分析化学的知识点总结(分析化学知识点总结贴)

分析化学的知识点总结(分析化学知识点总结贴)

分析化学是关于研究物质的组成、含量、结构和形态等化学信息的分析方法及理论的一门科学,是化学的一个重要分支。是鉴定物质中含有那些组分,及物质由什么组分组成,测定各种组分的相对含量,研究物质的分子结构或晶体。今天,我们就从分析化学的发展历史、分析方法、几大分析方法等几个角度为各位粉丝介绍分析化学。。

发展历史

第一个重要阶段

20世纪二三十年代,利用当时物理化学中的溶液化学平衡理论,动力学理论,如沉淀的生成和共沉淀现象,指示剂作用原理,滴定曲线和终点误差,催化反应和诱导反应,缓冲作用原理大大地丰富了分析化学的内容,并使分析化学向前迈进了一步.

第二个重要阶段

20世纪40 年代以后几十年,第二次世界大战前后,物理学和电子学的发展,促进了各种仪器分析方法的发展,改变了经典分析化学以化学分析为主的局面。

原子能技术发展,半导体技术的兴起,要求分析化学能提供各种灵敏准确而快速的分析方法,如,半导体材料,有的要求纯度达99.9999999%以上,在新形势推动下,分析化学达到了迅速发展。最显著的特点是:各种仪器分析方法和分离技术的广泛应用。

4.检测器及记录仪

红外光能量低,因此常用热电偶、测热辐射计、热释电检测器和碲镉汞检测器等。

傅里叶变换红外光谱仪具有以下优点:灵敏度高。扫描速度快。分辨率高。测量光谱范围宽(1 000~10 cm-1),精度高(±0.01 cm-1),重现性好(0.1%)。还有杂散光干扰小。样品不受因红外聚焦而产生的热效应的影响。

核磁共振波谱法

将磁性原子核放入强磁场后,用适宜频率的电磁波照射,它们会吸收能量,发生原子核能级跃迁,同时产生核磁共振信号,得到核磁共振:

a.屏蔽常数

任何原子核都被电子云所包围,当1H核自旋时,核周围的电子云也随之转动,在外磁场作用下,会感应产生一个与外加磁场方向相反的次级磁场,实际上会使外磁场减弱,这种对抗外磁场的作用称为屏蔽效应。

影响屏蔽常数的因素:

原子屏蔽原子屏蔽可指孤立原子的屏蔽,也可指分子中原子的电子壳层的局部屏蔽,称为近程屏蔽效应。

分子内屏蔽:

指分子中其他原子或原子团对所要研究原子核的磁屏蔽作用。

分子间屏蔽:

指样品中其他分子对所要研究的分子中核的屏蔽作用。影响这一部分的主要因素有溶剂效应、介质磁化率效应、氢键效应等。。

b.化学位移有两种表示方法:

1.用共振频率差( )表示,单位Hz。

由于s是个常数,因此共振频率差与外磁场的磁感应强度B0呈正比。这样同一磁

性核,用不同磁场强度的仪器测得的共振频率差是不同的。所以用这种方法表示化学位移时,需注明外磁场的磁感应强度B0。

2.用d值表示

化学位移定义为:

该表达式也适用于脉冲NMR法。

对于扫场法,固定的是发射机的射频频率,因此,样品S和参比物R的共振频率

满足:

此时定义化学位移为:

c.自旋-自旋耦合和耦合常数J

氢核吸收峰的裂分是因为分子中相邻氢核之间发生了自旋相互作用,自旋核之间的相互作用称为自旋—自旋偶合。自旋偶合不影响化学位移,但会使吸收峰发生裂分,使谱线增多,简称自旋裂分。

偶合常数

自旋偶合产生峰裂分后,裂分峰之间的间距称为偶合常数,用J表示,单位为Hz。

J值大小表示氢核间相互偶合作用的强弱。与化学位移不同,不因外磁场的变化而

变化,受外界条件的影响也很小。偶合常数有以下规律:

(1)J值的大小与B0无关。影响J值大小的主要因素是原子核的磁性和分子结构

及构象。因此,偶合常数是化合物分子结构的属性。

(2)简单自旋偶合体系J值等于多重峰的间距,复杂自旋偶合体系需要通过复杂

计算求得。

超过三个化学键的J耦合一般较弱。

自旋-自旋耦合分裂的规律:

由于邻近核的耦合作用,NMR谱线发生分裂。在一级近似下,谱线分裂的数目N

与邻近核的自旋量子数I和核的数目n有如下关系:

当I = 1/2时,N = n 1,称为“n 1规律”。谱线强度之比遵循二项式展开式的系数比,n为引起耦合分裂的核数。下面以“—CH2CH3”基团的H NMR谱线分裂情况为例进

行说明。

自旋裂分峰数目及强度:

(1)化学环境完全相同的原子,虽然它们有很强的偶合作用,但无裂分现象:

例,-CH3不发生裂分。

(2)分子中化学位移相同的氢核称为化学等价核;把化学位移相同,核磁性也相

同的称为磁等价核。磁等价核之间虽有偶合作用,但是,无裂分现象,在NMR谱

图中为单峰:

例如,Cl-CH2-CH2-Cl 分子中,-CH2上的氢核皆是磁等价核,出现的信号强度相当于4个H 核的单峰

化学位移相同,偶合常数也相同,磁等价核一定是化学等价核。

磁不等价核之间才能发生自旋偶合裂分。如下情况是磁不等价氢核

A.化学环境不相同的氢核;

B.与不对称碳原子相连的-CH2上的氢核;

C.固定在环上的-CH2中的氢核;

D.单键带有双键性质时,会产生磁不等价氢核;

E.单键不能自由旋转时,也会产生磁不等价氢核。

(3)一组相同氢核自旋裂分峰数目由相邻氢核数目n 决定

裂分峰数目遵守n 1规律,相邻n个H,裂分成n 1峰

氢核相邻一个H原子,H核自旋方向有两种,两种自旋取向方式

↑↓(↑顺着磁场方向,↓反着磁场方向)

氢核相邻两个H原子,H核自旋方向有四种,四种自旋取向方式

↑ ↑ 1/4

↑ ↓ 1/4

↓ ↑ 1/4

↓ ↓ 1/4

氢核相邻三个H原子,H核裂分为四重峰。强度比为1 ︰3 ︰3 ︰1

(4)裂分峰之间的峰面积或峰强度之比符合二项展开式各项系数比的规律。(a b)n,n为相邻氢核数

n=1 (a b)1 1︰1

n=2 (a b)2 1︰2 ︰1

n=3 (a b)3 1︰3︰3 ︰1

(5)氢核邻近有两组偶合程度不等的H核时,其中一组有n个,另一组有n′ 1

个,则这组H 核受两组H核自旋偶合作用,谱线裂分成(n 1)(n′ 1)重峰。

谱仪的基本组件

磁体:

产生强的静磁场。

射频源:

用来激发核磁能级之间的跃迁。

探头:

位于磁体中心的圆柱形探头作为NMR信号检测器,是NMR谱仪的核心部件。样

品管放置于探头内的检测线圈中。

接收机:

用于接收微弱的NMR信号,并放大变成直流的电信号。

匀场线圈:

用来调整所加静磁场的均匀性,提高谱仪的分辨率。

计算机系统:

用来控制谱仪,并进行数据显示和处理。

连续波NMR谱仪

NMR信号观测系统:

包括:射频激发单元、探头、接收系统等。

稳定磁场系统:

