支座、支耳、裙座和加强圈等。( V )

8使用温度低于-20C的碳素钢和低合金钢制造压力容器均属于低温压力容器,应按低温容器有关标准和规定进行设计、制造、检验和验收。( X ) [低温低应力工况可不按低温容器]

9真空容器是外压容器,因此应[不]受《压力容器安全技术监察规程》管辖,[其设计、制造、检验和验收按GB150] ( X )

10一介质为空气,设计压力为2.0MPa ,容积为50 m3的储存容器应划为三类[二类]压力容器。( X ) (与介质有关)

11多腔压力容器应按类别高的压力腔划定该容器的类别并按该类别进行使用管理。(V ) 12多腔压力容器应按类别高的压力腔[各自的类别]进行设计和制造(X)

13常温下无保冷设施的盛装混合液化石油气的压力容器,应以50C作为设计温度。

( V )

14因特殊原因不能开设检查孔的压力容器应对每条纵、环焊接接头做100%射线或超声无损检测,并应在设计图样上注明计算厚度。( V ) 15压力容器产品施焊前,对要求全焊透的T 型焊接接头,应进行焊接工艺评定。( V ) 16 “压力容器安全技术监察规程”中压力容器的对接接头的无损检测的比例有三种,

20% 50%[>20% > 50%]、100% ( X )

17压力容器安全附件包括安全阀、爆破片装置、紧急切断装载、压力表、液面计、测温仪表、快开门式压力容器的安全联锁装置,都应符合《容规》的规定,同时还应该符合各自相应标准的规定。(V )

18安全阀的开启压力不得超过压力容器的设计压力;爆破片标定爆破压力也不得超过压力容器的设计压力。( V ) HG20580 Page22

19GB150 在总体上采用的是常规设计法,但在某些局部处也体现了应力分类设计的方

第二部分材料

填空

1在制造过程中,如原有材料确认标记被裁掉或材料分成几块,应于材料切前

完成标志的移植。

20Cr18Ni9钢板的使用温度上限为:700 C。

316MnR钢板的金相组织为珠光体和_铁素体。

420R钢板的金相组织为珠光体和_铁素体。

5用于壳体厚度大于_30mm的16MnR钢板,应在正火状态下使用。

6用于壳体厚度大于30mm的16MnR钢板,应逐张进行超声波检测,质量等级应不低于川级。7压力容器锻件的质量级分为I 、n、川、w四个级别。

800Cr17Ni14Mo2钢板应在固熔状态下使用。

9奥氏体不锈钢的使用温度高于525C时,钢中碳含量不应小于0.04 %。

10正常应力水平下,20R钢板的使用温度下限为—20 Co

11按GB150第一号修改单要求,碳素结构钢钢板Q235AF及Q235A不得用于压力容器

受压元件。

12 15CrMoR钢板的化学成分中,钼含量的名义成分为0.5 %。

13焊制压力容器用碳素钢和低合金结构钢的碳含量一般应当不超过0.25 %o

14 00Cr17Ni14Mo2钢板应在固熔状态下使用。

15选择压力容器用钢的焊接材料时,碳素钢、碳锰低合金钢的焊缝金属应保证力学性能,且不超过母材标准规定的抗拉强度上限值加30Mp&

15容器用钢在与温度200 C以上的氢介质接触时,应考虑氢腐蚀问题。

16铝容器最高设计压力为8 Mpa钛容器的最高设计压力为35 Mpa

17钛容器主要用于耐蚀容器,应用最多的腐蚀性介质为含氯介质。

18在正常的应力水平下,20R钢板的使用温度下线为—20 C。

19 16M nR在热轧状态下的金相组织为铁素体+珠光体。

20容器用金属材料中,钛、铝材及其容器不应在空气中接触明火,,以免易产生金属燃烧。

21碳素钢和碳锰钢在高于425C温度下长期使用时,应考虑钢中碳化物相的石墨化倾向倾

向;奥氏体钢的使用温度高于525C时钢中的含碳量应不小于0.04%。(不能用超低碳

锈钢)GB150 4.1.6 条88.Q235-B钢板适用于设计压力P< 1.6MPa ;使用温度

0-350C ;

用于壳体时,钢板厚度不大于20 mm ;不得用于毒性程度为极度或高度危害介质的压

容器。

22钢材的使用温度低于或等于-20C时应按规定作夏比(V型缺口)低温冲击试验,奥氏

不锈钢使用温度 > -1960C时可免做冲击试验

23目前提高奥氏体不锈钢抗晶间腐蚀能力的措施大致有固溶化处理、降低钢中的含

量、添加稳定碳化物的元素三种方法。

24我国现行材料标准中,对应于有色金属屈服规定的相应强度指标铝材为非比例伸应力,符号是d D0.2。

25钢、铝、钛、铜、锆相对密度由低到高排序为:铝、钛、锆、钢、铜。

选择

1 16MnR钢板的使用温度下限为(c)

a)0 C b) —10C c) —20 C

2设计温度为—30 C的压力容器,其材料可选用(c)钢板。

a)20R b) 16 MnR c) 16 MnDR

3《容规》规定,下列材料应在退火状态下使用(b、c、d )

a)铝及铝合金b)钛及太合金c)铜及铜合金d)镍及镍合金

4下列哪些材料应在正火加回火状态下使用(c、d)

a)16 MnR b) 15 Mn NbR c) 18 MnM oNbR d) 13 MnN iMoNiR

5下列哪些材料为奥氏体钢(c、d)

a) 0Cr13 b) 0Cr13A1 c) 0Cr18Ni9 d) 00Cr17Ni14Mo2

6下列哪些锻件应选用川即锻件(c)

a)换热器管板锻件b)设计压力1.6 < P v 10MPa锻件c)设计压力P> 10MPa锻件

7奥氏体不锈钢容器的热处理一般是指(a、c )

a) 1100 C的故溶化处理b) 625 C消应力处理

c) 1100 C 875稳定化处理d) 850 C正火处理

8设计温度为600 C的压力容器,其壳体钢板可选用的材料有(a、b)

a)0Cr18Ni9 b) 0Cr17Ni12Mo2 c) 00Cr17Ni14Mo2

9按钢板标准,16mm厚的Q235B钢板在20C时的一组冲击功(J)数值为(c)是合格的。

a)17. 30. 32 b) 17. 40. 50 c) 28. 30. 31

10对有晶间腐蚀要求的奥氏体不锈钢筒体,经热加工后应进行(d )热处理。

a)退火b) 正火加回火c)稳定化d)固溶化e)固溶化加稳定化

判断

1GB150规定,在任何情况下元件金属的表面温度不得超过钢材的允许使用温度。(V)235CrMoA螺栓用钢可在正火加回火状态下使用。(X)【调质】

316MnR钢板可在正火状态下使用。(X)【小于等于30mm可在热轧状态下使用】

4设计单位应在图样上注明锻件的材料的牌号和级别。(V)

