二氧化碳超临界萃取参考文献

二氧化碳超临界萃取参考文献
二氧化碳超临界萃取参考文献

近几年有关"超临界CO2流体萃取"的参考文献

1、稻草和毛竹CO_2超临界流体萃取脱木质素研究

【作者】刘江燕; 武书彬;

【文献出处】北京林业大学学报2011年02期

【摘要】采用CO2超临界流体萃取技术脱除稻草和毛竹的木质素,利用正交试验对脱木质素率与综纤维素含量等指标进行了评价;采用气相色谱-质谱联用方法(GC-MS)分析了萃取液的组成,讨论了萃取液组成与萃取条件(温度、压力和时间)的关系;利用透射电镜-能谱联用技术(TEM-EDXA)考察了萃取前后材料中木质素分布的超微结构。结果表明:温度、压力和时间是影响稻草和毛竹脱木质素的主要因素;温度越高、压力越大、时间越长,脱木质素程度越大,综纤维素含量越低。萃取液中主要含有来自纤维素结构的五元环、烷氧基醇和脂肪酸以及来自于H、G、S型木质素典型结构单元的降解产物。经CO2超临界萃取后,在160℃、16MPa、60min条件下,稻草细胞壁分层已不明显;在200℃、16MPa、60min条件下,毛竹细胞壁胞间层和细胞角隅中的木质素已全部溶出。

2、超临界流体技术在纤维素中的应用

【作者】何涛; 陈鸣才; 胡红旗; 刘红波; 吕社辉;

【文献出处】纤维素科学与技术, 2003年03期

【摘要】综述了超临界流体技术在纤维素方面的研究进展和应用,包括超临界萃取,超临界流体制浆,纤维素超临界降解,木材超临界热解,超临界水处理,木材超临界流体辅助改性和超临界染色等。并对其应用前景进行了讨论。

3、响应面分析法在优化桃儿七鬼臼毒素CO_2超临界萃取工艺中的应用

【作者】杜微; 李唯; 杨德龙; 栗孟飞; 杨青;

【文献出处】甘肃农业大学学报, 2011年01期

【摘要】在单因素试验基础上,以萃取压力、萃取温度、萃取时间为影响因素,鬼臼毒素提取率为响应值,根据中心组合试验设计原理采用3因素3水平的响应面分析法,对桃儿七中鬼臼毒素的二氧化碳超临界萃取(CO2-SFE)条件进行优化.结果表明:CO2-SFE萃取桃儿七中鬼臼毒素的最佳工艺条件为:萃取压力38MPa,萃取温度50℃,萃取时间52min,在此条件下鬼臼毒素的提取率可达11.38%.

4、CO_2超临界萃取叶黄素工艺条件的优化控制

【作者】徐平如; 杨忠林; 邵友元;

【文献出处】化工技术与开发, 2011年08期

【摘要】采用超临界CO2提取方法探讨了从万寿菊中提取叶黄素的最佳工艺条件。通过单因素和正交实验确定影响叶黄素萃取的因素为:时间>温度>压力>CO2流量;优化工艺条件为:萃取时间3h,萃取压力25MPa,温度55℃,CO2流量10L.h-1,分离罐Ⅰ温度42℃,压力11MPa,分离罐Ⅱ温度38℃,压力同储罐。在该优化工艺条件下,可萃取叶黄素824mg.(100g)-1原料,提取率达95.7%。

5、基于CO_2超临界萃取技术的康藏荆芥精油的提取研究

【作者】顾锡峰;

【文献出处】安徽农业科学, 2010年09期

【摘要】[目的]建立CO2超临界萃取技术提取康藏荆芥(Nepeta pratti Lèvl)精油的最佳工艺。[方法]采用正交试验优化CO2超临界萃取技术提取康藏荆芥精油的工艺。应用气相色谱-质谱联用技术分析康藏荆芥精油的主要成分及其含量,并与水蒸气蒸馏法、溶剂法所萃取的康藏荆芥精油的主要成分及其含量进行比较。[结果]利用CO2超临界萃取技术提取的荆芥精油的主要组分为:胡薄荷酮、薄荷酮、石竹烯、D-柠檬烯、反式-香芹醇、辣薄荷烯酮、大=牛儿烯D、2R-顺-5-甲基-2-(1-甲基乙基)环己酮、异胡薄荷酮、柠檬烯、1-辛烯-3-醇,松茸醇、2-环戊基环戊酮、石竹烯氧化物、dactylol、月桂烯,其含量分别为:45.21%、19.90%、1.89%、1.80%、1.49%、1.07%、0.81%、0.78%、0.65%、0.51%、0.51%、0.50%、0.47%、0.40%、0.21%。其中,萃取物中的萜类物质含量最高,可达76.20%。与传统提取法(水蒸气蒸馏法和溶剂浸提法)相比,应用CO2超临界萃取技术提取的康藏荆芥精油中的主要物质胡薄荷酮等含量较高,且萃取出来的物质种类相对较多。[结论]超临界萃取法简便可行,具...

6、决明子降脂保肝胶囊的CO_2超临界萃取工艺研究

【作者】郝红梅; 刘必旺; 赵换; 吉海杰; 周然; 尤舒彻;

【文献出处】中国中医药现代远程教育, 2009年11期

【摘要】目的研究CO2超临界萃取决明子降脂保肝胶囊中有效成分之一的蒽醌类化学物质的最佳工艺条件,考察各工艺参数对蒽醌类化学物质的影响。方法以决明子降脂保肝胶囊中蒽醌类化学物质的含量为主要指标,采用L(3)4正交设计优选CO2超临界萃取的蒽醌类化学物质最佳工艺条件。结果CO2超临界萃取温度、萃取压力及萃取次数均对蒽醌类化学物质有较大影响,以萃取温度为60℃,萃取压力为60mPa,萃取2次,每次1.5h时,蒽醌类化学物质的萃取最佳。结论CO2超临界萃取可用于决明子降脂保肝胶囊的生产,且工艺条件简单、稳定、可行。

7、CO_2超临界萃取蛇床子中蛇床子素的工艺研究

【作者】闫志芳; 刘必旺; 赵水平;

【文献出处】世界中西医结合杂志, 2009年01期

【摘要】目的研究CO2超临界萃取蛇床子中有效成分蛇床子素的最佳工艺条件,考察各工艺参数对蛇床子素得率的影响。方法以蛇床子素得率和萃取物中蛇床子素的含量为主要指标,采用L9(34)正交设计优选CO2超临界萃取的蛇床子素最佳工艺条件。结果CO2超临界萃取温度、萃取压力及萃取次数均对蛇床子素提取率有较大影响,以萃取温度为40℃,萃取压力为40MPa,萃取3次,每次1h时,蛇床子素得率最高,达98.63%。结论CO2超临界萃取可用于蛇床子中的有效成分蛇床子素的提取,且工艺条件简单、稳定、可行。

8、CO_2超临界流体法提取银杏叶黄酮工艺的研究

【作者】赵琦君; 莫润宏; 陈如祥; 周建钟;

【文献出处】江西林业科技, 2009年03期

【摘要】通过正交试验对二氧化碳超临界流体法提取银杏叶中黄酮工艺进行研究。正交实验结果分析表明超临界流体萃取最佳工艺条件为:萃取压力35 MPa,萃取温度50℃,萃取时间1.5 h,夹带剂浓度90%。