包括:电源、稳场系统等,用来提高磁场强度的稳定性,从而提高谱线的重复性。磁场均匀化系统:

包括:匀场系统、样品旋转系统等,主要用来提高仪器的分辨率。

此外,NMR谱仪还常常配备有双共振系统和变温系统等。

脉冲傅里叶变换NMR谱仪

包含以下三大部分:

1.NMR信号观测系统:

包括脉冲发生器、射频系统、探头、接收系统、计算机控制和数据处理系统。

2.稳定磁场系统:

与连续波NMR谱仪基本一样。

3.磁场均匀化系统:

与连续波NMR谱仪基本一样。

波谱仪的三大技术指标

1.辨率:

有相对和绝对分辨率,表征波谱仪辨别两个相邻共振信号的能力,即能够观察到两个相邻信号u1和u2各自独立谱峰的能力,以最小频率间隔,u1-u2,表示。

2.稳定性:

包括频率稳定性和分辨率稳定性。衡量办法是连续记录相隔一定时间的两次扫描,测量其偏差。

3.灵敏度:

分为相对灵敏度和绝对灵敏度。在外磁场相同、核数目相同及其他条件一样时,以核灵敏度为参比,其他核的灵敏度与之相比称为相对灵敏度。

氢谱中影响化学位移的主要因素

化合物中,质子不是孤立存在,其周围还连接着其他的原子或基团,它们彼此之间的相互作用影响质子周围的电子云密度,从而使吸收峰向低场或高场移动。

影响质子化学位移的因素主要有:

诱导效应、共轭效应、磁各向异性效应、范德华效应、溶剂效应和氢键效应等。

其中诱导效应、共轭效应、磁各向异性效应和范德华效应为分子内作用。

溶剂效应为分子间作用,氢键效应则在分子内和分子间都会产生。

诱导效应

1H核受一个或几个电负性较强原子或基团的拉电子作用,则周围的电子云密度降低,屏蔽效应降低,化学位移值增大,吸收峰左移。

若1H核与一个或几个给电子基团连接,则其周围的电子云密度增加,屏蔽效应增加,化学位移值减小,吸收峰右移。

诱导效应还与取代基的数目以及取代基与观测核的距离大小有关。

共轭效应

电负性较强的原子存在并以单键形式连接到双键上,由于发生p-p共轭,电子云

自电负性原子向p键方向移动,使p键上相连的1H电子云密度增加,因此δ降低,共振吸收移向高场。

电负性较强的原子以不饱和键的形式连接,且产生p-p共轭,则电子云将移向电

负性原子,使p键上连接的1H电子云密度降低,因此δ变大,共振吸收移向高场。

磁各向异性效应:

如果分子具有多重键或共轭多重键,在外磁场作用下,p电子会沿着分子的其中一

方向流动,它对邻近的质子附加一个各向异性的磁场,使一些位置的质子处于该基团的屏蔽区,δ值移向高场,而另一些位置的质子处于该基团的去屏蔽区,δ值移

向低场。

诱导效应通过化学键传递,而磁各向异性效应则通过空间相互作用。

范德华效应:

当两个原子相互靠近时,由于受到范德华力作用,电子云相互排斥,导致原子核周围电子云密度降低,屏蔽减小,谱线向低场移动,这种效应称为范德华效应。

氢键:

氢的化学位移对氢键很敏感。当分子形成氢键后,由于静电场的作用,使氢外围电子云密度降低而去屏蔽,δ值增加,也就是说,无论是分子内还是分子间氢键的形

成都使氢受到去屏蔽作用。

溶剂效应:

同一化合物在不同溶剂中的化学位移会有所差别,这种由于溶质分子受到不同溶剂影响而引起的化学位移变化。

碳谱中影响化学位移的主要因素

1. 碳的轨道杂化

δc值受碳原子杂化的影响,其次序与δH平行,一般情况下,屏蔽常数。

2.诱导效应

3.空间效应

13C化学位移对分子的几何形状非常敏感,分子的空间构型对其影响很大。相隔几个键的碳,如果它们的空间距离非常近,将互相发生强烈的影响。

4.共轭效应

5.电场效应:

带电基团引起的屏蔽作用,如解离后的羧基、质子化的氨基等。基团质子化后,其α和β碳向高场位移约d0.15~4,而g和d碳的位移小于d1

6.重原子效应:

电负性取代基对被取代的脂肪碳的屏蔽影响主要为诱导效应。

7.同位素效应:

分子中的质子被其重同位素氘(2H)取代后,由于平均电子激发能的增加,导致相连碳的化学位移值减小,称为同位素效应。

8.分子内氢键

9.介质效应

电位分析法

定义:

利用电极电位与浓度的关系测定物质含量的电化学分析法称为电位分析法。

a. 参比电极:

对参比电极的要求要有“三性”

(1)可逆性有电流流过(μA)时,反转变号时,电位基本上保持不变。

(2)重现性溶液的浓度和温度改变时,按Nernst响应,无滞后现象。

(3)稳定性测量中电位保持恒定、并具有长的使用寿命。例: 甘汞电极(SCE),银-氯化银电极等。

b.盐桥是“联接”和“隔离”不同电解质的重要装置:

(1)作用

接通电路,消除或减小液接电位。

(2)使用条件

a.盐桥中电解质不含有被测离子。

b.电解质的正负离子的迁移率应该基本相等。

c.要保持盐桥内离子浓度的离子强度5~10倍于被测溶液。常用作盐桥的电解质有:KCl,NH4Cl,KNO3等。

电解与库仑分析

电解分析(electrolytic analysis)包括两种方法:

1.利用外电源将被测溶液进行电解,使欲测物质能在电极上析出,然后称析出物的

重量,算出该物质在样品中的含量,这种方法称为电重量分析法(electrolytic gavimetry);

2.使电解的物质由此得以分离,而称为电分离分析法(electrolyticseparation)。

库仑分析法(coulometry)是在电解分析法的基础上发展起来的一种分析方法。它不是通过称量电解析出物的重量,而是通过测量被测物质在100%电流效率下电解所消耗的电量来进行定量分析的方法,定量依据是法拉第定律。

,

(完整版)分析化学知识点总结

1.分析方法的分类 按原理分: 化学分析:以物质的化学反应为基础的分析方法 仪器分析:以物质的物理和物理化学性质为基础的分析方法 光学分析方法:光谱法,非光谱法 电化学分析法:伏安法,电导分析法等 色谱法:液相色谱,气相色谱,毛细管电泳 其他仪器方法:热分析 按分析任务:定性分析,定量分析,结构分析 按分析对象:无机分析,有机分析,生物分析,环境分析等 按试样用量及操作规模分: 常量、半微量、微量和超微量分析 按待测成分含量分: 常量分析(>1%), 微量分析(0.01-1%), 痕量分析(<0.01%) 2.定量分析的操作步骤 1) 取样 2) 试样分解和分析试液的制备 3) 分离及测定 4) 分析结果的计算和评价 3.滴定分析法对化学反应的要求 ?有确定的化学计量关系,反应按一定的反应方程式进行 ?反应要定量进行 ?反应速度较快 ?容易确定滴定终点 4.滴定方式 a.直接滴定法 b.间接滴定法 如Ca2+沉淀为CaC2O4,再用硫酸溶解,用KMnO4滴定C2O42-,间接测定Ca2+ c.返滴定法 如测定CaCO3,加入过量盐酸,多余盐酸用标准氢氧化钠溶液返滴 d.置换滴定法 络合滴定多用 5.基准物质和标准溶液 基准物质: 能用于直接配制和标定标准溶液的物质。 要求:试剂与化学组成一致;纯度高;稳定;摩尔质量大;滴定反应时无副反应。标准溶液: 已知准确浓度的试剂溶液。 配制方法有直接配制和标定两种。 6.试样的分解 分析方法分为干法分析(原子发射光谱的电弧激发)和湿法分析 试样的分解:注意被测组分的保护 常用方法:溶解法和熔融法 对有机试样,灰化法和湿式消化法