浅析压力容器分析设计的塑性措施

引言 《压力容器》“压力容器应力分析设计方法的进展和评述”中曾介绍和评述了压力容器分析设计的弹性应力分析方法(又称应力分类法)的最新进展。本文将进一步介绍和评述压力容器分析设计的塑性分析方法,包括ASME的极限载荷分析方法、弹塑性应力分析方法和欧盟的直接方法等。 压力容器设计是一个创新意识非常活跃的工程领域,它紧跟着科学技术的发展而不断地更新设计方法。随着弹性理论、板壳理论和线性有限元分析方法的成熟,20世纪60年代,压力容器界提出了基于弹性应力分析和塑性失效准则的“弹性应力分析设计方法”。进入21世纪后,由于塑性理论和非线性有限元分析方法的日趋成熟,欧盟标准和ASME规范又先后推出了压力容器的塑性分析设计方法。其中涉及许多新的基本概念和新的分析方法,需要我们及时学习领会和消化吸收,以提高我们的分析设计水平,并结合国情进一步修订我国的压力容器设计规范。 ASME和欧盟的新规范都是以失效模式为主线来编排的。ASME考虑了以下4种模式: (1)防止塑性垮塌。对应于欧盟的“总体塑性变形(GPD)”失效模式。 (2)防止局部失效。 (3)防止屈曲(失稳)垮塌。对应于欧盟的“失稳(I)”失效模式。 (4)防止循环加载失效。对应于欧盟的“疲劳(F)”和“渐增塑性变形(PD)”2种失效模式。 欧盟还考虑了“静力平衡(SE)”失效模式,即防止设备发生倾薄。 文中讨论的塑性分析设计方法主要应用于防止塑性垮塌和防止局部失效2种情况。 1、极限载荷分析法 在一次加载情况下,结构的失效是一个加载历史过程,即随着载荷的增加从纯弹性状态到局部塑性状态再到总体塑性流动的失效状态。对无硬化的理想塑性材料和小变形情况,结构进入总体塑性流动时的状态称为极限状态,相应的载荷称为极限载荷。此时,结构变成几何可变的垮塌机构,将发生不可限制的塑性变形,因而失去承载能力。 一般的弹塑性分析方法都要考虑上述复杂的加载历史过程,但极限载荷分析法(简称极限分析)则另辟蹊径,跳过加载历史,直接考虑在最终的极限状态下结构的平衡特性,由此求出结构的承载能力(即极限载荷)。它是塑性力学的一个

压力容器设计基础

压力容器设计基础 压力容器设计基础 一、基本概念 压力容器的设计,就是根据给定的性能要求、工艺参数和操作条件,确定容器的结构型式,选择合适的材料,计算容器主要受压元件的尺寸,最后给出容器及其零部件的图纸,并提出相应的技术条件。正确完整的设计应达到保证完成工艺生产。正确完整的设计应达到保证完成工艺生产,运行安全可靠,保证使用寿命、制造、检验、安装、操作及维修方便易行,经济合理等要求。压力容器设计中的关键问题是力学问题,即强度、刚度及稳定性问题。在本节中,主要讨论压力容器设计中的有关强度问题。 所谓强度,就是结构在外载荷作用下,会不会因应力过大而发生破裂或由于过度性变形而丧失其功用。具体来讲,就是在外载荷作用下,容器结构内产生的应力不大于材料的许用 应力值,即: ζ≤K〔ζ〕t (1) 这个式子就是强度问题的基本表达式。压力容器的设计计算就是围绕这一关系式而进行 的。 公式(1)中的左端项是结构内的应力,它是人们最为关心的问题。求解结构的应力状态,它们的大小,是一个十分复杂的问题,常用的方法有解法(如弹性力学法、弹型性分析法等)、试验法(如电阻应变计测量法、光弹法、云纹法等)及数值解法(如有限元法、边界元法等)。应用这些方法可以精确或近似地求出结构的应力,然而,每一种结构的应力都有其特殊性,目前可求解的只是问题的绝大部分,仍有许多复杂结构的应力分析有等人们进一步探讨。求出结构内任一点的应力后,所遇到的问题就是怎样处理这些应力。一点的应力状态最多可含有6个应力分量,哪个应力起主要作用,这些应力对失效起什么作用,对它们如何控制才不致发生破坏,解决这一问题,就要选择相应的强度理论计算当量应力,以便与单向拉伸试验得到的许用应力相比较,将应力控制在许可的范围内。 公式(1)中的右端项是强度控制指标,即材料的许用应力。它涉及到材料强度指标(如抗拉强度ζb、屈服强度ζs 等)的确定及安全系数的选用等问题。当采用常规设计法,且只考虑静载问题时,系数K=1.0;如果考虑动载荷,或采用应力分析设计法,K≥1.0,此时 设计计算将更加复杂。 把强度理论(公式(1))具体应用到压力容器专业,就称这为压力容器的强度理论,它又增加了一些具体的规定和特殊要求,由此产生了一系列容器的设计规定和标准等。 1、强度理论及其应用 在对结构进行强度分析时,要对危险点处于复杂应力状态的构件进行强度计算,首先要知道是什么因素使材料发生某一类型破坏的。长期以来,人们根据对材料破坏现象的分析,提出了各种各样的假说,认为材料的某一类型破坏现象是由哪些因素所引起的,这种假说通常就称为强度理论。一种类型的破坏是脆性断裂破坏,第Ⅰ、Ⅱ强度理论依据于它;一种类型的破坏是型性流动破坏,第Ⅲ、Ⅳ强度理论以此为依据。 建立强度理论的目的就是要找出一种材料处于复杂应力状态下强度条件,即使是什么样的条件材料不会破坏失效。根据不同的强度理论可以得到复杂应力状况下三个元应力的某种组合,这种组合应力ζxd和轴向拉伸时的单向拉应力在安全程度上是相当的,具有可比性,可以与单向屈服应力相比较而得出强度条件,因此,通常称ζxd为相当应力或当量应力。

低温压力容器设计要点

低温压力容器 目前我国没有专门的低温压力容器标准,JB4732都不划分低温与常温的温度界限。 ★低温管壳式换热器见GB151-1999附录A ★低温压力容器见GB150.3-2011附录E(老版150为附录C) ●为什么低温压力容器需要关注: 温度低,材料的韧性降低,会产生低温脆性破坏,而低温脆性破坏前应力远未到达材料的屈服极限(或许用应力),破坏时没有明显的征兆,所以低温压力容器的设计、选材、制造和检验等各个环节要求都有不同程度的提高。 ●低温压力容器的定义 设计温度为<-20℃(新标准GB150-2011第3.1.15条定义,老标准为≤-20℃)的碳素钢、低合金钢、双相不锈钢和铁素体不锈钢制容器,以及设计温度低于-196℃的奥氏体不锈钢制容器。 相关两个定义 ●最低设计金属温度(MDMT) GB150.1-2011第4.3.4d条:在确定最低设计金属温度时,应