9、五味子CO_2超临界提取物对肉仔鸡免疫功能的影响

【作者】裴文芳; 单安山; 石莉莎; 张炜;

【文献出处】东北农业大学学报, 2009年09期

【摘要】文章通过以五味子CO2超临界提取物作为添加剂,研究其对肉鸡免疫功能的影响。

试验选用1日龄的健康艾维茵肉仔鸡200只,随机分为5个处理组,空白组饲喂基础日粮,试验组分别在基础日粮中添加黄霉素5mg·kg-1、五味子CO2超临界提取物0.1%、0.15%、0.3%。于21、42、56日龄进行五味子提取物的免疫功能调控试验。结果表明,日粮中添加五味子提取物可显著提高肉仔鸡后期的胸腺指数,在日粮中添加0.3%五味子提取物可显著提高肉仔鸡血清NDV-HI抗体效价和血清溶菌酶含量,并可显著提高肉仔鸡血清IgM含量和肉仔鸡外周淋巴细胞转化率。结果显示,五味子能够增强肉鸡的免疫功能。

10、CO_2超临界萃取葛根总黄酮的研究

【作者】吕程丽; 欧阳玉祝; 梅杰; 朱嶷峰; 郑胜丰;

【文献出处】食品与发酵科技, 2009年05期

【摘要】以葛根为原料,采用CO2超临界提取法提取葛根中的总黄酮。用L9(34)正交试验考查了提取温度、提取时间、料液比、萃取压力四因素对总黄酮提取率的影响。实验结果表明,在温度为50℃,料液比为280:330(g/mL),萃取压力35MPa条件下萃取2h,总黄酮的提取率为1.4572%。

11、CO_2超临界和乙醇提取蜂胶对大鼠降血脂效果

【作者】曾志将; 杨明; 杨新跃; 周银平; 刘志勇;

【文献出处】江西农业大学学报, 2006年03期

【摘要】试验用健康雄性SD大鼠,给予高脂颗粒饲料喂饲后第9 d,大鼠眶静脉取血,测定血清总胆固醇(TC)、甘油三酯(TG)和高密度脂蛋白(HDL-C)值。高脂血症动物模型成功后,随机分为对照组1(给予聚乙二醇400)、超临界蜂胶高剂量组(600 mg/kg BW)、超临界蜂胶中剂量组(300 mg/kg BW)、超临界蜂胶低剂量组(150 mg/kg BW);对照组2(给予食用油)、乙醇提取蜂胶高剂量组(600 mg/kg BW)、乙醇提取蜂胶中剂量组(300 mg/kg BW)、乙醇提取蜂胶低剂量组(150 mg/kg BW)8个组。分组后连续4周蜂胶灌胃,同时各组大鼠继续给予高脂颗粒饲料喂饲,之后各组大鼠取血测定TC、TG和HDL-C。结果表明:喂蜂胶28 d后,只有超临界蜂胶高剂量组(600 mg/kg BW)的TG值和乙醇提取蜂胶高剂量组(600 mg/kg BW)的TC值分别与相对照组差异显著,其它指标都差异不显著。

12、桑椹籽中黄酮的CO_2超临界流体萃取及抑菌作用研究

【作者】李国章; 于华忠; 卜晓英; 曹庸; 饶力群;

【文献出处】现代食品科技, 2006年02期

【摘要】本文研究了CO2超临界流体萃取桑椹籽中总黄酮苷类化合物的影响因素,进行了生产工艺优化的正交试验,并对萃取物的抑菌作用进行了研究。结果表明,对萃取率影响主次次序为:萃取压力、萃取温度、CO2流量、夹带剂用量。生产最优工艺条件为:萃取压力30MPa、萃取温度为50℃、CO2流量20kg/h、夹带剂料液比为1:4。萃取物色泽金黄、无异味,每100g 萃取物含总黄酮苷类化合物67.63mg。萃取物对细菌和霉菌都有一定的抑制作用,而对细菌的抑制作用较强。

13、RP-HPLC法测定川芎CO_2超临界流体萃取物中丁烯基苯酞的含量

【作者】侯晓虹; 李岩; 高艳; 唐星; 吴群;

【文献出处】沈阳药科大学学报, 2006年12期

【摘要】目的测定川芎二氧化碳超临界流体萃取物中丁烯基苯酞的含量。方法采用HPLC 法。色谱条件为色谱柱:Diamonsil C18(200 mm×4.6 mm,5μm);流动相:甲醇体积分数为10%异丙醇水溶液(体积比为60∶40);流速:1.0 mL.min-1;检测波长:235 nm;柱温:40℃。结果丁烯基

苯酞在7.28~72.8μg.mL-1内线性关系良好(r=0.999 5),平均回收率为99.7%(RSD=2.72%,n=6)。3批样品中丁烯基苯酞的含量质量分数分别为4.86%(RSD=1.25%,n=3)、5.00%(RSD=1.87%,n=3)和4.81%(RSD=1.87%,n=3)。结论HPLC法可以测定川芎二氧化碳超临界流体萃取物中丁烯基苯酞的含量,供试品中丁烯基苯酞与其他组分的色谱峰分离度良好。

14、复方丹参CO_2超临界萃取液抗大鼠血栓形成的实验研究

【作者】张旭静; 王素春; 郭吉平; 王桂清;

【文献出处】中国现代应用药学, 2007年01期

【摘要】目的探讨复方丹参萃取液对大鼠实验性血栓形成的影响。方法采用大鼠颈总动脉-颈外静脉血流旁路法,进行复方丹参萃取液抗血栓形成实验,并检测其相关指标。结果复方丹参萃取液有明显抑制血栓形成,并有降低血小板聚集性的作用。结论复方丹参萃取液具有抗血栓形成的作用。

15、CO_2超临界萃取八角油树脂工艺优化研究

【作者】王永斌; 王家良;

【文献出处】食品科学, 2007年08期

【摘要】目的:优化CO2超临界萃取八角油树脂最佳工艺条件。方法:采用Plackett-Burman 设计对影响超临界CO2萃取八角油树脂的因素进行了筛选,所选取的7个相关因素为:原料粒度、CO2流量、萃取压力、萃取温度、萃取时间、解析压力和解析温度。在此基础上,采用三因素三水平Box-Behnken统计学实验设计方法对影响萃取率的关键影响因素萃取压力、萃取温度和萃取时间的最佳水平范围作了进一步的研究与探讨;结果:实验表明,在萃取压力大于27.2MPa、萃取温度为33.5~44.9℃时,在1.82~2.85h内皆可获得本研究中的最大得率8.29%;结论:通过对萃取率模型方程解逆矩阵,求得在萃取压力为29.31MPa、萃取温度为44.87℃和萃取时间为2.30h时,八角油树脂萃取率的预测值可达8.52%。

16、CO_2超临界萃取吴茱萸挥发油的研究

【作者】吕诗言; 吕鉴泉;