分析化学知识总结

分析化学知识总结 分析化学知识总结精选 1.基本概念 准确度:分析结果与真实值接近的程度,其大小可用误差表示。 精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。 系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。包括方法误差、仪器或试剂误差及操作误差三种。 偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。 有效数字:是指在分析工作中实际上能测量到的数字。通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。 t分布:指少量测量数据平均值的概率误差分布。可采用t分布对有限测量数据进行统计处理。 置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。 置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。分为双侧置信区间与单侧置信区间。 显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。包括t检验和F检验。 2.重点、难点 (1)准确度与精密度的概念及相互关系准确度与精密度具有不同的概念,当有真值(或标准值)作比较时,它们从不同侧面反映了分析结果的可靠性。准确度表示测量结果的正确性,精密度表示测量结果的重复性或重现性。虽然精密度是保证准确度的先决条件,但高

的精密度不一定能保证高的准确度,因为可能存在系统误差。只有在消除或校正了系统误差的前提下,精密度高的分析结果才是可取的,因为它最接近于真值(或标准值),在这种情况下,用于衡量精密度的偏差也反映了测量结果的准确程度。 (2)系统误差与偶然误差的性质、来源、减免方法及相互关系系统误差分为方法误差、仪器或试剂误差及操作误差。系统误差是由某些确定原因造成的,有固定的方向和大小,重复测定时重复出现,可通过与经典方法进行比较、校准仪器、作对照试验、空白试验及回收试验等方法,检查及减免系统误差。偶然误差是由某些偶然因素引起的,其方向和大小都不固定,因此,不能用加校正值的方法减免。但偶然误差的出现服从统计规律,因此,适当地增加平行测定次数,取平均值表示测定结果,可以减小偶然误差。二者的关系是,在消除系统误差的前提下,平行测定次数越多,偶然误差就越小,其平均值越接近于真值(或标准值)。 (3)有效数字保留、修约及运算规则保留有效数字位数的原则是,只允许在末位保留一位可疑数。有效数字位数反映了测量的准确程度,绝不能随意增加或减少。在计算一组准确度不等(有效数字位数不等)的数据前,应采用“四舍六入五留双”的规则将多余数字进行修约,再根据误差传递规律进行有效数字的运算。几个数据相加减时,和或差有效数字保留的位数,应以小数点后位数最少(绝对误差最大)的数据为依据;几个数据相乘除时,积或商有效数字保留的`位数,应以相对误差最大(有效数字位数最少)的数据为准,即在运算过程中不应改变测量的准确度。 (4)有限测量数据的统计处理与t分布通常分析无法得到总体平均值μ和总体标准差σ,仅能由有限测量数据的样本平均值和样本标准差S来估计测量数据的分散 程度,即需要对有限测量数据进行统计处理,再用统计量去推断总体。由于和S均为随机变量,因此这种估计必然会引进误差。特别是当测量次数较少时,引入的误差更大,为了补偿这种误差,可采用t 分布(即少量数据平均值的概率误差分布)对有限测量数据进行统计

分析化学知识点总结

分析化学知识点总结 分析化学是一门应用化学原理和科学方法对物质进行分析、鉴定和测量的科学。它是化学学科的一个重要分支,对于材料科学、环境科学、生命科学等领域都具有重要的应用价值。本文将总结分析化学中的一些重要知识点。 首先,分析化学的基础是物质的化学性质和物理性质。其中,化学性质包括酸碱性、氧化还原性、配位性等,而物理性质则包括颜色、密度、熔点、沸点、溶解度等。通过对这些性质的测量和分析,可以确定物质的组成和含量。 其次,分析化学中常用的实验方法包括滴定法、分光光度法、色谱法、质谱法等。这些方法各有优缺点,应根据具体实验条件和要求选择合适的方法。例如,滴定法适用于测量酸碱中和反应的物质含量,分光光度法适用于测量溶液中物质的吸光度,色谱法适用于分离和测量混合物中各组分的含量,而质谱法则适用于测量离子化物质的分子量。此外,分析化学中还需要注意一些实验技巧和方法误差。例如,实验操作中的空白实验、对照实验、标准曲线等可以减小误差,提高实验的准确度。同时,分析化学结果的表述也是非常重要的,应包括实验条件、测量数据、结果分析和结论等。 最后,分析化学的发展趋势是朝着高精度、高灵敏度、高分辨率和自

动化的方向发展。未来,分析化学将在生命科学、环境科学、能源科学等领域发挥更加重要的作用。 综上所述,分析化学是一门应用广泛的科学,其知识点涉及化学原理、实验方法、实验技巧、结果表述和发展趋势等方面。掌握这些知识点对于理解分析化学的原理和应用都具有非常重要的意义。 无机化学及分析化学总结 标题:无机化学及分析化学的总结 一、无机化学 无机化学是研究无机物质的组成、结构、性质和变化的科学。其研究领域广泛,包括从单质到复杂的无机化合物的各种化学反应,以及无机物质在生物、环境和材料科学中的应用。 1.1 元素周期表与原子结构 元素周期表展示了元素的原子序数、元素符号、原子量以及元素的电子排布。它反映了元素的周期性和规律性,是理解元素性质和化合物性质的基础。 1.2 化学键和分子结构 化学键是原子间相互作用力的微观表现,它决定了分子的形状和性质。理解化学键的类型和特性,对于理解无机化合物的性质和行为至关重

分析化学知识总结

分析化学 1.误差分为哪几类?分别采用什么方法减小这些误差? 1 系统误差:从根源上消除,对于不变的系统误差,可以使用代替法、抵消法和变换法消除。 2 随机误差:多次测量取其平均值(对于正态分布的误差而言)。 3 粗大误差:数据本身就是错误的,直接去掉这个数据! 2.名词解释:绝对误差,相对误差,绝对偏差,相对偏差,平均偏差,标准偏差,相对 标准偏差,不确定度,置信区间,有效数字,分析质量保证,空白实验,检测限,灵敏度,加标回收率,质量控制图,标准物质。 绝对误差(absolute error):测量值与真值之差称为绝对误差(δ) 相对误差(relative error):绝对误差与真值的比值称为相对误差。 绝对偏差:是测定值与标准值之差,用g(mL)表示 相对偏差:是绝对偏差与标准值之比,用%表示。 平均偏差(average deviation)::各单个偏差绝对值的平均值称为平均偏差。 标准偏差(standard deviation,S):有限次测量,各测量值对平均值的偏离程度。 相对标准偏差(RSD,relative standard deviation):标准偏差与计算结果算术平均值 的比值。 不确定度:指由于测量误差的存在,对被测量值的不能肯定的程度。 置信区间:指由样本统计量所构造的总体参数的估计区间。 有效数字:是指在分析工作中实际上能测量到的数字。通常包括全部准确值和最末一位欠 准值(有±1个单位的误差)。 分析质量保证:分析过程中,为了将各种误差减少到预期要求而采取一系列培训、能力测试、控制、监督、审核、认证等措施的过程。 空白试验:在不加入试样的情况下,按与测定试样相同的条件和步骤进行的分析试验,称 为空白试验。检测限(LOD, limit of detection)又称为检出限:某特定分析方法在给定的置信度内可以从样品中检测出待测物质的最小浓度和最小量 灵敏度(Sensitivity):指某方法对单位浓度或单位量待测物质变化所致的响应量变化 程度 加标回收率:指在没有被测物质的空白样品基质中加入定量的标准物质,按样品的处理步 骤分析,得到的结果与理论值的比值。