当充分考虑在运行过程中,大气环境低温条件对容器金属温度的影响。大气环境低温条件系指历年来月平均最低气温(指当月各天的最低气温值之和除以当月天数)的最低值。 ●低温低应力工况 GB150.3-2011附录E第E1.4条:低温低应力工况系指壳体或其受压元件的设计温度虽然低于-20℃,但设计应力(在该设计条件下,容器元件实际承受的最大一次总体薄膜和弯曲应力)小于或等于钢材标准常温屈服强度的1/6,且不大于50Mpa时的工况。(注:一次应力为平衡压力与其他机械载荷所必须的法向应力或且应力) 这个定义与老标准有差别,设计应力与环向应力的区别,用设计应力更严谨。 新标准明确了在进行容器的“低温低应力工况”判定时,除了对壳体元件进行一次总体薄膜应力的核定外,还应对承受一次弯曲应力的容器元件进行考查,如平封头、管板、法兰等。 ●关于低温低应力工况下,选材按照设计温度加50℃(或者,加40℃)的规定 GB150.3-2011附录E第E2.2条:当壳体或受压元件使用在“低温低应力工况”下,可以按设计温度加50℃(对于不要求焊后热处理的设备,加40℃)后的温度值选择材料,但不适用于:

D类压力容器设计资格换证考核试题(第五部分)

D类压力容器设计资格换证考核试题(五) 姓名得分 一、判断题(正确的打“√”,错误的打“×”,每题1分,共20分) 1、GB150-1998标准中,设计温度下内压圆筒计算公式δ=PD i/2[σ]tφ-P适用设 计压力不大于35MPa的钢制压力容器设计。()2、管壳式换热器当设计温度高于300℃时,换热管与管板的连接不允许采用强度 胀接的连接形式。()3、压力容器在进行压力试验时,其圆筒的薄膜应力不得大于材料在试验温度下 的屈服点σs(σ0.2)的90%。() 4、对易燃、易爆介质,选用管法兰的公称压力不得低于1MPa。() 5、压力容器筒体上开设长圆孔,当长轴与短轴之比≤2,且短轴平行于筒体轴线 时,开孔补强应按长圆形孔的长轴计算。() 6、内压圆筒强度计算公式的理论依据是第一强度理论。() 7、盛装易燃、易爆介质的容器,应采用玻璃板液面计或自动液位指示器。() 8、压力容器进行气密性试验时,安全阀应安装齐全。() 9、压力容器受压元件可采用贴补的修理办法。() 10、压力容器设计中,将主要受压元件材料选错,属设计技术性错误。() 11、二类压力容器水压试验时,压力表精度等级不得小于1.5级。() 12、换热器管板与管子连接形式采用胀接时,换热管材料的硬度值一般须高于管板材料的硬度值。() 13、压力容器的补强圈,应至少设置一个直径不小于M6的泄漏信号指示孔。() 14、GB151-1999规定,设计温度高于等于300℃,管法兰应采用对焊法兰。() 15、对锥壳大端,当半锥角α>30°时,应采用带过渡段的折边结构,否则应按应力分析的方法进行设计。()16、D i<800mm的圆筒与封头的最后一道环焊缝,当采用气体保护焊打底的单面焊接接头,无法进行RT或UT时,允许不进行无损检测。()17、校核耐压试验压力时,对壳程压力低于管程压力的列管换热器可以不扣除腐蚀裕度。()

浅谈压力容器的两种设计方法

龙源期刊网 https://www.360docs.net/doc/b713348070.html, 浅谈压力容器的两种设计方法 作者:王艳 来源:《价值工程》2010年第15期 摘要:本文介绍了压力容器的两种设计方法,指出分析设计方法虽然相对复杂,但较常规设计方法更安全更经济,且随着计算机技术的发展、有限元方法的应用及各种功能软件的使用它将 会得到更广泛的应用。 Abstract: This paper introduces two kinds of pressure vessel design methods and points that analysis and design methods are relatively complex and more economical,but safer than the conventional design method,and with the development of computer technology,finite element method and software applications will be more widely used. 关键词:压力容器;常规设计;分析设计 Key words: pressure vessel;conventional design;analysis and design 中图分类号:TH49 文献标识码:A文章编号:1006-4311(2010)15-0166-01 压力容器是化工、冶金、轻工、纺织、机械以及航空航天工业中广泛使用的承压设备。尽管各类压力容器设备功能各异、结构复杂程度不一,但一般可将其分解为筒体、封头、法兰、 开孔、接管、支座等部件。 压力容器及其部件的两种设计方法分别是常规设计和分析设计。 常规设计是以弹性设计准则为基础,以壳体的薄膜理论或材料力学方法导出容器及其部件 的设计计算公式,这些公式均以显式表达,给出了压力、许用应力、容器主要尺寸之间的关系。它包含了设计三要素:设计方法、设计载荷及许用应力,但这些并不是建立在对容器及其部件进行详尽的应力分析基础之上。如容器筒体,是采用“中径公式”(根据内压与筒壁上均匀分布的薄膜应力整体平衡推导而得),一般情况它仅考虑壁厚中均布的薄膜应力,不考虑其它类型的应力,如对弯曲应力,只有当它特别显著、起主导作用时才予以考虑。实际上,当容器承载以后器壁上会出现多种应力,其中包括由于结构不连续所产生的局部高应力,常规设计对此只是结合经典力学理论和经验公式对压力容器部件设计做一些规定,在结构、选材、制造等方面提出要求,把局部应力粗略地控制在一个安全水平上,在考虑许用应力时选取相对高的安全系数,留有足够的安全裕度。因此,常规设计从本质上讲,可以说是基于经验的设计方法。 工程实际中我们用常规设计的观点和方法解决了很多问题,但也有一些问题无法解释,因为常规设计只考虑弹性失效,没有去深究隐含在许用应力值后面的多种失效模式。

关于ASME压力容器的几个设计要点

关于ASME压力容器的几个设计要点 VIII-1卷的设计方法 VIII-1卷的设计要求根据: 所采用的制造方法; 所使用的材料。 使用条件的要求 用户必须说明使用条件的类型、以及其它有关情况,否则,可能造成制造厂不能满足规范对特定使用条件提出的有关要求。 设计公式 如果规范公式适合于具体一个元件的计算,那么,该公式的运用是强制性的。 使用条件的类型 VIII-1卷提到使用条件有以下5个: 1.有毒介质 2.低温 3.非受火蒸汽锅炉 4.直接受火容器 5.其它(UW-2中未提到的容器) 设计载荷 VIII-1卷列出了以下几类载荷,在设计时都必须考虑到: ●压力 ●温度梯度 ●容器和介质的重量 ●叠加载荷(如:静压头) ●局部应力* ●循环和动载荷(如:疲劳考虑) ●风载* ●地震载荷* *如果存在的话。 注:VIII-1提供的设计法则仅适合于压力载荷的计算,对于其它载荷,任何适用的工程方法都可使用。 确定设计参数的责任 在“ASME体系”里涉及到的几个单位之间存在着接口,为每个单位规定了职责或要做的工作。每个单位负责进行他们自己的工作,ASME持证单位仅负责确保符合ASME规范的所有相关要求。 用户的责任 用户应向制造厂提供以下数据,以便使所设计的容器满足预期的使用条件: ●设计压力和温度 ●载荷 ●腐蚀余量 ●使用要求 ●附加的PWHT或RT VIII-1卷容器的设计可以由用户或其设计代理、ASME持证单位或其分供方进行,但是,给容器打钢印的ASME持证单位必须对设计符合ASME规范的要求负责。VIII-1卷对设计人员