【文献出处】现代科学仪器, 2008年06期

【摘要】采用CO_2超临界萃取技术研究了吴茱萸中挥发油的提取方法。文中以挥发油的吸光度为考察指标,探讨了萃取压力、萃取温度和萃取时间三因素在不同水平条件下对提取吴莱萸挥发油的影响,采用L_9(3~3)正交实验方法对CO_2超临界萃取吴茱萸挥发油的工艺进行考察,并优化了其工艺条件。结果表明,其最佳工艺条件为萃取压力12MPa,萃取温度50℃,萃取时间40min在此优化条件下,挥发油的收率平均可达1.523%。本文方法所得的挥发油收率明显高于水蒸气蒸馏法的收率,且耗时短、品质好。

17、芪灵益肝煎及其CO_2超临界萃取液对肝癌细胞株H_(22)端粒酶反转录亚单位表达的影响

【作者】郑颖; 张红; 宋其生; 宝廷玉;

【文献出处】中国临床药学杂志, 2005年03期

【摘要】目的观察芪灵益肝煎、芪灵益肝煎CO2超临界萃取液、环磷酰胺(Cyc)的含药血清对小鼠腹水型肝癌细胞株HcaF25/CL16A3(H22)端粒酶反转录亚单位(TERT)表达的影响。方法利用血清药理学方法,以Cyc为阳性对照,用免疫组化技术观察小鼠腹水型肝癌细胞株H22TERT的表达。结果经大、小剂量芪灵益肝煎、芪灵益肝煎CO2超临界萃取液、Cyc的含药血清作用后小鼠腹水型肝癌细胞株H22TERT的表达均下调,与对照组比较,差异有明显的统

计学意义(P<0.01),而下调TERT的程度在4组组间比较差异无统计学意义(P>0.05)。结论大、小剂量芪灵益肝煎、芪灵益肝煎CO2超临界萃取液、Cyc均可下调H22TERT的表达,而且下调TERT的程度相当。

18、白芷香豆素类化合物的成分分析及CO_2超临界萃取工艺的研究

【作者】黄欣; 苏乐群; 邵伟; 殷佳; 张学顺; 刘逢芹;

【文献出处】中国药房, 2005年11期

【摘要】目的:建立以高效液相色谱(HPLC)法分析白芷香豆素类化合物的成分及CO2超临界流体法萃取白芷中香豆素类成分的的方法。方法:采用正交试验设计考察萃取压力、萃取温度、萃取时间及药材粒度对总香豆素收率的影响,用HPLC法检测萃取物中欧前胡素和异欧前胡素的含量。结果:欧前胡素、异欧前胡素的检测浓度线性范围分别为29.4~235.2、10~80μg/ml,平均回收率分别为(100.46±1.42)%、(99.94±1.18)%(n=3),相对标准差分别为1.76%、1.62%;以无水乙醇作为改性剂,白芷在萃取压力35MPa、萃取温度45℃、药材粒度60目、萃取时间3h时总香豆素收率最高。结论:萃取压力、药材粒度、萃取时间对总香豆素萃取收率均有显著影响;所建立的分析方法精密度高、简便快速,适于欧前胡素和异欧前胡素的含量测定。

19、CO_2超临界萃取肉豆蔻油树脂的研究

【作者】陈杰明; 汤卫东; 陈吉洪; 张淼;

【文献出处】江苏调味副食品, 2005年03期

【摘要】超临界流体萃取技术是近几年发展起来的一项高新技术,超临界CO2萃取作为溶剂,密度可通过改变压力和温度来控制,而密度是直接影响其溶解能力的。在以肉豆蔻为试验材料的实验中,通过肉豆蔻粉超临界萃取试验,确定了萃取压力30MPa,萃取温度50℃,CO2泵频率20Hz,萃取2h,在此条件下,萃取得油率在46%左右。

20、CO_2超临界流体萃取芦笋中熊果酸的研究

【作者】崔星明; 王勇为; 陈光宇;

【文献出处】上海农业学报, 2004年01期

【摘要】用CO2 超临界流体萃取得到的芦笋(AsparagusofficinalisL .)提取物,用甲醇抽提醇溶部分,经用液质联用仪检测,得到5 6个紫外检测峰。其中,有保留时间与熊果酸基本一致的峰。其质谱的分子离子峰及特征碎片峰也与熊果酸的一致。确定该化合物为熊果酸。

21、CO_2超临界-超声波联用技术提取花色苷(配糖体)的工艺研究

【作者】张树宝; 王振宇; 杨谦;

【文献出处】中国林副特产, 2004年05期

【摘要】花色苷是花青素与糖以糖苷键结合而成的一类化合物,可广泛的应用于食品、制药、化妆品等行业,常规提取工艺容易使其发生降解、褪色。用CO2 超临界装置对植物原料进行预处理,用超声波技术提取花色苷具有时间短、纯度高、提取量大等特点,同时具有防止提取物在长时间、高温条件下发生降解、褪色等变化。对超声波提取花色苷的各项工艺条件进行了初步探讨,设计了工艺流程,研究了超声波提取的温度、时间和提取剂对花色苷提取率的影响,得出最佳提取工艺参数为:在超声波频率为3 0kHz条件下,用浓度为2 %的稀H2 SO4作提取剂,处理40min ,温度5 0℃时提取率最高

22、CO_2超临界流体萃取丹参中的有效成分

【作者】李霞; 唐玉海; 赵新锋; 卢宏波; 郑晓晖;

【文献出处】西安交通大学学报(医学版) , 2004年06期

【摘要】目的建立CO2 超临界流体萃取丹参中有效成分的方法,并用高效液相质谱法进行产物分析。方法以95 0mL·L-1乙醇为夹带剂,在2 0MPa、4 5℃条件下,萃取丹参药材1h后,再在30MPa、6 5℃条件下,以10 0mL·L-1的乙醇为夹带剂萃取2h ,并将超临界萃取法与回流提取法、超声提取法进行了比较。结果超临界萃取法萃取的成分最多,萃取效率也高于其他两种方法。结论超临界萃取法提取丹参中有效成分耗时少、准确、效率高且提取完全。

23、CO_2超临界萃取印楝素的研究

【作者】赵淑英; 王秋芬; 宋湛谦;

【文献出处】福建林学院学报, 2005年02期

【摘要】文中利用超临界CO2 萃取印楝素通过考察萃取压力、萃取温度、CO2 的流量、提携剂的种类以及料液比等因素对萃取产率的影响, 发现较适宜的萃取条件为: 萃取温度为32℃,萃取压力为32MPa, CO2 流量为10kg·h-1, 较佳提携剂为甲醇, 料液比为1∶3 该条件下印楝素A的萃取率为0 220%

24、蛇床子CO_2超临界萃取物中有效成分的含量测定

【作者】典灵辉; 吴铁; 崔燎; 苟占平;

【会议名称】第九届全国中药和天然药物学术研讨会

【会议地点】中国江西南昌

【论文摘要】目的:测定蛇床子超临界CO_2萃取物中蛇床子素和总香豆素的含量。方法:采用HPLC 法和UV 法对本品中蛇床子素和总香豆素的含量进行测定。结果:蛇床子素在0.275~2.20μg范围内线性关系良好(r=0.999 8);加样回收率为100.02%, RSD 为1.05%。总香豆素在2.20~11.00μg范围内线性关系良好(r=0.9997);加样回收率为99.65%。RSD 为1.91%。结论:该方法准确、灵敏、专属性强,可作为该萃取物的质量控制方法。