分析化学知识点总结

第二章 第三章 第四章: 准确度:指测量值与真实值接近的程度。精确度:指各平行测量值之间相互接近的程度。 系统误差:由某种确定原因造成的误差,可用进行比较、校准仪器、对照试验、空白试验、 以及回收试验等方法进行校正。 偶然误差:也叫随机误差,是由偶然因素引起的误差。可用增加平行试验次数进行处理。 有效数字:是指在分析工作中实际上能测量到的数字,通常包括全部准确值和最后一位欠准 确的值。 相对平均偏差:_1_r ||x n x x d n i i ∑=- -=相对标准偏差:%100_ r ?=x s s 有效数字的计算:四舍六入五留双,例如:0.0250精确到一位有效数字0.02,0.0150则为0.02。 第五章; 化学计量点:当加入的滴定剂的量与被测物质的量之间恰好满足化学反应式所表示的计量 关系时,即为化学计量点。 滴定终点:滴定剂刚好变色时便停止滴定,这一点便为滴定终点。 滴定突跃:在化学计量点前后+-0.1%范围内,被测溶液浓度以及相关参数所发生的急剧变 化称为滴定突跃。 In+X=XIn ,指示剂具有两种明显不同的颜色,在滴定突跃范围内由一种型体变化为另一种 型体,溶液颜色发生明显变化。 基准物质:是用以直接配制标准溶液或者标定标准溶液浓度的物质。条件:组成与化学式 完全相符、纯度足够高、性质稳定、最好有较大的摩尔质量,以减少称量时的误差、应按 滴定反应式定量进行反应,且没有副反应。 滴定度:每毫升标准溶液相当于被测物质的质量。 分布系数:指溶液中某型体的平衡浓度在溶质总浓度中所占的分数。 质子条件式:可用质量平衡和电荷平衡推出。 第六章: 酸碱指示剂:一类有机弱酸或弱碱,它们的共轭酸碱对具有不同结构,呈现不同颜色。 HIn=H+In (In 为碱式色) 非水滴定:1.酸性溶剂:给出质子能力较强的溶剂,例如冰醋酸,丙酸。滴定弱碱性物质的 介质。2.碱性溶剂:接受质子的溶剂,例如乙二胺。3.两性溶剂:既能接受质子又能给出质 子的溶剂。滴定不太弱的酸碱。 第七章: M+Y=MY (M 为金属离子,Y 为EDTA ) 配位剂的副反应:酸效应,共存离子效应。酸效应系数:表示未与M 配位的EDTA 的各种 型体的总浓度是游离EDTA 浓度的@倍。 条件稳定常数:形成配合化合物的总浓度比上(未参加主反应的金属离子浓度和配位剂的 浓度积)用K'my 表示。

分析化学知识点归纳总结(精华版)

1.共振吸收线:原子从基态激发到能量最低的激发 态(第一激发态),产生的谱线。 2.分配系数K:是在一定温度和压力下,达到分配平衡时,组分在固定相(s)与流动相(m)中的浓度(c)之比。K=C s/C m 3.分离度R:是相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。 4.化学位移δ:由于屏蔽效应的存在,不同化学环境的氢核的共振频率(进动频率,吸收频率)不同,这种现象称为化学位移。 5.保留值:表示试样中各组分在色谱柱中停留的时间或将组分带出色谱柱所需流动相体积的数值。 6.直接电位法:是选择合适的指示电极与参比电极,浸入待测溶液中组分原电池,通过测量原电池的电动势,根据Nernst方程直接求出待测组分活(浓)度的方法。 7.电极电位:金属与溶液之间的相界电位就是溶液中的电极电位。 8.离子选择电极(ISE),饱和甘汞电极(SCE),紫外-可见分光光度法(UV),红外吸收光谱发(IR),原子吸收分光光度法(AAS),核磁共振波谱法(NMR),质谱法(MS),高效液相色谱法(HPLC), 9.紫外可见光分光光度计:光源→单色器→吸收池→检测器→信号指示系统,影响紫外-可见吸收光谱的因素:温度,溶剂,PH,时间。 10.化学位移标准物一般为四甲基硅烷(TMS),影响因素屏蔽效应和磁各向导性、氢键。 11.自旋偶合是核自旋产生的核磁矩间的相互干扰。

12.有机质谱中的离子:分子离子、碎片离子、同位素离子、亚稳离子。 13.色谱法:气相(GC),液相(LC),超临界(SFC),气固(GSC),气液(GLC),液固(LSC),液液(LLC),柱(填充柱、毛细管柱、微填充柱),平面(纸、薄层TLC、薄膜) 14.色谱法基本理论:热力学理论、塔板理论、动力学理论、速率理论。 15.评价柱效:塔板数和塔板高度。 16.气相色谱仪:气路系统、进样系统、色谱柱系统、检测和记录系统、控制系统 17.气相色谱检测器:火焰光度(FPD)、热离子化(TID),浓度:热导(TCD)、电子捕获(ECD) a,热导检测器(TCD)浓度型,原理:根据物质具有不同的热导系数原理制成。样品选择:几乎对所有物质都有响应,通用性好,如酒中水含量检测。b,氢火焰离子化检测器(FID)原理:利用含碳有机物在氢火焰中燃烧产生离子,在外加的电场作用下,使离子形成电子流,根据离子流产生的电信号强度,检测被色谱柱分离的组分。样品选择:大多数含碳有机化合物,对无机物,水,永久性气体基本无影响。c,电子捕获检测器(ECD)浓度型,原理:是一种放射性离子化检测器。样品选择:对有电负性物质的检测有很高灵敏度,特别是检测农药残余。 18.非极性键合相:十八烷基硅烷(ODS) 19.高效色谱监测系统:浓度型:紫外(UVD)、荧光(FD) 20.在原子吸收分析中,干扰效应大致上有光学~、化学~、电离~、物理~、背景吸收干扰。

分析化学知识点总结

分析化学知识点总结

第二章误差和分析数据处理 - 章节小结 1.基本概念及术语 准确度:分析结果与真实值接近的程度,其大小可用误差表示。 精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。 系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。包括方法误差、仪器或试剂误差及操作误差三种。 偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。 有效数字:是指在分析工作中实际上能测量到的数字。通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。 t分布:指少量测量数据平均值的概率误差分布。可采用t分布对有限测量数据进行统计处理。 置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS范围之外的概率(1-P),称为显著性水平,用α表示。 置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置信限。分为双侧置信区间与单侧置信区间。 显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。包括t检验和F检验。 2.重点和难点 (1)准确度与精密度的概念及相互关系准确度与精密