的资格没有要求。 接头形式及限制 接头类别(Joint Category) 接头类别是按接头在容器上的位置定义的。 注:D类接头可以是角接接头,也可以是对接接头。平封头上拼接焊缝为A类接头。焊接接头 除类别外,规范还用类型(Type)来描述接头。Type是焊接接头结构的定义。 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 UW-2(a) 有毒介质 当容器按有毒介质设计时,所有的焊接接头必须100%RT。 各类接头必须是: ●A类Type 1 ●B类Type 1或2

浅谈我国压力容器设计技术的进展

浅谈我国压力容器设计技术的进展 引言 社会经济发展为社会技术完善提供了发展的基础动力,工业是我国国民产业中主要部分,工业技术创新化,生产高效化,是推进社会发展技术融合的有效途径,本文对我国工业技术的创新研究,主要从压力容器的设计技术进步进展与采取的应对措施角度进行的分析,为我国现代工业技术的拓展提供新的探索发展空间。 1.压力容器设计技术进展分析 压力容器的技术随着社会工业技术的发展逐步进步,本文对压力技术设计技术的进展分析主要分为三个阶段:第一阶段,压力容器技术应用的初步阶段,新中国成立初,国家发展百废待兴,我党提出优先发展重工业技术,工业技术主要采用国外进口与国内初步研究相结合,从而达到现代工业技术研究创新分析,在应用和模仿中逐步探索,此时的工业技术应用与发展主要是为了适应社会经济发展需要,工业压力容器技术研究的层次停留在技术研究的表面,但工业生产压力容器探索发展的新渠道已经被打开;第二阶段,压力容器逐步从模仿技术向的技术转变,新的技术研究将压力容器的技术应用分为低压容器技术,中压容器技术,高压容器技术,以及超高压容器技术,压力容器技术的材质也逐步实现探索,结合我国政府提出的相应工业技术研究政策的引导,实现了良好的技术行业的加工与发展,工业装备技术的发展逐渐实现完整的发展整体,促进现代工业技术发展的良性循环;第三阶段,我国压力容器技术的发展逐步取得新的技术突破,结合现代自动化程序,例如:压力容器受压程度自动检验系统,实现现代工业压力容器技术发展结构逐步优化,例如:我国压力容器技术的探究已经不仅仅局限于工业生产在航空、航海等领域也取得了较大的成效。例如:我国压力容器产业结构的发展中,新的技术研究申请美国ASME技术认证,同时压力容器技术的发展从欧洲领域的技术研究,向亚太地区的区域技术开发转变,实现了现代压力容器技术创新与拓展的进步。结合以上对我国压力容器技术发展阶段的分析,将我国压力容器技术研究的发展总结为技术发展与研究探索两部分,主动性更强,技术开发的深度和广度加强,与我国社会发展的各个方面都具有直接性联系,在社会进步完善中具有重要的作用。 2.压力容器设计技术发展的应采取的对策 结合以上对压力容器设计技术发展的阶段进行分析,压力容器技术研究逐步取得新的研究成效,我国是世界工业发展大国,在整体技术应用中逐步进行技术研发与创新,应当多元化压力容器发展市场,我国进行新的技术分析应对策略,结合设计中应用的压力容器种类,对压力容器设计技术发展应采取对策进行全面性分析。 (1)压力容器设计阶段 压力容器的发展已经逐渐从单一的工业加工向社会发展需求的多个领域转变,压力容器技术的发展新策略研究。从容器设计的阶段进行分析,压力容器制造技术实现了容器制造专业化管理,针对压力容器的后期应用作用不同,制造阶段对压力容器的设计也发生巨大的转变,例如:压力容器如果作为普通压力生产使用,则压力容器的设计最低压力和最高压力一般为100bar和500bar,如果压力容器的后期应用作用是具有高压的化学加工,进行压力容器设计时,其压力容器的设计最低压力和最高压力一般为1001bar和5000bar,压力容器技术分析与研究是技术、设计的转化提升了现代压力技术应用与分析整体规划结构取得的效果,从而达到压力容器的设计技术专业化管理。此外,压力容器技术设计阶段的分析中,也融合了现代智能化设计流程技术,采用自动化设计检测系统,可以对设计师的设计图进行分析检验,及时发现压力容器设计中存在的不足,保障压力容器设计阶段的技术应用与分析技术的后期对接。 (2)压力容器制造技术 压力容器制造技术的进步,也是现代压力容器逐步发展的新举措。现代压力容器制造技术分析主要包括两个层面。第一,压力容器制造材质。传统的压力容器制造以铁作为主要的容器材质,铁作为主要材质可以保障压力容器的生产加工成本降低,但铁的耐腐蚀性差。化工生产中,容器容易受到高腐蚀原料的侵

压力容器设计人员综合考试题及答案(二)

2013年压力容器设计人员综合考试题姓名:得分 一、填空(本题共20 分,每题2 分) 1 、当载荷作用时,在截面突变的附近某些局部小范围内,应力数值急剧增加,而离开这个区域稍远时应力即大为降低,趋于均匀,这种现象称为_应力集中。 点评:这是弹性力学的基本概念。常见于压力容器的受压元件。 2、在正常应力水平的情况下,Q245R 钢板的使用温度下限为-20℃。 点评:该题出自GB150.2,表4,考查设计人员对材料温度使用范围的掌握。 3、对于同时承受两个室压力作用的受压元件,其设计参数中的 计算压力应考虑两室间可能出现的最大压力差。 点评:考查设计压力与计算压力的概念,GB150 .1 4.3.3 规定。 4、焊接接头系数的取值取决于焊接接头型式_和无损检测长度比例。 点评:考查设计人员对焊接接头系数选取的理解。 5、整体补强的型式有:a. 增加壳体的厚度,b.厚壁管,c. 整体补强锻件__ 。 点评:GB150.3 6.3.2.2 的规定 6、椭圆封头在过渡区开孔时,所需补强面积A 的计算中,壳体的计算厚度是指椭圆封头的_ 计算_厚度。 点评:明确开孔部位不同,开孔补强计算所用的厚度不同,见公式5-1(P116),开孔位于。 7、奥氏体不锈钢制压力容器用水进行液压试验时,应严格控制水中的氯离子含量不超过 25mg/L 。试验合格后,应立即将水渍去除干净。 点评:见GB150.4 11.4.9.1 8、压力容器的对接焊接接头的无损检测比例,一般分为全部(100%)和局部(大于等20%)两 种。对碳钢和低合金钢制低温容器,局部无损检测的比例应大于等于50% 。 点评:《固容规》第4.5.3.2.1 条。 9、换热器设计中强度胀中开槽是为了增加管板与换热管之间的拉脱力而对管孔的粗糙度要求 是为了密封。 点评:考察设计者对标准的理解和结构设计要求的目的。 10、压力容器专用钢中的碳素钢和低合金钢钢材的P≤%、S ≤% 二、选择(本题共20 分,每题 2 分,以下答案中有一个或几个正确,少选按比例得分,选 错一个不得分) 1 、设计温度为600℃的压力容器,其壳体材料可选用的钢板牌号有a、b. a.S30408, b.S31608, c.S31603 点评:奥氏体不锈钢当温度超过525℃时,含碳量应不小于0.04%,超低碳不锈钢不能适用,因热强性下降,此题是考查此概念。 2 、外压球壳的许用外压力与下述参数有关b,d 。 a.腐蚀裕量 b.球壳外直径 c.材料抗拉强度 d.弹性模量 点评:本题为基本概念试题,考查影响许用外压力的的有关因素 3、外压计算图表中,系数A 是(a,c,d )。 a. 无量纲参数 b. 应力 c. 应变 d 应力与弹性模量的比值