25、超临界CO_2流体萃取当归根油工艺研究

作者:刘强陈芝飞

出处:《农产品加工》2010年第11期70-71页,共2页

摘要:以当归根为原料,研究超临界二氧化碳流体萃取当归根油的工艺条件,对萃取时间、萃取温度、萃取压力、CO2流量等因素进行研究,确定最佳工艺条件为:萃取时间3h、萃取温度50℃、CO2流量8kg/h、萃取压力30MPa,当归根油萃取得率为2.68%。

当归根油;超临界CO:萃取中图分类号:TQ461 文献标志码:A 当归具有补血、镇静、润肠湿胃、活血化淤等多种作用,当归根中所含的挥发性芳香成分称之为当归根油。目前,当归根油的提取几乎都是采用水蒸气蒸馏法,由于当归根油的成分多为不稳定物质,易受热变质和挥发。超临界流体萃取技术(简称SFE)是一项新型分离技术,它利用超临界流体的独特优点,通过控制体系的压力和温度而使萃取物得到分离。不存在有害健康的残余有机溶剂,而且操作条件温和,不会使芳香成分变质分解。这一特点为从天然物质中提取高品质的香料提供了一条很有发展前景的途径,因此近年来超临界萃取技术在香精香料工业中的应用受到了广泛的关注Ⅲ。关于超临界萃取当归根油国内已经有一些报道t2-3'/,本文对当归根进行超临界CO:萃取研究,考察萃取时间、温度、压力、CO 流量与精油得率之间的关系,以便寻找最佳工艺条件,为工业化生产提供实验数据。

植物中天然香料的提取及香料成分分析预习报告

植物中天然香料的提取及香料成分分析 预习报告 摘要植物中蕴含大量天然香料,报告就天然香料的基本知识与分类的进行简单介绍。简明分析了蒸馏法、压榨法、浸提法和吸收法四种提取方法的适用条件,优缺点以及分离方法。为更好的对香料成分进行分析,报告介绍了关于香料产品的关键技术指标和检测方法。 关键词天然香料肉桂油水蒸气蒸馏成分分析 目录 1.香料的基本知识 (2) 1.1香料的定义 (2) 1.2香料的分类 (2) 1.2.1天然香料 (2) 1.2.2合成香料 (2) 2.肉桂油的结构和特点 (2) 2.1肉桂油的来源 (2) 2.2肉桂油的结构 (3) 2.3肉桂油的特点 (3) 3.天然香料的提取方法 (3) 3.1蒸馏法 (3) 3.1.1水蒸气蒸馏法 (3) 3.2压榨法 (4) 3.3浸提法(萃取法) (5) 3.4吸收法 (5) 4.香料产品的关键技术指标及其检测方法。 (6) 4.1检验项目 (6) 4.2检验方法 (6) 4.2.1相对密度的测定 (6) 4.2.2折射率的测定 (6) 4.2.3乙醇中溶混度的确定 (7) 4.2.4酸值的测定 (7) 4.2.5酯值的测定 (8) 4.2.6重金属的测定 (9) 4.2.7红外光谱测定 (10) 参考文献 (11)

1.香料的基本知识 1.1香料的定义 香料是一种能被嗅感嗅出气味和被味感品出香味的物质,是用以调制香精的原料。植物性天然香料也称植物性精油(essential oil),是由植物的花、叶、茎、根和果实,或者树木的叶、木质、树皮和树根中提取的易挥发芳香组分的混合物。 1.2香料的分类 以原料的来源可划分为天然香料和合成香料 1.2.1天然香料 指以动植物的芳香部位为原料,经过简单加工制成的原态香材,其形态大多保留了植物固有的一些外观特征,如香木块、香木片等;或者是利用物理方法从天然原料中分离出来的芳香物质,其形态常为精油、浸膏、净油、香膏、酊剂等。自然界中现已发现的香料植物有3600余种,得到有效利用的约400余种。植物的根、干、茎、枝、皮、叶、花、果实或树脂等皆可成香。动物香料多为动物体内的的分泌物或排泄物。约有十几种,常用的有麝香、灵猫香、海狸香和龙涎香4种。 1.2.2合成香料 合成香料是以煤化工产品、石油化工产品等为原料,通过化学合成方法制取的有香味的化合物。目前世界上合成香料已达5000多种,常用的产品有400多种。 合成香料分类方法主要有两种:一种是按官能团分类,例如可分为酮类香料,醇类香料,酯、内酯类香料,醛类香料、烃类香料、醚类香料、氰类香料以及其它香料;另一种是按碳原子骨架分类,可分为萜烯类、芳香类、脂肪族类、含氮、含硫、杂环和稠环类以及合成麝香类。合成香料工业已成为现代精细化工的重要组成部分。 2.肉桂油的结构和特点 2.1肉桂油的来源 肉桂为樟科植物肉桂的树皮,性大热,味甘辛,具补阳、温肾、祛寒、通脉、止痛功效,临床上常用于补火助阳、散寒止痛、活血通经等,肉桂含1% 左右的挥发油,其中桂皮中的油含量最高,主要成分为肉桂醛,具有镇静、镇痛、解热、抗惊厥、增强胃肠蠕动、利胆、抗肿瘤等作用。他们大量用于视频、饮料、果糖、化妆品和香料工业,是一种很重要的芳香油。

超临界萃取原理

超临界萃取原理 超临界流体萃取是当前国际上最先进的物理分离技术。 常见的临界流体中,由于CO2化学性质稳定,无毒害和无腐蚀性,不易燃和不爆炸,临界状态容易实现,而且其临界温度(31.1℃)接近常温,在食品及医药中香气成分,生理活性物质、酶及蛋白质等热敏物质无破坏作用,因而常用CO2作为作为萃取剂进行超临界萃取。 一、超临界CO2 纯CO2的临界压力是7.3MPa和31.1℃时,此状态CO2被称为超临界CO2。在超临界状态下,CO2流体是一种可压缩的高密度流体,成为性质介于液体和气体之间的单一状态,兼有气液两相的双重特点:它的密度接近液体,粘度是液体的1%,自扩散系数是液体的100倍,因而它既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对某些物质很强的溶解能力,可以说超临界CO2对某些物质有着特殊的渗透力和溶解能力。 二、超临界CO2萃取过程 超临界CO2密度对对温度和压力变化十分敏感,所以调节正在使用的CO2的压力和密度,就可以通过调节CO2密度来调整该CO2对欲提取物质的溶解能力;对应各压力范围所得到的的萃取物不是单一的,可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,与被萃取物质完全或部分分开,从而达到分离提纯的目的。 三、超临界CO2溶解选择性 超临界状态下的CO2具有选择性溶解,对低分子、弱极性、脂溶性、低沸点的成分如挥发油、烃、酯、内脂、醚、环氧化合物等表现出优异的溶解性,而对具有极性集团(-OH、-COOH等)的化合物,极性基团愈多,就愈难萃取,故多元醇、多元酸及多羟基的芳香物质均难溶于超临界CO2。对于分子量大的化合物,分子量越大,越难萃取,分子量超过500的高分子化合物几乎不溶,因而对这类物质的萃取,就需加大萃取压力或者向有效成分和超临界CO2组成的二元体系中加入具有改变溶质溶解度的第三组成粉(即夹带剂),来改变原来有效成分的溶解度。一般来说,具有很好性能的溶剂,也往往是很好的夹带剂,如甲