从不同侧面反映了分析结果的可靠性。准确度表示测量结果的正确性,精密度表示测量结果的重复性或重现性。虽然精密度是保证准确度的先决条件,但高的精密度不一定能保证高的准确度,因为可能存在系统误差。只有在消除或校正了系统误差的前提下,精密度高的分析结果才是可取的,因为它最接近于真值(或标准值),在这种情况下,用于衡量精密度的偏差也反映了测量结果的准确程度。 (2)系统误差与偶然误差的性质、来源、减免方法及相互关系系统误差分为方法误差、仪器或试剂误差及操作误差。系统误差是由某些确定原因造成的,有固定的方向和大小,重复测定时重复出现,可通过与经典方法进行比较、校准仪器、作对照试验、空白试验及回收试验等方法,检查及减免系统误差。偶然误差是由某些偶然因素引起的,其方向和大小都不固定,因此,不能用加校正值的方法减免。但偶然误差的出现服从统计规律,因此,适当地增加平行测定次数,取平均值表示测定结果,可以减小偶然误差。二者的关系是,在消除系统误差的前提下,平行测定次数越多,偶然误差就越小,其平均值越接近于真值(或标准值)。 (3)有效数字保留、修约及运算规则保留有效数字位数的原则是,只允许在末位保留一位可疑数。有效数字位数反映了测量的准确程度,绝不能随意增加或减少。在计算一组准确度不等(有效数字位数不等)的数据前,应采用“四舍六入五留双”的规则将多余数字进行修约,再根据误差传递规律进行有效数字的运算。几个数据相加减时,和或差有效数字保留的位数,应以小数点后位数最少(绝对误差最大)的数据为依据;几个数据相乘除时,积或商有效数字保留的位数,应以相对误差最大(有效数字位数最少)的数据为准,即在运算过程中不应改变测量的准确度。 (4)有限测量数据的统计处理与t分布通常分析无法

分析化学的知识点总结(分析化学知识点总结贴)

分析化学的知识点总结(分析化学知识点总结贴) 分析化学是关于研究物质的组成、含量、结构和形态等化学信息的分析方法及理论的一门科学,是化学的一个重要分支。是鉴定物质中含有那些组分,及物质由什么组分组成,测定各种组分的相对含量,研究物质的分子结构或晶体。今天,我们就从分析化学的发展历史、分析方法、几大分析方法等几个角度为各位粉丝介绍分析化学。。 发展历史 第一个重要阶段 20世纪二三十年代,利用当时物理化学中的溶液化学平衡理论,动力学理论,如沉淀的生成和共沉淀现象,指示剂作用原理,滴定曲线和终点误差,催化反应和诱导反应,缓冲作用原理大大地丰富了分析化学的内容,并使分析化学向前迈进了一步. 第二个重要阶段 20世纪40 年代以后几十年,第二次世界大战前后,物理学和电子学的发展,促进了各种仪器分析方法的发展,改变了经典分析化学以化学分析为主的局面。 原子能技术发展,半导体技术的兴起,要求分析化学能提供各种灵敏准确而快速的分析方法,如,半导体材料,有的要求纯度达99.9999999%以上,在新形势推动下,分析化学达到了迅速发展。最显著的特点是:各种仪器分析方法和分离技术的广泛应用。 4.检测器及记录仪 红外光能量低,因此常用热电偶、测热辐射计、热释电检测器和碲镉汞检测器等。 傅里叶变换红外光谱仪具有以下优点:灵敏度高。扫描速度快。分辨率高。测量光谱范围宽(1 000~10 cm-1),精度高(±0.01 cm-1),重现性好(0.1%)。还有杂散光干扰小。样品不受因红外聚焦而产生的热效应的影响。 核磁共振波谱法 将磁性原子核放入强磁场后,用适宜频率的电磁波照射,它们会吸收能量,发生原子核能级跃迁,同时产生核磁共振信号,得到核磁共振: a.屏蔽常数 任何原子核都被电子云所包围,当1H核自旋时,核周围的电子云也随之转动,在外磁场作用下,会感应产生一个与外加磁场方向相反的次级磁场,实际上会使外磁场减弱,这种对抗外磁场的作用称为屏蔽效应。

完整版)分析化学知识点总结

完整版)分析化学知识点总结第二章:误差和数据分析处理-章节小结 1.基本概念及术语 准确度是指分析结果与真实值接近的程度,其大小可用误差表示。精密度是指平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。系统误差是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。它包括方法误差、仪器或试剂误差及操作误差三种。偶然误差是由某些偶然因素所引起的误差,其大小和正负均不固定。有效数字是指在分析工作中实际上能测量到的数字。通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。t分布 指少量测量数据平均值的概率误差分布。可采用t分布对有限 测量数据进行统计处理。置信水平与显著性水平指在某一t值时,测定值x落在μ±tS范围内的概率,称为置信水平(也称 置信度或置信概率),用P表示;测定值x落在μ±tS范围之 外的概率(1-P),称为显著性水平,用α表示。置信区间 与置信限系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在内的可信范围,即μ=x±uσ,式中uσ为置

信限。分为双侧置信区间与单侧置信区间。显著性检验用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。包括t检验和F检验。 2.重点和难点 1)准确度与精密度的概念及相互关系 准确度与精密度具有不同的概念。当有真值(或标准值)作比较时,它们从不同侧面反映了分析结果的可靠性。准确度表示测量结果的正确性,精密度表示测量结果的重复性或重现性。虽然精密度是保证准确度的先决条件,但高的精密度不一定能保证高的准确度,因为可能存在系统误差。只有在消除或校正了系统误差的前提下,精密度高的分析结果才是可取的,因为它最接近于真值(或标准值)。在这种情况下,用于衡量精密度的偏差也反映了测量结果的准确程度。 系统误差可分为方法误差、仪器或试剂误差及操作误差。这种误差由确定的原因引起,具有固定的方向和大小,会在重复测定时重复出现。为了检查和减免系统误差,可以采用与经典方法进行比较、校准仪器、作对照试验、空白试验及回收试验等方法。偶然误差是由偶然因素引起的,其方向和大小都不固定,因此不能用加校正值的方法减免。但是,适当增加平行

分析化学知识点

分析化学知识点 分析化学是研究物质组成、结构和性质,以及化学变化过程中的量的测量和计算方法的一门学科。以下是几个分析化学的重要知识点。 1. 定量分析:定量分析是分析化学的核心内容之一,它通过测量和计算手段确定物质中某种或多种组分的含量。常见的定量分析方法有重量法、体积法、电量法等。其中,重量法是根据样品质量变化确定物质含量的方法,体积法是基于液体体积变化测定物质含量的方法,而电量法是运用电化学原理进行定量测定的方法。 2. 质谱分析:质谱分析是利用质谱仪测定物质分子的组成和结构的方法。质谱仪将物质分子通过电离技术转化为带电粒子,然后利用磁场将这些带电粒子按质荷比例进行分离和检测,从而得到物质的质谱图。质谱图能够提供物质的分子量、结构信息以及分子碎片的特征。 3. 红外光谱分析:红外光谱分析是一种利用物质吸收和发射红外光的特性来确定其化学组成和结构的方法。红外光谱仪将红外光辐射到样品上,样品会吸收特定频率的红外光,形成红外光谱。红外光谱可以通过检测物质分子中不同的官能团(如羟基、酮基、酯基等)的振动频率来确定化学结构。 4. 小分子分析:小分子分析是研究微量物质的分析方法,主要包括气相色谱、液相色谱、电化学分析等技术。气相色谱是将气体或挥发性物质通过气相色谱柱进行分离和检测的方法,液