压力容器设计类别、级别划分

压力容器设计类别、级别的划分 第一章总则 第一条为了加强对压力容器压力管道设计单位的质量监督和安全监察,确保压力容器压力管道的设计质量,根据《锅炉压力容器安全监察暂行条例》及《压力管道安全管理与监察规定》的有关规定和国务院赋予国家质量监督检验检疫总局(以下简称国家质检总局)的职能,特制定本规则。 第二条从事压力容器压力管道设计的单位(以下简称设计单位),必须具有相应级别的设计资格,取得《压力容器压力管道设计许可证》(以下简称《设计许可证》,见附一)。 第三条设计类别、级别的划分: 一、压力容器设计类别、级别的划分: (一)A类: 1、A1级系指超高压容器、高压容器(结构形式主要包括单层、无缝、锻焊、多层包扎、绕带、热套、绕板等); 2、A2级系指第三类低、中压容器; 3、A3级系指球形储罐; 4、A4级系指非金属压力容器。 (二)C类: 1、C1级系指铁路罐车; 2、C2级系指汽车罐车或长管拖车; 3、C3级系指罐式集装箱。 (三)D类: 1、D1级系指第一类压力容器; 2、D2级系指第二类低、中压容器。 (四)SAD类系指压力容器分析设计。 压力容器设计类别、级别、品种范围划分详见附二。 二、压力管道设计类别、级别的划分: (一)长输管道为GA类,级别划分为: 1、符合下列条件之一的长输管道为GA1级: (1)输送有毒、可燃、易爆气体介质,设计压力P 〉1.6Mpa的管道;

(2)输送有毒、可燃、易爆液体介质,输送距离(指产地、储存库、用户间的用于输送商品介质管道的直接距离)≥200km且管道公称直径DN ≥300 mm 的管道; (3)输送桨体介质,输送距离≥50km且管道公称直径DN≥150mm的管道; 2、符合下列条件之一的长输管道为GA2级: (1)输送有毒、可燃、易爆气体介质,设计压力P≤1.6Mpa的管道; (2)GA1(2)范围以外的管道; (3)GA1(3)范围以外的管道。 (二)公用管道为GB类,级别划分为: 1、GB1:燃气管道; 2、GB2:热力管道。 (三)工业管道为GC类,级别划分为: 1、符合下列条件之一的工业管道为GC1级: (1)输送GB5044《职业性接触毒物危害程度分级》中,毒性程度为极度危害介质的管道; (2)输送GB50160《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类可燃气体或甲类可燃液体介质且设计压力P≥4.0MPa的管道; (3)输送可燃流体介质、有毒流体介质,设计压力P≥4.0MPa且设计温度大于等于400℃的管道; (4)输送流体介质且设计压力P≥10.0Mpa的管道。 2、符合下列条件之一的工业管道为GC2级: (1)输送GB50160《石油化工企业设计防火规范》及GBJ16《建筑设计防火规范》中规定的火灾危险性为甲、乙类可燃气体或甲类可燃液体介质且设计压力P<4.0Mpa的管道; (2)输送可燃流体介质、有毒流体介质,设计压力P<4.0Mpa且设计温度大于等于400℃的管道; (3)输送非可燃流体介质,设计压力P<10.0Mpa且设计温度<400℃的管道。 第四条国家质检总局和省级质量技术监督部门(以下简称批准部门)负责《设计许可证》批准、颁发,并按分级管理的原则进行审批。 第五条对A类、C 类、SAD类压力容器和GA类、GC1级(含GA类+GB类,GC1 级+GB类,GA类+GC类,GA类+GB类+GC类等)压力管道设计单位的《设计许可证》,由国家质检总局批准、颁发。对D类压力容器和GB类、GC2级压力管道设计单位的《设计许可证》,由省级质量技术监督部门批准、颁发。

2020年压力容器设计人员考试大纲

(情绪管理)压力容器设计人员考试大纲

压力容器设计人员考核大纲 (2012) SummaryofCheckingContentforDesignerandApproverofPressu reVesselDesign 全国锅炉压力容器标准化技术委员会 2012年02月20日 目录 第壹章总则 (1) 第二章常规设计审批人员考试内容 (1) 第三章分析设计人员考试内容 (4) 第四章附则 (5) 压力容器设计人员资格考试大纲 第一章总则 第壹条为规范压力容器设计人员资格考试工作,依据为国家质量监督检验检疫总局锅炉压力容器安全监察局颁布的TSGR1001-2008《压力容器压力管道设计许可规则》(以下简称规则)及全国锅炉压力容器标准化技术委员会制定的《压力容器设计人员考试规则》(2012),制定本规则。 第二条本规则适用于A、C、D类压力容器设计(以下称常规设计)审批(含审核、审定人)人员及SAD类压力容器分析设计(以下称分析设计)设计人、审批人的考核工作。

第二章常规设计审批人员考试内容 第三条A、D类压力容器设计审批人考试内容: (壹)理论考试要求: 1.应熟悉压力容器设计关联的基本基础知识,包括材料、结构、力学基础、设计计算方法、热处理、腐蚀、焊接、无损检测等; 2.应熟练掌握压力容器设计关联的法规、安全技术规范、标准、文件;3.能够正确解决压力容器设计、制造中常见的实际工程问题; 4.熟悉且及时掌握压力容器行业关联的标准信息 (二)关联的安全技术规范文件: TSGR0004-2009《固定式压力容器安全技术监察规程》 TSGR1001-2008《压力容器压力管道设计许可规则》等 (三)关联的标准规范: GB150.1~GB150.4《压力容器》 GB151《管壳式换热器》 GB12337《钢制球形储罐》 GB50009《建筑结构载荷规范》 GB50011《建筑抗震设计规范》 JB/T4710《钢制塔式容器》