香料萃取方法

精油来源: 精油是从各种植物提炼而得,而且每一种植物可供萃取制造精油的部份不同:桉树的叶,玫瑰的花,鼠尾草的花和叶,佛手柑是果皮,经过专业仪器及实验检定,视其有效部位,再用专业技术与机器提炼萃取制成。你或许觉得市面上的精油怎麼会一小瓶就要价若干,这实在是精油来源可贵,取之不易的关系。一公斤的玫瑰精油需要6000 公斤的玫瑰花瓣,而至少也要8,000,000 朵的茉莉花才能够制造出一公斤的茉莉花精油。既然精油的来源与价钱如此珍贵,所以使用的时候呢,也不要为了求得快又强的疗效,硬是不按照规定,超过剂量使用;恰如其分才能获得最确实的效果。 精油的作用: 所有的植物都会进行光合作用,它的细胞会分泌出芬香的分子,这些分子则会聚集成香囊,散布在花瓣、叶子或树干上。将香囊提炼萃取后,即成为我们所称的"植物精油”。精油可由250种以上不同的分子结合而成。在大自然的安排下,这些分子以完美的比例共同存在着,使得每种植物都有其特殊性,也因此精油对人体的奥妙作用是无比的宽广。 纯天然的植物精油都有以下主要功能:气味芬芳,自然的芳香经由嗅觉神经进入脑部后,可刺激大脑前叶分泌出内啡汰及脑啡汰两种荷尔蒙,使精神呈现最舒适的状态,这是守护心灵的最佳良方。而且不同的精油可互相组合,调配出自己喜欢的香味,不会破坏精油的特质,反而使精油的功能更强大。精油本质可防传染病、对抗细菌、病毒、霉菌、可防发炎,防痉挛、促进细胞新陈代谢及细胞再生功能,让生命更美好。而某些精油能调节内分泌器官,促进荷尔蒙分泌,让人体的生理及心理活动,获得良好的发展。 . 精油的制造方法 制造精油的方式有几种,最常被运用的有蒸馏法、溶剂法、脂吸法,还有榨取法。 蒸馏法 蒸馏法又是所有制造精油的方法中,最早被应用来制造精油,也是最普遍常见的一种。这种制造方法,是先将确定要用来制造经由的植物各部位,例如像黑胡椒的果实、柠檬的果皮,又或是薄荷的花,将这些植物来源搜集妥当,清洗乾净,稍微晾乾,再放进蒸馏器的容器里。植物放进容器之后,就用水或者是水蒸气在蒸馏器底下加热,使得这些植物不管是花、叶或树干中的水蒸气,因此而完全散发出来,并且在蒸馏器里留下该植物的精油浓缩液。但这并不就是精油喔,还要将浓缩液中的水和油隔离,隔离之后所获得的油质部份,便是该植物的精油,再经过简易的加工制作成罐装,便是我们在市面买到的精油。 溶剂法 如果是利用植物的花朵来制作精油的话,大半就是以萃取法来搜集植物精油。首先将花朵与石油精以一定的比例完全融合,泡置一段时间,再一起将混合溶液放到特制的容器当中。接著再以电热的方式加热前述的容器,以温火慢慢加热,让混合溶液因此取得一定量的芬芳物质,这份液体物质就是该植物精油的最原始状态。然后便把这份液体物质经过过滤,便会再生成一份深黑色的稠状物。接著把准备好一定份量的酒精倒进这份稠状物,顺同一方向慢慢地搅拌,务必使酒精能够充份与稠状物调合。待稠状物溶解至酒精中并冷却后,再经过过滤的手续,让酒精成份慢慢蒸发掉,余留的物质便是我们要的精油。 脂吸法 关於精油制作的方法中,最新奇有趣的当属脂吸法。这是利用一种特制的脂肪来吸取植物具有利用价值部位的精油,不过这种脂肪的配方,是各种制作精油者的最高机密外人还真是无法一窥究竟。一旦要利用脂吸法来提制精油,制造者会在乾净的镶嵌玻璃片的木框上先涂满薄薄的脂肪,再把采集而来的花朵,假设是橙花,将橙花铺满在涂抹过脂肪的玻璃上,橙花也不要放得太密集,花与花之间距离疏密有致。大约经过一天至三十六个小时的时间,橙花

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

超临界二氧化碳萃取的过程及设备教学教材

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

植物中天然香料的提取及香料成分分析预习报告(dandan)

广州大学化学化工学院 本科学生综合性、设计性实验 预习报告 实验课程化工专业实验 实验项目植物中天然香料的提取及香料成分分析 专业化学工程与工艺班级 学号姓名 指导教师及职称梁红(教授)、陈姚(教授) 开课学期2015 至2016 学年第一学期 时间2015 年12 月17 日

植物中天然香料的提取及香料成分分析 预习报告 摘要植物中蕴含大量天然香料,本文就天然香料的基本知识与分类的进行简单介绍,分析了蒸馏法、压榨法、浸提法和吸收法等多种取方法的适用条件,优缺点以及分离方法。为更好的对香料成分进行分析,报告介绍了关于香料产品的关键技术指标和检测方法。 关键词天然香料肉桂油水蒸气蒸馏成分分析

目录 一、香料的基本知识 (3) 1. 香料的定义 (3) 2. 香料的分类 (3) 天然香料 (3) 合成香料 (3) 3. 提取天然香料的一般方法 (3) a. 水蒸气蒸馏法 (3) b. 浸提法(萃取法) (4) c. 压榨法 (5) d. 吸收法 (5) e. 超临界萃取 (6) f. 分子蒸馏 (6) g. 微波法提取 (6) 二、肉桂油 (7) 1.来源及用途 (7) 2.主要成分的物理性质 (7) 3. 肉桂油特点 (7) 三、香料产品的关键技术指标的检测方法 (8) 1.标准样品、溶剂和辨香纸 (8) ①标准样品 (8) ②溶剂 (8) ③辨香纸 (8) 2.香气评定的方法和步骤 (8) 3.各种指标的检测方法 (8) 附录(实验方案) (9) 参考文献 (10)