相色谱是通过溶液的相互作用,利用柱上固定的固定相对溶液中的物质进行分离和检测。电化学分析则是基于电化学反应的特性进行分析的技术,包括电位滴定、电位法、电解法等。 5. 分子光谱学:分子光谱学研究物质与电磁辐射的相互作用,包括紫外-可见吸收光谱、核磁共振光谱和拉曼光谱等。紫外-可见吸收光谱是利用物质对可见光和紫外光的吸收性质进行分析的方法,通过检测物质对某一特定波长光的吸收强度来确定物质的浓度。核磁共振光谱则是利用物质中核子在强磁场中的行为来确定物质分子的结构和组成。拉曼光谱是通过测量物质散射光的强弱和频移来确定物质分子的振动和转动能级。 这些知识点是分析化学的重要内容,它们在实际的化学分析和研究中起着重要的作用。通过掌握和应用这些知识点,可以更准确地测量和分析物质的组成和性质,为其他科学领域的研究提供可靠的数据基础。

分析化学知识点总结38514

第二章误差和分析数据处理 - 章节小结 1.基本概念及术语 准确度:分析结果与真实值接近的程度,其大小可用误差表示。 精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。 系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。包括方法误差、仪器或试剂误差及操作误差三种。 偶然误差:是由某些偶然因素所引起的误差,其大小和正负均不固定。 有效数字:是指在分析工作中实际上能测量到的数字。通常包括全部准确值和最末一位欠准值(有±1个单位的误差)。 t分布:指少量测量数据平均值的概率误差分布。可采用t分布对有限测量数据进行统计处理。 置信水平与显著性水平:指在某一t值时,测定值x落在μ±tS围的概率,称为置信水平(也称置信度或置信概率),用P表示;测定值x落在μ±tS围之外的概率(1-P),称为显著性水平,用α表示。 置信区间与置信限:系指在一定的置信水平时,以测定结果x为中心,包括总体平均值μ在的可信围,即μ=x±uσ,式中uσ为置信限。分为双侧置信区间与单侧置信区间。 显著性检验:用于判断某一分析方法或操作过程中是否存在较大的系统误差和偶然误差的检验。包括t检验和F检验。 2.重点和难点 (1)准确度与精密度的概念及相互关系准确度与精密度具有不同的概念,当有真值(或标准值)作比较时,它们从不同侧面反映了分析结果的可靠性。准确度表示测量结果的正确性,精密度表示测量结果的重复性或重现性。虽然精密度是保证准确度的先决条件,但高的精密度不一定能保证高的准确度,因为可能存在系统误差。只有在消除或校正了系统误差的前提下,精密度高的分析结果才是可取的,因为它最接近于真值(或标准值),在这种情况下,用于衡量精密度的偏差也反映了测量结果的准确程度。 (2)系统误差与偶然误差的性质、来源、减免方法及相互关系系统误差分为方法误差、仪器或试剂误差及操作误差。系统误差是由某些确定原因造成的,有固定的方向和大小,重复测定时重复出现,可通过与经典方法进行比较、校准仪器、作对照试验、空白试验及回收试验等方法,检查及减免系统误差。偶然误差是由某些偶然因素引起的,其方向和大小都不固定,因此,不能用加校正值的方法减免。但偶然误差的出现服从统计规律,因此,适当地增加平行测定次数,取平均值表示测定结果,可以减小偶然误差。二者的关系是,在消除系统误差的前提下,平行测定次数越多,偶然误差就越小,其平均值越接近于真值(或标准值)。 (3)有效数字保留、修约及运算规则保留有效数字位数的原则是,只允许在末位保留一位可疑数。有效数字位数反映了测量的准确程度,绝不能随意增加或减少。在计算一组准确度不等(有效数字位数不等)的数据前,应采用“四舍六入五留双”的规则将多余数字进行修约,再根据误差传递规律进行有效数字的运算。几个数据相加减时,和或差有效数字保留的位数,应以小数点后位数最少(绝对误差最大)的数据为依据;几个数据相乘除时,积或商有效数字保留的位数,应以相对误差最大(有效数字位数最少)的数据为准,即在运算过程中不应改变测量的准确度。 (4)有限测量数据的统计处理与t分布通常分析无法得到总体平均值μ和总体标准差σ,仅能由有限测量数据的样本平均值和样本标准差S来估计测量数据的分散程度,即需要对有限测量数据进行统计处理,再用统计量去推断总体。由于和S均为随机变量,因此这种估计必然会引进误差。特别是当测量次数较少时,引入的误差更大,为了补偿这种误差,可采用t分布(即少量数据平均值的概率误差分布)对有限测量数据进行统计处理。 (5)置信水平与置信区间的关系置信水平越低,置信区间就越窄,置信水平越高,置信区间就越宽,即提高置信水平需要扩大置信区间。置信水平定得过高,判断失误的可能性虽然很小,却往往因置信区间过宽而降低了估计精度,实用价值不大。在相同的置信水平下,适当增加测定次数n,可使置信区间显著缩小,从而提高分析测定的准确度。 (6)显著性检验及注意问题 t检验用于判断某一分析方法或操作过程中是否存在较大的系统误差,为准确度检验,包括样本均值与真值(或标准值)间的t检验和两个样本均值间的t检验;F检验是通过比较两组数据的方差S2,用于判断两组数据间是否存在较大的偶然误差,为精密度检验。两组数据的显著性检验顺序是,先由F检验确认两组数据的精密度无显著性差别后,再进行两组数据的均值是否存在系统误差的t检验,因为只有当两组数据的精密度或偶然误差接近时,进行准确度或系统误差的检验才有意义,否则会得出错误判断。 需要注意的是:①检验两个分析结果间是否存在着显著性差异时,用双侧检验;若检验某分析结果是否明显高于(或低于)某值,则用单侧检验;②由于 t与F等的临界值随α的不同而不同,因此置信水平P或显著性水平α的选择必须适当,否则可能将存在显著性差异的两个分析结果判为无显著性差异,或者相反。 (7)可疑数据取舍在一组平行测量值中常常出现某一、两个测量值比其余值明显地偏高或偏低,即为可疑数据。首先应判断此可疑数据是由过失误差引起的,还是偶然误差波动性的极度表现?若为前者则应当舍弃,而后者需用Q检验或G检验等统计检验方法,确定该可疑值与其它数据是否来源于同一总体,以决定取舍。 (8)数据统计处理的基本步骤进行数据统计处理的基本步骤是,首先进行可疑数据的取舍(Q检验或G检验),而后进行精密度检验(F检验),最后进行准确度检验(t检验)。 (9)相关与回归分析相关分析就是考察x与y两个变量间的相关性,相关系数r越接近于±1,二者的相关性越好,实验误差越小,测量的准确度越高。回归分析就是要找出x与y两个变量间的函数关系,若x与y之间呈线性函数关系,即可简化为线性回归。 3.基本计算

分析化学实验知识点总结

分析化学实验知识点总结 第一章绪论 第一节分析化学及其任务和作用 定义:研究物质的组成、含量、结构和形态等化学信息的分析方法及理论的科学,是化学学科的一个重要分支,是一门实验性、应用性很强的学科 第二节分析方法的分类 一、按任务分类 定性分析:鉴定物质化学组成(化合物、元素、离子、基团) 定量分析:测定各组分相对含量或纯度 结构分析:确定物质化学结构(价态、晶态、平面与立体结构) 二、按对象分类:无机分析,有机分析 三、按测定原理分类 (一)化学分析 定义:以化学反应为为基础的分析方法,称为化学分析法. 分类:定性分析 重量分析:用称量方法求得生成物W重量 定量分析 滴定分析:从与组分反应的试剂R的浓度和体积求得组分C的含量