压力容器设计的知识点

压力容器设计必须掌握的知识点与考试大纲 1.压力容器用钢的基本要求 2.压力容器规范 2.1我国压力容器规范 2.2美国压力容器规范 2.3欧洲压力容器规范 3.压力容器的分类 3.1三类容器的概念(按重要性分类) 3.2按压力大小的分类 4.压力容器的无力矩理论 4.1无力矩理论的应用条件 4.2受均匀气体内压作用的薄膜应力 4.2.1球形容器 4.2.2圆柱形容器 4.2.3椭圆形封头 4.3储存液体的容器 4.3.1圆柱形储液罐 4.3.2球形储液罐 5.压力容器的有力矩理论 5.1有力矩理论的基本方程 5.2圆柱壳轴对称弯曲的应力计算 6.压力容器的不连续分析 6.1 不连续应力的特点 6.2不连续应力的分析方法 6.3具有半球形封头圆筒的不连续应力6.4具有椭圆形封头圆筒的不连续应力6.5具有厚度突变圆筒的不连续应力 7.圆平板中的应力 7.1周边固支的圆板 7.2周边简支的圆板 7.3承受均布边缘弯矩的环形板 7.4类周边承受均布横剪力的环形板7.5带平封头圆筒的不连续分析 8.内压薄壁容器的设计计算 8.1圆筒和球壳 8.1.1圆筒的设计计算 8.1.2球壳的设计计算 8.2设计参数的确定 8.2.1设计压力、工作压力、计算压力、 设计温度 8.2.2焊接接头系数 8.2.3厚度附加量 8.2.4许用应力和安全系数 8.2.5最小壁厚 8.3压力试验 8.3.1液压试验压力 8.3.2气压试验压力 8.3.3液压试验要求 8.3.4气压试验要求 8.4封头的设计计算 8.4.1凸形封头 8.4.2椭圆形封头 8.4.3蝶形封头 8.4.4锥形封头 8.4.5折边锥形封头 8.4.6平板封头 (1) 周边固支 (2) 周边简支 9.法兰 9.1法兰基础知识 9.1.1法兰类型 9.1.2压紧面形式及选用 9.1.3垫片类型及选用 9.2法兰设计 9.2.1垫片密封机理 (1) 垫片系数m (2) 比压力y 9.2.2密封计算 (1) 螺栓载荷计算

探析压力容器设计

探析压力容器设计 发表时间:2018-12-17T15:53:20.763Z 来源:《基层建设》2018年第29期作者:孙奎福 [导读] 摘要:压力容器在工业生产中应用广泛,压力容器的设计一般有工艺条件中获得操作温度、操作压力、介质成分及特性、容器的尺寸。 杭州杭氧化医工程有限公司浙江杭州 310014 摘要:压力容器在工业生产中应用广泛,压力容器的设计一般有工艺条件中获得操作温度、操作压力、介质成分及特性、容器的尺寸。本文从其设计方面问题进行探讨。 关键词:压力容器;设计;问题 压力容器的设计过程牵涉很多标准和规范,在设计期间,设计人员会遇到各种各样的问题,对相关政策法规标准的理解不透彻和对容器设计步骤的不确定,都会给压力容器的设计带来困难,以致对后来的生产和使用过程带来一定的安全隐患。在设计压力容器时,都应该参照有关的国家规范和标准的最新版本。设计得正确、合理与否,不仅涉及到制造、检验等环节的难易程度,影响到压力容器产品的制造成本和运转费用,而且直接关系到产品运行的可靠性。 1压力容器概述 近年来压力容器的应用率越来越高,在整个设备从设计到投入运行,要经过设计,制造,检验,安装,运行监督等多个环节,设计是最为关键的一个步骤。设计的正确合理与否,不仅设计到制造,检验的复杂程度,也影响到制造的成本和运转费用,并且直接关系到产品运行的可靠性。压力容器的设计一般有工艺条件中获得操作温度、操作压力、介质成分及特性、容器的尺寸。根据已知条件选定初步尺寸,考虑何时的材料和机构,然后依据规范进行强度计算,确定筒体、风头及各个受压元件的壁厚。容器设计中应注意以下因素:储存介质的特性,包括介质的毒性、腐蚀性、可燃性、密度、饱和蒸汽压力等;装量系数,特质容器内有液体和气体时,在温度变化时存在压力变化;温度,筒体在安装时与工作时存在较大的温差,需要在设计充分考虑温度补偿措施,否则易导致筒体不正常变形,严重影响容器的性能;容器的长泾比,要考虑工艺要求,不能单方面的扩大减小。从事设计的工作人员,必须是一个精通各方面专业知识的人才,比如说,设计人员要详细了解压力容器的内部构造,构成材料的性质,对零部件的受力情况进行分析,甚至对容器制造的过程进行监督和检验。 2压力容器的设计要求 压力容器的设计一般需要满足以下几个方面的要求:(1)保证安全可靠。这是设计的核心,即设计计算,强度计算。设计时不仅必须保证每个承压元件都具有足够的强度,刚度和稳定性,而且还要满足不同工况条件下能安全可靠的运行。(2)保证满足工艺生产。这就涉及到TSGR0004-2009《固定式压力容器安全技术监察规程》的要求,设计委托方应书面提供压力容器的设计条件,包括操作条件,使用地及自然条件,介质组分与特征,预期使用年限,几何参数和管口方位等设计需要的必要条件。(3)保证合理的经济成本。在当今节能时代,合理节约能源成为各行各业必须遵循的守则。压力容器的设计,要尽量结构简单、制造方便、重量轻、节约贵重材料以降低制造成本和维修费用。(4)制造、检验、交装、操作和维修方便。提出这一要求的目的,一方面是基于安全性的考虑,因为结构简单、易于制造和探伤的设备,其质量就容易得到保证,即使存在某些超标缺陷也能够准确地发现,便于及时予以消除;其次,这样做的目的也是为了满足某些特殊的使用要求,如对于顶盖需要经常装拆的试验容器,要尽量采用快拆的密封结构,避免使用笨重的主螺栓连接;又如对于有清洗、维修内件要求的容器,需设置必要的人孔或手孔;再是,这样做自然会带来经济上的好处,可以降低容器的制造成本。 3压力容器的设计问题 3.1容器设计中的结构设计问题 (1)总体结构的几何不连续而产生的不连续性,由于容器设计需要满足各种功能性,对原本结构有破坏,会产生不连续应力,需要在设计上要通过常规设计规范对其进行补偿。(2)常常是压力引起的应力,多数是局部弯曲应力,严重时回到石局部变形。但是局部应力的作用范围有限,一般通过局部强度检核可以解决此类问题。(3)应力集中,在机构中,会存在应力集中情况,要分析应力集中部位,避免应力超过限值。 压力容器结构设计涉及工艺、选材等等,对于承压容器,结构设计中应力和强度的处理显得尤为重要,在设计中要针对具体设计容器具体结构设计。此外《压力容器安全技术监察规程》将压力容器分为三类,并对其设计、选材、制造检验及使用管理提出不同要求。 3.2总体结构设计中局部应力问题 当各个部件组合成为一个容器整体时,会出现以下状况:(1)容器接管开孔与容器筒体连接破坏了筒体内薄膜应力分布,也会产生不连续应力和应力集中。(2)封头和筒体连接时,筒体的几何连续结构破坏,会出现不连续应力。(3)容器在受到各种局部机械载荷时,容器筒体上产生叠加局部应力,目前没有统一解决方法,但是设计中要予以考虑。 4压力容器的设计分析 4.1设备材料选取 压力容器材料的基本要求:要有较高的强度、刚度,良好的制造性能,并且与压力容器介质有良好的相容性。由于压力容器在制作中设计开孔焊接等等制造工艺,在设计时要对材料的制造性能进行设计上的考量。譬如钢材,铸铁类焊接性能差,脆性高,要对其减少焊接结构设计。 4.2常规设计 常规设计的理论基础是弹性失效准则,认为容器内某一最大应力点达到屈服极限,进入塑性,丧失了纯弹性状态即为失效。在应力分析方法上,是以材料力学及板壳薄膜理论的简化计算为基础,不考虑边缘应力、局部应力以及热应力等,也不考虑交变载荷引起的疲劳问题。所有类型的应力均应采用同一的许用应力值(通常为1倍许用应力);为了保证安全,通常采用较高的安全系数,以弥补应力分析的不足。 4.3分析设计 分析设计放弃了传统的弹性失效准则,采用了弹塑性或塑性失效准则,合理地放松了对计算应力的过严限制,适当地提高了许用应力值,但又严格地保证了结构的安全性。我国的分析设计的标准为JB4732-95《钢制压力容器一分析设计标准》,是以第三强度理论即最大剪