一、香料的基本知识 1. 香料的定义 香料,英文一般用spice,指称范围不同,是一种能被嗅觉嗅出香气或味觉尝出香味的物质,是配制香精的原料。具有令人愉快的芳香气味,能用于调配香精的化合物或混合物。按其来源有天然香料和人造香料按其用途有日用化学品用香料、食用香料和烟草香料之分。在化学工业中,全合成香料是作为精细化学品组织生产的。 2. 香料的分类 以原料的来源可划分为天然香料和合成香料。 天然香料 指以动植物的芳香部位为原料,经过简单加工制成的原态香材,其形态大多保留了植物固有的一些外观特征,如香木块、香木片等;或者是利用物理方法从天然原料中分离出来的芳香物质,其形态常为精油、浸膏、净油、香膏、酊剂等。自然界中现已发现的香料植物有3600余种,得到有效利用的约400余种。植物的根、干、茎、枝、皮、叶、花、果实或树脂等皆可成香。动物香料多为动物体内的的分泌物或排泄物。约有十几种,常用的有麝香、灵猫香、海狸香和龙涎香4种。 合成香料 合成香料是以煤化工产品、石油化工产品等为原料,通过化学合成方法制取的有香味的化合物。目前世界上合成香料已达5000多种,常用的产品有400多种。 合成香料分类方法主要有两种:一种是按官能团分类,例如可分为酮类香料,醇类香料,酯、内酯类香料,醛类香料、烃类香料、醚类香料、氰类香料以及其它香料;另一种是按碳原子骨架分类,可分为萜烯类、芳香类、脂肪族类、含氮、含硫、杂环和稠环类以及合成麝香类。合成香料工业已成为现代精细化工的重要组成部分。 3. 提取天然香料的一般方法 水蒸气蒸馏法;萃取法;压榨法;吸收法;酶法提取;超临界流体萃取(SFE);分子蒸馏;微波法提取。 a.水蒸气蒸馏法 水蒸气蒸馏法是指将含挥发性成分药材的粗粉或碎片,浸泡湿润后,直火加热蒸馏或通入水蒸汽蒸馏,也可在多能式中药提取罐中对药材边煎煮边蒸馏,药材中的挥发性成分随水蒸气蒸馏而带出,经冷凝后收集馏出液,一般需再蒸馏1次,以提高馏出液的纯度和浓度,最后收集一定体积的蒸馏液;但蒸馏次数不宜过多,以免挥发油中某些成分氧化或分解。本法的基本原理是根据道尔顿定律,相互不溶也不起化学作用的液体混合物的蒸汽总压,等于该温度下各组分饱和蒸气压(即分压)之和。因此尽管各组分本身的沸点高于混合液的沸点,但当分压总和等于大气压时,液体混合物即开始沸腾并被蒸馏出来。 水蒸气蒸馏法只适用于具有挥发性的,能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取。此类成分的沸点多在100℃以上,与水不相混溶或仅微溶,并

天然香料的提取分离技术

天然香料的提取分离技术 1、水蒸气蒸馏法 在植物性天然香料生产中,水蒸气蒸馏是最常用的一种技术,该方法特点是设备简单容易操作、成本低、产量大。除在沸水中主香成分容易溶解、水解或分解的植物原料外(如茉莉、紫罗兰金和欢等一些鲜花),绝大多数芳香植物均可以用水蒸气蒸馏方法生产精油。 水蒸气蒸馏法生产精油主要有如下三种形式:水中蒸馏、水上蒸馏和水气蒸馏。水中蒸馏加热温度一般为95℃左右,植物原料中的高沸点芳香成分不易蒸出;另外在直接加热方式中易出现糊焦现象。水上蒸馏和水气蒸馏不适于易结块和细粉状的原料,但这两种蒸馏法生产出的精油质量较好;水气蒸馏在工艺操作上对温度和压力的变化可自行调节,生产出的精油质量最佳,但其设备条件要求较高,需要附设锅炉,适于大规模生产。此外,加热方式、蒸汽速度、操作压力、操作温度等因素对出油率均有影响。 基于水蒸气蒸馏存在的问题,人们开始致力于改进蒸馏设备。出现了加压串蒸、连续蒸馏、带复馏柱蒸馏、以及蜗轮式快速水蒸气蒸馏等形式。由上海轻工设计院设计的双柱式连续蒸馏装置,日处理原料为40到60t,使用效果良好,Phineas对蒸馏装置进行改进,减少了水溶性组分的挥发损失,而且降低了能耗,减少了废弃物对环境的污染,兼顾了经济效益和环境保护。 2、浸提法 浸提法是用挥发性的有机溶剂将植物原料中的芳香成分浸取出来,使之溶解到有机溶剂中,然后蒸去溶剂。其特点是可以不加热、在低温下进行、除了挥发性组分外,还可以提取其中重要的、不挥发生性成分。因此,多用于鲜花、树脂以及香豆、枣子等的浸提加工。 工业上主要有四种浸提方式:固定浸提、搅拌浸提、转动浸提和逆流浸提。固定浸提原料静止不动,保持了鲜花组织不受损失,有利于提高产品的香气质量,不足之处是生产效率较低。转动浸提是我国目前普遍使用的浸提方式,但其仅使用于花瓣较厚的进口原料。逆流浸提生产效率高,但是设备复杂,投资较大,维修也有较大难度。 影响浸提效果的因素有:浸提剂的种类、浸提温度、浸提时间、浸提次数等。选择正确的浸提剂尤为重要,不仅要考虑芳香原料成分和产品质量要求,并按“相似相溶”原则选择最适宜的溶剂,而且要考虑所选溶剂必须无高沸点残留物。如在苹果香精萃取中,异戊烷对低级醇类回收率高于其他萃取溶剂。日本新近开发一种萃取溶剂,该溶剂内含有柠檬酸、乳酸及磷酸组合体,应用时需把它与极性溶剂混和,极性溶剂包括乙醇、丙二醇、乙二醇及1,3一丁二醇。经其处理过

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

二氧化碳超临界萃取技术

二氧化碳超临界萃取技 术 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

超临界CO2萃取装置 ??? 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 ?超临界CO2萃取装置的主要技术指标 ??? 萃取釜:、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 ??? 分离釜:30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 ??? 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 ??? CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 ??? 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 ??? 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 ??? 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃??? 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±??? 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量??? 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。??? 其他:电源三相四线制380V/50Hz,CO2食品级≥,用户自备 ?超临界CO2萃取装置的基本流程 ??? 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; ??? 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; ??? 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; ??? 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 ?超临界CO2萃取装置的特点

超临界二氧化碳萃取设备操作步骤

SFE-CO2萃取技术操作步骤 一、开机操作 1.开启墙上的总电源(最下面一排右数第二个),面板总电源。开启萃取1、分离1、分离2按钮,设定萃取温度(范围35~60℃,正常约45℃)和分离1温度(范围35~65℃,正常约50~60℃),分离2的温度不动(正常约35℃)。2.看三个水箱的水位离口1至2公分,看水泵是否运转(水面有波动的话一般为转动或查看泵的叶片)。 3.开启面板制冷电源,启动制冷箱(顺时针扭90°,与地垂直)。 4.等萃取分离温度达到设定温度和冷机停时(此时准备向料桶加料),打开阀门1,2(逆时针旋3圈,每圈360°),打开球阀(在主机背面,逆时针扭至水平),关阀门4,5,慢慢打开阀门3,排气(听排气声),使萃取压力为0,打开堵头。 二、装料操作 1.加料:自下而上依次为物料(得率不少于5%,量至少达料筒高度一半,最高离料口2公分)→脱脂棉(圆形,直径比滤网长1公分)→白圈→滤纸→滤网→盖子(注意反正,细口朝下,用专用工具盖紧,能用吊篮提住)。 2.装料筒:自下而上依次为料筒→黑色细O型环→通气环→堵头(内部套黑色粗O型环,用水润湿)。 三、萃取操作 1.关阀门3,慢慢打开阀门4(稍微逆时针扭一下,幅度很小),使萃取1压力与贮罐压力相等。 2.慢慢打开阀门3排气5~10秒,关上。 3.全开阀门4和5(逆时针旋3圈,每圈360°),关阀门6(先顺时针旋2圈),泵电源,即绿灯(泵1调频,频率范围12~18,一般16~18,此时设定开CO 2 为18),按RUN,看萃取1压力,等萃取1压力达到设定压力(最高不超过35MPa,正常20~30MPa,此时设为约25MPa),调阀门6使之平衡,关阀门8,升分离1压力(最高不要超过11MPa,正常8~10MPa,此时设定为10MPa),等分离1压力达到设定压力,调阀门8使之平衡。(注:分离2的压力永远不能关,与贮罐压力相等)看时间开始循环(一般每半小时一个循环)。