反应式:mC+nR→CmRn XVW 特点:仪器简单,结果准确,灵敏度较低,分析速度较慢,适于常量组分分析 (二)仪器分析:以物质的物理或物理化学性质为基础建立起来的分析方法。 仪器分析分类:电化学分析(电导分析、电位分析、库伦分析等)、光学分析(紫外分光光度法、红外分光光度法、原子吸收分光光度核磁共振波谱分析等)、色谱分析(液相色谱、气相色谱等)、质谱分析。 放射化学分析、流动注射分析、热分析 特点:灵敏,快速,准确,易于自动化,仪器复杂昂贵,适于微量、痕量组分分析 四、按被测组分含量分类 -常量组分分析:>1%;微量组分分析:0.01%~1%;痕量组分分析; <0.01% 五、按分析的取样量分类 试样重试液体积 常量分析 >0.1g >10ml 半微量 0.1~0.01g 10~1ml 微量 10~0.1mg 1~0.01ml

超微量分析 <0.1mg ﹤0.01ml 六、按分析的性质分类:例行分析(常规分析)、仲裁分析 第三节试样分析的基本程序 1、取样(采样):要使样品具有代表性,足够的量以保证分析的进行 2、试样的制备:用有效的手段将样品处理成便于分析的待测样品,必要时要进行样品的分离与富集。 3、分析测定:要根据被测组分的性质、含量、结果的准确度的要求以及现有条件选择合适的测定方法。 4、结果的计算和表达:根据选定的方法和使用的仪器,对数据进行正确取舍和处理,合理表达结果。 第二章误差和分析数据处理-章节小结 1.基本概念及术语 准确度:分析结果与真实值接近的程度,其大小可用误差表示。 精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。 系统误差:是由某种确定的原因所引起的误差,一般有固定的方向(正负)和大小,重复测定时重复出现。 包括方法误差、仪器或试剂误差及操作误差三种。 特点:〔单向性,重复性〕

分析化学知识点归纳

分析化学知识点归纳 化学是一门极具深度的科学,其内容涉及物质的本质、性质、组成、反应以及结构等。人类的生活离不开化学,如今,伴随着科学技术的进步,化学技术与人类社会的发展紧密相联、互动,为人类提供了丰富多彩的物质和能源。就此,深入了解化学知识点以及其背后的科学规律显得尤为重要。 本文以“分析化学知识点归纳”为题,全面介绍化学的基本概念及相关的概念组成、元素、原子和原子核、元素周期表、物质的化学性质和反应、化学反应的催化作用、水的结构与特性、无机化合物的分类、有机化合物的分类以及气体的性质和作用等,通过将化学知识概念点归纳整理,深入理解化学,并运用之于实践。 一、化学的基本概念及其概念的组成 1.1 什么是化学 化学(Chemistry)是从物质性质、结构、反应以及分子和微粒的运动和变化等方面观察、研究物质的科学。它是研究物质的结构、组成、性质以及它们之间的相互作用和变化的科学。 化学研究的目的,在于了解化学物质的组成、性质、变化的规律及其本质,以便研究物质之间的相互作用及其变化,进而应用于医药、农业、材料科学、能源等行业中,从而实现化学研究经济、社会、文化、教育等多方面的发展. 1.2学的基本概念 a.素:元素是化学构成物质的基本单位,包括金属元素和非金属

元素。金属元素具有良好的电导性、热导性和延展性等特性;非金属元素具有酸性、碱性等特性。 b.子:原子是元素的最小结构单位,由原子核和电子组成,是一种极小的基本粒子。 c.子核:原子核是原子的核心,它包括质子和中子,是原子内最重要的物质特征。 d.子:分子是原子或原子核组成的物质,它们构成许多化学物质。 e.子:离子是原子或原子核上带有正负电荷的结构体,它们在物质的组成和反应中起着重要作用。 f.子团:原子团是由多个原子组成的一种结构,它们在物质组成和反应中也起着重要作用。 1.3学的定义和理论 化学的定义是:运用化学原理研究物质结构、组成、性质以及它们之间的相互作用和变化的科学。 另外,化学也有若干基本理论,如元素定律、守恒定律、多元素化合物组成定律、串联反应机理理论、催化作用机理等。这些理论构成了化学的基础,人们在实际应用中运用它们来解释、探索、预测化学现象。

分析化学知识点

1.按原理分:化学分析:以物质的化学反应为基础的分析方法 仪器分析:以物质的物理和物理化学性质为基础的分析方法 光学分析方法:光谱法,非光谱法 电化学分析法:伏安法,电导分析法等 色谱法:液相色谱,气相色谱,毛细管电泳 其他仪器方法:热分析 按分析任务:定性分析,定量分析,结构分析 2.按试样用量及操作规模分:常量、半微量、微量和超微量分析 按待测成分含量分:常量分析(>1%), 微量分析(0.01-1%), 痕量分析(<0.01%) 3.定量分析的一般步骤 配制标准溶液用的方法:(1)直接法直接准确称取一定量的物质,溶解后。在容量瓶内稀释到一定体积,然后算出该溶液的浓度。必须具备一下三个条件:第一物质必须足够的纯度,含量大于等于99.9%。一般可用基准物质或优级纯试剂;第二物质的组成与化学式应完全符合;第三稳定。 (2)间接法粗略地称取一定量的物质,配制成所需浓度,用基准物质或另一种标准溶液来测定。第四具备较大的摩尔质量。 4.样品采样 (1)固体采样 土壤样品: 采集深度0-15cm的表地为试样,按3点式(水田出口,入口和中心点)或5点式(两条对角线交叉点和对角线的其它4个等分点)取样。每点采1-2kg,经压碎、风干、粉碎、过筛、缩分等步骤,取粒径小于0.5 mm的样品作分析试样。 沉积物: 用采泥器从表面往下每隔1米取一个试样,经压碎、风干、粉碎、过筛、缩分,取小于0.5 mm的样品作分析试样。 金属试样: 经高温熔炼,比较均匀,钢片可任取。对钢锭和铸铁,钻取几个不同点和深度取样,将钻屑置于冲击钵中捣碎混匀作分析试样。 (2)液体试样 液体试样一般比较均匀,取样单元可以较少 当物料的量较大时,应从不同的位置和深度分别采样,混合均匀后作为分析试样,以保证它的代表性 液体试样采样器多为塑料或玻璃瓶,一般情况下两者均可使用。但当要检测试样中的有机物时,宜选用玻璃器皿;而要测定试样中微量的金属元素时,则宜选用塑料取样器,以减少容器吸附和产生微量待测组分的影响 (3)气体试样 ⏹用泵将气体充入取样容器;采用装有固体吸附剂或过滤器的装置收集;过滤法用于 收集气溶胶中的非挥发性组分 ⏹固体吸附剂采样:是让一定量气体通过装有吸附剂颗粒的装置,收集非挥发性物质