压力容器设计基础知识讲稿(DOC 120页)

压力容器设计基础知识讲稿(DOC 120页) 部门: xxx 时间: xxx 制作人:xxx 整理范文,仅供参考,勿作商业用途

压力容器设计基础知识讲稿 (20140325) 目录 一.基本概念 1.1 压力容器设计应遵循的法规和规程 1.2 标准和法规(规程)的关系。 1.3 压力容器的含义(定义) 1.4 压力容器设计标准简述 1.5 D1级和D2级压力容器说明 二.GB150-1998《钢制压力容器》 1.范围 2.标准 3.总论 3.1 设计单位的资格和职责 3.3 GB150管辖的容器范围 3.4 定义及含义 3.5 设计参数选用的一般规定 3.6 许用应力

3.7 焊接接头系数 3.8 压力试验和试验压力 4.对材料的要求 4.1 选择压力容器用钢应考虑的因素 4. 2 D类压力容器受压元件用钢板 4.3 钢管 4.4 钢锻件 4. 5 焊接材料 4.6 采用国外钢材的要求 4.7 钢材的代用规定 4.8 特殊工作环境下的选材 5.内压圆筒和内压球体的计算 5. 1 内压圆筒和内压球体计算的理论基础5.2 内压圆筒计算 5.3 球壳计算 6.外压圆筒和外压球壳的设计 6.1 受均匀外压的圆筒(和外压管子)6.2 外压球壳 6.3 受外压圆筒和球壳计算图的来源简介6.4 外压圆筒加强圈的计算 7.封头的设计和计算 7.1 封头标准

7.2 椭圆形封头 7. 3 碟形封头 7.4 球冠形封头 7.5 锥壳 8.开孔和开孔补强 8.1 开孔的作用 8.2 开检查孔的要求 8.3 开孔的形状和尺寸限制 8.4 补强要求 8.5 有效补强范围及补强面积 8.6 多个开孔的补强 9 法兰连接 9.1 简介 9.2 法兰连接密封原理 9. 3 法兰密封面的常用型式及优缺点9.4 法兰型式 9.5 法兰连接计算要点 9.6 管法兰连接 10.压力容器的制造、检验和验收 10.1 制造许可 10.2 材料验收及加工成形 10. 3 焊接

TSGR1001-2008_压力容器压力管道设计许可规则

特种设备安全技术规范TSGR1001—2008 压力容器压力管道设计许可规则 中华人民共和国国家质量监督检验检疫总局颁布 2008年1月8日

2004年3月,国家质量监督检验检疫总局(以下简称国家质检总局)特种设备安全监察局(以下简称特种设备局)向中国特种设备检测研究院(以下简称中国特检院)下达起草任务书。2004年4月、6月,中国特检院成立起草组,分别在无锡、北京召开《压力管道设计许可规则》和《压力容器设计许可规则》首次会议。2004年7月、10月,起草组在北京召开第二次工作会议,就起草工作中的主要问题进行了研讨。2004年8月、2005年1月,起草组在北京召开末次工作会议,经讨论修改,形成了《压力管道设计许可规则》和《压力容器设计许可规则》草案,同时邀请部分设计院专家对草案进行了讨论。2004年11月、2005年2月,中国特检院向特种设备局上报了《压力管道设计资格许可规则》和《压力容器设计许可规则》的征求意见稿。2005年2月、1 2月,特种设备局分别以质检特函[2005]5号文、[2005]65号文征求基层部门、有关单位和专家以及公民的意见。2005年4月、2006年7月,根据征求到的意见进行修改形成送审稿,分别向质检总局特种设备安全技术委员会专家征求意见。2005年9月、2006年11月,分别将《压力管道设计许可规则》和《压力容器设计许可规则》报批稿上报特种设备局,特种设备局经研究决定将两规则进行合并。2007年4月,经《压力管道设计许可规则》和《压力容器设计许可规则》主要起草人员的讨论与修改,最终形成了《压力容器压力管道设计许可规则》报批稿。2008年1月8日,由国家质检总局批准颁布。 本规则修订的主要依据是《特种设备安全监察条例》(以下简称《条例》)、《国务院对确需保留的行政审批项目设定行政许可的决定》,在充分考虑我国压力容器、压力管道设计单位现状及其特点的前提下,以确保压力容器、压力管道设计质量为目的,在原《压力容器压力管道设计单位资格许可与管理规则》基础上进行的修订。

压力容器设计的基本步骤

压力容器设计的基本步骤: 以稳压罐的设计为例,对容器设计的全过程进行讲解。 首先,我们根据用户提出的、在压力容器规范范围内双方签署的具有法律约束力的设计技术协议书,该协议书也可以经双方同意共同修改、完善,以期达到产品使用最优化。 根据稳压罐的设计技术协议,我们知道了容器的最高工作压力为1.4MPa,工作温度为200℃,工作介质为压缩空气,容积为2m3,要求使用寿命为10年。这些参数就是用户提供给我们的设计依据。 有了这些参数,我们就可以开始设计。 一.设计的第一步 就是要完成容器的技术特性表。除换热器和塔类的容器外,一般容器的技术特性表包括 a容器类别b设计压力c设计温度d介质e几何容积f腐蚀裕度j焊缝系数 h主要受压元件材质等项。一般我所图纸上没有做强行要求写上主要受压元件材质 一.确定容器类别 容器类别的划分在国家质量技术监督局所颁发的《压力容器安全技术监察规程》(以下简称容规)第一章第6条(p7)有详细的规定,主要是根据工作压力的大小(p75)、介质的危害性和容器破坏时的危害性来划分(p75)。本例稳压罐为低压(<1.6MPa)且介质无毒不易燃,则应划为第Ⅰ类容器。 另:具体压力容器划分类别见培训教材p4 1-11何谓易燃介质见p2 1-6 介质的毒性程度分级见p3 1-7划分压力容器等级见p3 1-9 二.确定设计压力 我们知道容器的最高工作压力为1.4MPa,设计压力一般取值为最高工作压力的1.05~1.10倍。 至于是取1.05还是取1.10,就取决于介质的危害性和容器所附带的安全装置。 介质无害或装有安全阀等就可以取下限1.05,否则就取上限1.10。 本例介质为无害的压缩空气,且系统管路中有泄压装置,符合取下限的条件,则得到设计压力为