植物香精香料的提取

云南天宏香精香料有限公司 (植物香精香料的提取) 第一小组: 我们班于6月17号到玉溪实习,在田老师、熊老师、吴老师、秦老师的带领下,上午参观了云南天宏香精香料有限公司。到了公司后,由公司的负责人带领我们参观了他们的调香室、分析室和生产车间。对植物香精香料的提取有所了解。 云南天宏香精香料有限公司简介: 云南天宏香精香料有限公司是华宝国际控股有限公司的子公司之一,华宝国际控股有限公司,是中国香精香料行业的领导

者,多年来,其销售额在同行业一直名列前茅,在中国香精香料占有重要份额。目前公司在上海、云南、广州、无锡、青岛等地设有制造基地,并在上海、广州、德国设有研发中心。公司所属的华宝食用香精香料(上海)有限公司企业技术中心是行业中唯一的国家级企业技术中心。 云南天宏香精香料有限公司成立于2001年6月,经云南省外经贸委批准成立,是一家以烟用香精香料为主产品,集生产、销售、科研于一体的中外合资企业,公司注册资金255万美元,投资总额6000万人民币,是国家及云南省烟草专卖局认定的烟用香精香料定点生产企业。云南天宏香精香料有限公司是云南省外商投资先进企业,公司以“技术高起点、管理高标准、队伍高素质、发展高速度”为经营理念,创造了较好的经济效益和社会效益。 植物香精香料的提取方法 天然香料以其安全性及合成香料难以替代的嗅感和感官特性受到广大消费者的偏爱,使天然类的产品销售看好,给天然香料的发展带来了一个难得的机遇。我国是世界上最大的天然香精香料生产国,但我国香料工业也存在一些问题。由于提取加工工艺落后,很多植物只能进行初步提取,还有一些天然原料被销往国外进行深加工,严重浪费了我国天然香料的宝贵资源。这引起我国对天然香料的开发应用,和科研工作的重视。

超临界萃取

超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。 温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。 除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。 编辑本段一、超临界流体 物质是以气、液和固3种形式存在,在不同的压力和温度下可以相的转换。在温度高于某一数值时,任何大的压力均不能使该纯物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度下,气体能被液化的最低压力称为临界压力Pc。当物质所处的温度高于临界温度,压力大于临界压力时,该物质处于超临界状态。在压温图中,高于临界温度和临界压力的区域就称为超临界区,如果流体被加热或被压缩至其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体性质,同时还保留有气体性能,这种状态的流体称为超临界流体。 编辑本段二、超临界萃取的技术原理 超临界CO2流体萃取(SFE)分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 编辑本段三、超临界萃取的特点 1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来; 2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性; 3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本; 4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好;

最新超临界二氧化碳萃取资料

超临界二氧化碳萃取技术 超临界二氧化碳萃取技术产生于二十世纪五十年代,目前已经广泛应用于食品、能源、医药、化妆品及香料工业。随着中药、天然药物新药研究的发展和中药现代化的不断深入,超临界二氧化碳萃取技术在中药、天然药物活性成分和有效部位的分离和纯化中的应用研究越来越多。由于此项技术在我国起步较晚,在中药新药中应用该项技术的品种较少。为了促进与新药研制单位的沟通和交流,共同探讨超临界二氧化碳萃取技术在中药新药中应用的相关问题,我们对超临界二氧化碳萃取技术在中药新药研究中的应用谈一些个人的看法,抛砖引玉,仅供参考。 一、超临界二氧化碳萃取技术在中药中的应用概况 超临界二氧化碳萃取是以超临界状态(温度31.3℃,压力7.15MPa)下的二氧化碳为溶剂,利用其高渗透性和高溶解能力来提取分离混合物的过程。超临界状态下的二氧化碳,其密度大幅度增大,导致对溶质溶解度的增加,在分离操作中,可通过降低压力或升高温度使溶剂的密度下降,引起其溶解物质能力的下降,可使萃取物与溶剂分离。与一般液体萃取相比,超临界二氧化碳萃取的速率和范围更为扩大,萃取过程是通过温度和压力的调节来控制与溶质的亲和性而实现分离的。 超临界二氧化碳萃取技术具有环境良好、操作安全、不存在有害物残留、产品品质高且能保持固有气味等特点。从20世纪50年代起已开始进入实验阶段,70年代以来超临界二氧化碳萃取技术在食品工业中的应用日趋广泛,80年代超临界二氧化碳萃取技术更广泛地用于香料的提取。进人90年代后,超临界二氧化碳萃取技术开始运用于从药用植物中提取药用有效成分等。我国对超临界流体技术的研究始于20世纪70年代末80年代初,与国外相比虽起步稍晚,但发展很快,在超临界流体萃取、精馏、沉析、色谱和反应等方面都有研究,涉及了化工、轻工、石油、环保、医药及食品等行业,不仅有基础研究,而且有工艺、工程开发。 早在20世纪70年代后期,德国人就采用超临界二氧化碳萃取技术从黄春菊中萃取出有效活性成分,产率高于传统溶剂法。日本学者用超临界二氧化碳对蛇床子、紫草、甘草等进行提取。发现蛇床子中呋喃骈香豆精(furocoumarins)超临界提取的最佳条件是温度为40℃,压力为40MPa,流速为6L/min,夹带剂为乙醇、水或甲醇。不用夹带剂的超临界二氧化碳可将紫草中的紫红色素提出来,并能从东北甘草或西北甘草中提出甘草素(1iquiritigenin),但提不出带有三个酚羟基的异甘草素(isoliquiritigenin),不用夹带剂能将甘草查耳酮 A(1icochalconeA)提出,而使用乙醇夹带剂则可将甘草查耳酮B(1icochalcone)提出。 我国研究人员用超临界二氧化碳从丹参中提取丹参酮,其提取率也比传统的溶剂

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分离过程作出比较,必须在此前作出预设计或过程仿真、优化,其流程如图3-16所描述。按照科学开发的原则,不管采用何种分离过程,理应先进行仿真,再作实验验证,有利于省时省力。随着计算机的快速发展,图3-16的开发流程,更为开发研究者乐于采用。Lira[2]指出,图3-16中的步骤4和6是决定最终SCFE是否成功的关键。但是没有步骤3和5,更多的优化工作要在实验验证(步骤7)后进行,这就延缓开发进程和花费更多的人力、物力。