分析化学重点知识点梳理-大全

紫外-可见分光光度法是分子中价电子跃迁。波长范围200~760nm,特点:灵敏度高;准确度较好;仪器设备简单,操作方便,分析速度快。 影响紫外吸收光谱的主要因素:位阻影响,若有两个发色团产生共轭,吸收带长移;跨环效应;溶剂效应,体系PH的影响。 偏离朗伯比尔定律的因素:化学因素:只有在稀溶液时,才成立。光学因素:只适用于单色光。透光率测量误差:T值在65%~20%,或A值在0.2~0.7之间,误差最小。A=0.434,T=36.8%。 荧光分析法特点:灵敏度高;选择性好;工作曲线线性范围宽。荧光产生的方式:振动弛豫、内部能量转换,荧光发射,外部能量转换,体系间跨越,磷光发射。荧光光谱的特征:斯托克斯位移,荧光光谱的形状与激发波长无关,荧光光谱与激发光谱成镜像关系。 能够发射荧光的物质的条件:强的紫外吸收和一定的荧光效率。 影响荧光强度的外部因素:溶剂的影响,温度的影响,PH的影响,散射光的影响,荧光熄灭剂的影响。 荧光分光光度计在结构上与紫外的影响:1、荧光的测量通常在与激发光垂直的方向上进行,以消除投射光和杂散光对荧光测量的影响。2、荧光分析仪器有两个单色器,一个是激发单色器,置于样品池前,用于获得单色性较好的激发光,另一个是发射单色器,置于样品池与检测器之间,用于分出某一波长的荧光,消除其他杂散光的干扰。 红外分光光度法,振动自由度。线性分子:3N-5,非线性:3N-6。 基本振动吸收峰数少于振动自由度的原因:简并性;红外非活性振动。 红外吸收光谱的产生需满足的两个条件:红外辐射能量与分子发生跃迁的振动能级相等;分子在振动过程中其偶极矩要发生变化。 影响吸收峰位置的因素:诱导效应,高波数移动。共轭校应,低波数移动。氢

分析化学知识点总结

分析化学知识点总结 第二节分析方法的分类 一、按任务分类 定性分析:鉴定物质化学组成(化合物、元素、离子、基团) 定量分析:测定各组分相对含量或纯度 结构分析:确定物质化学结构(价态、晶态、平面与立体结构) 二、按对象分类:无机分析,有机分析 三、按测定原理分类 (一)化学分析 定义:以化学反应为为基础的分析方法,称为化学分析法. 分类:定性分析 重量分析:用称量方法求得生成物W重量 定量分析 滴定分析:从与组分反应的试剂R浓度和体积求得组分C的含量反应式:mC+nR→CmRn X V W 特点:仪器简单,结果准确,灵敏度较低,分析速度较慢,适于常量组分分析 (二)仪器分析:以物质的物理或物理化学性质为基础建立起来的分析方法。 仪器分析分类:电化学分析(电导分析、电位分析、库伦分析等)、光学分析(紫外分光光度法、红外分光光度法、原子吸收分光光度核磁共振波谱分析等)、色谱分析(液 相色谱、气相色谱等)、质谱分析、放射化学分析、流动注射分析、热分析 特点:灵敏,快速,准确,易于自动化,仪器复杂昂贵,适于微量、痕量组分分析 四、按被测组分含量分类 -常量组分分析:>1%;微量组分分析:0.01%~1%;痕量组分分析;< 0.01% 五、按分析的取样量分类 试样重试液体积 常量分析>0.1g >10ml 半微量0.1~0.01g 10~1ml 微量10~0.1mg 1~0.01ml 超微量分析<0.1mg ﹤0.01ml

六、按分析的性质分类:例行分析(常规分析)、仲裁分析 第三节试样分析的基本程序 1、取样(采样):要使样品具有代表性,足够的量以保证分析的进行 2、试样的制备:用有效的手段将样品处理成便于分析的待测样品,必要时要进行样品的分离与富集。 3、分析测定:要根据被测组分的性质、含量、结果的准确度的要求以及现有条件选择合适的测定方法。 4、结果的计算和表达:根据选定的方法和使用的仪器,对数据进行正确取舍和处理,合理表达结果。 第二章误差和分析数据处理 第一节误差 定量分析中的误差就其来源和性质的不同,可分为系统误差、偶然误差和过失误差。 一、系统误差 定义:由于某种确定的原因引起的误差,也称可测误差 特点:①重现性,②单向性,③可测性(大小成比例或基本恒定) 分类: 1.方法误差: 由于不适当的实验设计或所选方法不恰当所引起。 2. 仪器误差: 由于仪器未经校准或有缺陷所引起。 3. 试剂误差: 试剂变质失效或杂质超标等不合格所引起 4. 操作误差: 分析者的习惯性操作与正确操作有一定差异所引起。 操作误差与操作过失引起的误差是不同的。 二、偶然误差 定义:由一些不确定的偶然原因所引起的误差,也叫随机误差. 偶然误差的出现服从统计规律,呈正态分布。 特点: ①随机性(单次) ②大小相等的正负误差出现的机会相等。 ③小误差出现的机会多,大误差出现的机会少。 三、过失误差

分析化学知识点总结

第一章绪论 第一节分析化学与其任务和作用 定义:研究物质的组成、含量、结构和形态等化学信息的分析方法与理论的科学,是化学学科的一个重要分支,是一门实验性、应用性很强的学科 第二节分析方法的分类 一、按任务分类 定性分析:鉴定物质化学组成〔化合物、元素、离子、基团〕 定量分析:测定各组分相对含量或纯度 结构分析:确定物质化学结构〔价态、晶态、平面与立体结构〕 二、按对象分类:无机分析,有机分析 三、按测定原理分类 〔一〕化学分析 定义:以化学反应为为基础的分析方法,称为化学分析法. 分类:定性分析 重量分析:用称量方法求得生成物W重量 定量分析 滴定分析:从与组分反应的试剂R的浓度和体积求得组分C的含量 反应式:mC+nR→CmRn X V W 特点:仪器简单,结果准确,灵敏度较低,分析速度较慢,适于常量组分分析 〔二〕仪器分析:以物质的物理或物理化学性质为基础建立起来的分析方法。 仪器分析分类:电化学分析 (电导分析、电位分析、库伦分析等〕、光学分析〔紫外分光光度法、红外分光光度法、原子吸收分光光度核磁共振波谱分析等〕、色谱分析〔液相色谱、气相色谱等〕、质谱分析、放射化学分析、流动注射分析、热分析 特点:灵敏,快速,准确,易于自动化,仪器复杂昂贵,适于微量、痕量组分分析 四、按被测组分含量分类 -常量组分分析:>1%;微量组分分析:0.01%~1%;痕量组分分析;< 0.01% 五、按分析的取样量分类 试样重试液体积 常量分析 >0.1g >10ml 半微量 0.1~0.01g 10~1ml 微量 10~0.1mg 1~0.01ml 超微量分析 <0.1mg ﹤0.01ml 六、按分析的性质分类:例行分析〔常规分析〕、仲裁分析 第三节试样分析的基本程序 1、取样〔采样〕:要使样品具有代表性,足够的量以保证分析的进行 2、试样的制备:用有效的手段将样品处理成便于分析的待测样品,必要时要进行样品的分离与富集。 3、分析测定:要根据被测组分的性质、含量、结果的准确度的要求以与现有条件选择合适的测定方法。 4、结果的计算和表达:根据选定的方法和使用的仪器,对数据进行正确取舍和处理,合理表达结果。 第二章误差和分析数据处理 - 章节小结 1.基本概念与术语准确度:分析结果与真实值接近的程度,其大小可用误差表示。 精密度:平行测量的各测量值之间互相接近的程度,其大小可用偏差表示。 系统误差:是由某种确定的原因所引起的误差,一般有固定的方向〔正负〕和大小,重复测定时重复出现。包

相关文档
最新文档