浅析压力容器设计中容易忽视的问题

浅析压力容器设计中容易忽视的问题 发表时间:2016-12-06T10:23:57.213Z 来源:《基层建设》2016年19期作者:史志华 [导读] 摘要:压力容器在工业领域被广泛的应用,在应用过程中渐渐地出现一些影响安全效率的不足之处。而引起这些问题的根本原因就是压力容器的设计质量存在瑕疵。所以在设计的过程中不能轻易忽视可能存在的质量问题。 烟台亚美有色金属有限公司山东烟台 265500 摘要:压力容器在工业领域被广泛的应用,在应用过程中渐渐地出现一些影响安全效率的不足之处。而引起这些问题的根本原因就是压力容器的设计质量存在瑕疵。所以在设计的过程中不能轻易忽视可能存在的质量问题。 关键词:压力容器、设计、要求、问题、措施 压力容器在工业领域被广泛的应用,在应用过程中渐渐地出现一些影响安全效率的不足之处。而引起这些问题的根本原因就是压力容器的设计质量存在瑕疵。在压力容器的设计阶段,如果在关键技术上处理不当,很容易造成有毒有害介质的泄露,甚至引起爆炸,进而危及相关操作人员的生命安全;所以在设计的过程中不能轻易忽视可能存在的质量问题。 一、压力容器的设计要求 1.确保工艺生产的顺利完成 有些压力容器应用于工能够业生产中时是要承担完成相应的工艺过程,例如石油化工生产中,整个工艺过程要在压力容器中进行,这就要求压力容器要满足整个工艺要求达到的压力、温度以及各种工艺完成所需的其他规格标准。 2.确保安全可靠的运行 一些应用于化工生产的物料多数具有强烈的腐蚀性和易燃性,甚至是毒性,很容易在生产过程中引发火灾甚至是恶性的爆炸事故,使得压力容器内部储存的能量瞬间释放,具有极大的摧毁力。因此在进行容器设计时一定要保证容器能够安全可靠地进行运行。 3.满足预定的使用寿命 化工生产材料会对压力容器进行腐蚀,使得压力容器器壁变薄甚至烂穿,造成生产安全隐患。因此,在进行压力容器设计时一定要选择合理的材质,并且经过科学计算确保压力容器在使用寿命周期内的结构性能的完好性。 4.经济性 压力容器在进行设计时,在保证安全使用的前提下,尽量结构简单、方便制造,尽量节约贵重材料的使用降低制造成本和维修的成本。尽量提高压力容器的性价比。 二、压力容器设计中易忽视的问题 1、材料问题 压力容器的设计过程中,对容器承受的压力的能力的有着严格的要求。压力容器所用的钢材必须要经过严谨的计算和分析决定。在此过程中要考虑压力容器的设计压力、设计温度、介质特性、材料的焊接性能、冷热加工性能、热处理以及容器的结构外,还需要考虑经济合理性。不能为了增大容器的压力而一味盲目的提高钢板的厚度。(1)当压力设计过大时,使设备的壳体壁厚较大,如果还沿用碳素钢就会导致壁厚增加,质量加大,造成成本浪费。一般在以强度控制为主的情况下,当壳体壁厚超过8mm时,应优先选用低合金钢。当设计压力较小、直径较大、以刚度控制或以结构设计主时,应尽量选用普通碳素钢。(2)在专业的钢制化容器材料选用规定中规定“同时符合下列条件的高温压力容器主要受压元件用钢应按炉罐号,复验设计温度下的屈服强度值,其值不得低于相应许用应力值的1.6倍(奥氏体钢为1.5倍)。包括:设计温度大于300℃;设计压力大于1.6MPa;钢材厚度大于等于20mm:钢材主要截面以承受一次薄膜应力为主,且其厚度取决于强度计算的结果。” 2、法兰问题 法兰的设计问题上,我国制定有严格的规范。压力容器设计中的法兰问题主要是由于设计者对于法兰的使用不能够严格的按照相关的设计标准进行法兰的有效选择,从而导致法兰问题。因此设计者应该熟悉有关法兰的设计标准和规范,准确的进行法兰类型的选择。 3、分气缸设计问题 在进行分气缸设计时,容易忽视分气缸的出气口和进气口之间的有效距离。导致分气缸不能正常的进行工作。在设计的过程中,设计者应该通过对具体的工艺参数的计算来确定出两者之间的距离。 4、储气缸的设计问题 压力容器的储气缸是用来储存气体用的,因此它需要有一定的抗压能力,因此储气缸对于材质的要求很高。对于储气罐的设计首先要做好其材质和尺寸的设计。储气罐的罐体直径和长度之间的比例要控制要求范围之内,合理设计的进行设计,才能使罐体的实际使用性能实现最优化。 三、解决压力容器问题的措施 1.材料的选择。在材料选择方面,除需要考虑材料的耐蚀性及足够的强度和刚度外,还应考虑其经济合理性,通过选材合理,来降低材料厚度,减少生产成本。另外,良好的稳定结构可以很好的避免抗压力不足或泄露带来的事故。 2.法兰的选择。基于法兰的规格具有严格的规范性,因而在设计时需要注意不同结构部位的法兰选择,因为不同规格的法兰,其受力的情况存在较大的差异。在选择标准法兰时,除根据设备的设计压力、温度及介质特性进行选择外,还应考虑法兰的最大允许工作压力,避免因未考虑法兰的最大允许工作压力而导致法兰选择等级过低,影响设备的安全使用。在选用《压力容器法兰》(JB/T 4700-2000)标准中的设备法兰时,应注意以下几个方面:第一,《压力容器法兰》(JB/T 4700-2000)3.2 对法兰的腐蚀裕量有最大腐蚀裕量的要求,即“本标准中乙型法兰的适用腐蚀裕量为不大于2mm,当腐蚀裕量超过2mm但不大于3mm时,应加厚短接厚度2mm。长颈对焊法兰的适用腐蚀裕量不大于3mm。”在设计过程中,当压力容器腐蚀裕量超过上述适用的腐蚀裕量数值时,往往因为没有注意到这一条而直接选用了标准法兰。第二,《压力容器法兰》(JB/T 4700-2000) 6.5.2 规定:与长颈法兰相连接的圆筒厚度应不小于JB/T 4703 中规定的对接筒体最小厚度δ0,且筒节长度不小于(DNδ0)1/2。当对接圆筒厚度小于最小对接圆筒厚度时,应按JB 4703 中表3 要求调整法兰总高度H(其他尺寸不变),并连同法兰厚度在标记中标明。JB/T 4703中给出了最小对接圆筒厚度,当长颈法兰与小于该最小厚度的筒节对接时,通过计算与较

相关文档
最新文档