超临界二氧化碳萃取

超臨界二氧化碳萃取實驗 ㄧ、目的: 了解超臨界二氧化碳萃取原理,並經由實驗探討溫度及壓力對超臨界二氧化碳萃取功效之影響。 二、原理: 單一物質通常具有大家所熟悉的氣、固、液三相,當未達臨界點(critical point)前常可藉由溫度與壓力的增減使物質產生液相與氣相之間的轉變,且相與相之間會有明顯的界面存在。但是一旦壓力到達或超過其臨界壓力(critical pressure, P c)且溫度到達或超過其臨界溫度(critical temperature, T c)時,此液氣兩相的界面不復存在,整個系統呈現一均勻狀態即此物質之超臨界流體(Super Critical Fluid, SCF)狀態(圖一)。 圖一:一般純物質之平衡相圖

在超臨界狀態下,物質的一些基本性質與特性會有所改變。一般而言,超臨界流體的物理性質是介於氣、液相之間的,例如其黏度接近氣體而密度則接近液體。因密度高,可輸送較氣體更多的超臨界流體,因黏度低,輸送時所需的功率則較液體為低。又其擴散係數(diffusion coefficient)高於液體10至100倍以上,亦即質量傳遞阻力(mass transfer resistance)遠較液體為小,此外超臨界流體有如氣體幾乎無表面張力,因此很容易滲入多孔性組織中,在質量傳遞上遠較液體為快。除物理性質外,在化學性質上亦與氣、液態時有所不同。例如二氧化碳在氣體狀態下不具萃取能力,但當進入超臨界狀態後,二氧化碳變成親有機性因而具有溶解有機物的能力,且因其密度接近液體因而具有很好的媒合能力(solvating power),使得超臨界流體容易進入萃取物中將溶質帶出而成為一個相當優良的溶劑,具有絕佳的萃取效果。 當一溶質分子處於超臨界流體中,若此分子與溶劑間之引力大於溶劑與溶劑間之引力時,該分子會被周圍的溶劑分子所包圍,稱之為群聚效應(clustering effect);群聚現象目前已被認為是超臨界流體增加溶解能力的主要原因之一。超臨界流體的溶解能力與其密度有直接的關係,而其密度則隨著溫度或壓力的改變 一般流體之壓力-密度平衡相圖;其中壓力是以還原壓力P r(P r=P/P c, reduced pressure),溫度是以還原溫度T r(T r=T/T c, reduced temperature),密度則是以還原密度ρr(ρr=ρ/ρc, reduced density)來表示,其中P c、T c及ρc分別代表此物質在其臨界點之臨界壓力、臨界溫度以及臨界密度。一般超臨界流體萃取的操作溫度約在1~1.4 T r之間,壓力則在1~6 P r之範圍內;亦即圖中的SCF的陰影部份。由圖中可知在此範圍只要溫度或壓力稍為加以改變,還原密度ρr就會有很明顯的變化亦即超臨界流體的溶解能力也會有很明顯的變化。因此此陰影部份也是超臨界流體最常使用的操作區域。表一則為CO2的密度與溫度、壓力的關係數據表。 超臨界流體經常應用在萃取、層析、反應、清洗、染色、分離與造粒等各方面。較常見的超臨界流體有二氧化碳、二氧化硫、乙烯、已烷、丙烷、丁烷、庚烷、六氟化硫及氨等,他們的臨界壓力、臨界溫度以及臨界密度各不相同。而其中又以二氧化碳(CO2)為目前最常使用的超臨界流體,因為CO2具有以下的特點: 1.臨界溫度(304.4 K)與臨界壓力(7 2.9 bar)皆不算高,可以在節省操作成本 及能源的條件下輕易就可達其超臨界狀態。 2.臨界溫度低使得操作溫度可以維持在相對低溫的範圍,可減少對熱敏感 物質的破壞。 3.超臨界二氧化碳對許多較低極性之有機物質具有良好的溶解能力,且其 溶解能力可以很方便的經由壓力和溫度的改變,或者添加少量的修飾劑

从植物中提取天然香料

从植物中提取天然香料 一、实验目的 学习香料的基本知识与提取天然香料的实验方法。 二、实验原理 蒸馏法芳香成分多数具有挥发性,可以随水蒸气逸出,而且冷凝后因其水溶性很低而易与水分离。因此水蒸气蒸馏就是提取植物香料应用最广的方法。但由于提取温度较高,某些压榨法用压榨法可从果实(例如柠檬、柑橙等)中提取芳香油。此类果实的香味成分包藏在油囊中,用压榨机械将其压破即可将芳香油挤出,经分离与澄清可得到压榨油。压榨加工通常在常温下进行,香精油中的成分很少被破坏,因而可以保持天然香味。但制得的油常带颜色,而且含有蜡质。 浸提法(萃取法)适用于香组分易受热破坏与易溶于萃取溶剂的香料。目前主要用于从鲜花中提取浸膏与精油。通常就是将鲜花置于密封容器内,用有机溶剂冷浸一段时间,然后将溶剂在适当减压下蒸镏回收,得到鲜花浸膏。这样得到的香料,其香气成会一般比较齐全, 留香持久。但也含色素与蜡质,并且水溶性较差。必要时,萃取可在适当加热的条件下进行。吸收法较不常用。 三、仪器与药品 所需药品取决于所选的实验内容,可根据实验确定。 四、实验操作 1、蒸馏法提取姜油 秤取生姜 50g,洗净后先切成薄片,再切成小颗粒,放入 250mL

圆底烧瓶中,加水 50mL与沸石 2-3粒。在瓶上装有恒压滴液漏斗,漏斗上装接回流冷凝管。将漏斗下端旋塞关闭,加热使烧瓶内的水保持较猛烈地沸腾,于就是水蒸气夹带着姜油蒸气沿着恒压漏斗的支管上升进入冷凝管。从冷凝管回流下来的冷凝水与姜油落下,被收集在恒压漏斗中,冷凝液在漏斗中分离成油、水两体。每隔适当的时间将漏斗下端旋塞拧开,把下层的水排入烧瓶中,姜油则总就是留在漏斗中。如此重复操作多次,约经 2、5h 后,降温,将漏斗内下层的水尽量分离出来,余下的姜油则作为产物移入回收瓶中保存。 用松针、香芽草、胡椒、柠檬叶、按叶等等代替生姜,可得到相应的清油,只就是收率各不相同。 2、冷榨法提取橙油 将新鲜的柑桔皮的里层朝外,晒干或晾干(1-2天)备用。取干柑桔皮 200g,切成小颗粒,放入研钵中研烂,尽量将油水挤出(有条件的可用小型压榨机)。将榨出物用布氏漏斗抽滤,滤渣用少量水冲洗 1-2 次,抽滤至干。合并所有的油水混合物并将之移入试管中,用高速离心机进行离心分离。5min 后停机,将橙黄的油层用吸管吸出。残液在适当加水搅拌后,再重复上述操作,离心分离一次。将两次得到的橙油合并,得到粗橙油。为把粗橙油中所含将上层清油吸出,得到质量较好的冷榨橙油。 五、思考题 1.植物天然香料通常有几种提取方法? 2.如何提高天然香料的产率?

相关文档
最新文档