经典竞赛几何题

经典竞赛几何题
经典竞赛几何题

试卷第1页,总13页 绝密★启用前 2018年05月17日张朋松的初中数学组卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第Ⅰ卷(选择题) 请点击修改第I 卷的文字说明 一.解答题(共50小题) 1.已知△ABC 是等边三角形,D 是BC 边上的一个动点(点D 不与B ,C 重合)△ADF 是以AD 为边的等边三角形,过点F 作BC 的平行线交射线AC 于点E ,连接BF . (1)如图1,求证:△AFB ≌△ADC ; (2)请判断图1中四边形BCEF 的形状,并说明理由; (3)若D 点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由. 2.在△ABC 中,AH ⊥BC 于H ,D ,E ,F 分别是BC ,CA ,AB 的中点(如图所示).求证:∠DEF=∠HFE .

试卷第2页,总13页

3.在△ABC 中,∠B=60°,∠A ,∠C 的角平分线AE ,CF 相交于点O ,

(1)如图1,若AB=BC ,求证:OE=OF ;

(2)如图2,若AB ≠BC ,试判断线段OE 与OF 是否相等,并说明理由.

4.如图,在△ABC 中,BD 是∠ABC 的平分线,在△ABC 外取一点E ,使得∠EAB=∠ACB ,AE=DC ,并且线段ED 与线段AB 相交,交点记为K ,问线段EK 与DK 有怎样的大小关系?并说明理由.

5.已知如图,AC=BC ,∠C=90°,∠A 的平分线AD 交BC 于D ,过B 作BE 垂直AD 于E ,求证:BE=AD .

6.如图,已知AB=AC ,∠BAC=60°,∠BDC=120°,求证:AD=BD +CD .

试卷第3页,总13页 7.如图△ABC ,D 是△ABC 内的一点,延长BA 至点E ,延长DC 至点F ,使得AE=CF ,G ,H ,M 分别为BD ,AC ,EF 的中点,如果G ,H ,M 三点共线,求证:AB=CD . 8.如图,在正方形ABCD 中,取AD ,CD 的边的中点E ,F ,连接CE ,BF 交于点G ,连接AG ,试判断AG 与AB 是否相等,并说明理由. 9.如图,设点M 是等腰Rt △ABC 的直角边AC 的中点,AD ⊥BM 于E ,AD 交BC 于D .求证:∠AMB=∠CMD (请用两种不同的方法证明) 10.如图,在四边形ABCD 中,AD=BC ,E 、F 分别是DC 及AB 的中点,射线FE 与AD 及BC 的延长线分别交于点H 及G .试猜想∠AHF 与∠BGF 的关系,并给出证明. 提示:若猜想不出∠AHF 与∠BGF 的关系,可考虑使四边形ABCD 为特殊情况.如果给不出证明,可考虑下面作法,连结AC ,以F 为中心,将△ABC 旋转180°,得到△ABP .

试卷第4页,总13页

11.如图,D 为△ABC 中线AM 的中点,过M 作AB 、AC 边的垂线,垂足分别为P 、Q ,过P 、Q 分别作DP 、DQ 的垂线交于点N .

(1)求证:PN=QN ;

(2)求证:MN ⊥BC .

12.在△ABC 中,D 为AB 的中点,分别延长CA 、CB 到点E 、F ,使DE=DF ,过E 、F 分别作CA 、CB 的垂线相交于P ,设线段PA 、PB 的中点分别为M 、N . 求证:①△DEM ≌△DFN ;

②∠PAE=∠PBF .

13.如图:已知AB ∥DC ,∠BAD 和∠ADC 的平分线相交于点E ,过点E 的直线分别交AB 、DC 于B 、C 两点.猜想线段AD 、AB 、DC 之间的数量关系,并证明.

试卷第5页,总13页 14.如图,已知△ABC 中,AB=BC=CA ,D 、E 、F 分别是AB 、BC 、CA 的中点,G 是BC 上一点,△DGH 是等边三角形.求证:EG=FH . 15.已知如图,CD 是RT △ABC 斜边上的高,∠A 的平分线交CD 于H ,交∠BCD 的平分线于G , 求证:HF ∥BC . 16.已知:如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°.点E 是CD 的中点,过点E 作CD 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足CF=AD ,MF=MA . (1)若∠MFC=120°,求证:AM=2MB ; (2)试猜想∠MPB 与∠FCM 数量关系并证明. 17.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD . 求证:∠BAD=∠C .

试卷第6页,总13页

18.已知A ,C ,B 在同一条直线上,△ACE ,△BCF 都是等边三角形,BE 交CF 于N ,AF 交CE 于M ,MG ⊥CN ,垂足为G .求证:CG=NG .

19.如图所示,在△ABC 中,∠ABC=2∠C ,AD 为BC 边上的高,延长AB 到E 点,使BE=BD ,过点D 、E 引直线交AC 于点F ,请判定AF 与FC 的数量关系,并证明之.

20.如图,△ABC 是边长为l 的等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 于M ,交AC 于N ,连接MN ,形成一个三角形,

求证:△AMN 的周长等于2.

21.已知如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,且AE=(AB +AD ),求证:∠B 与∠D 互补.

试卷第7页,总13页 22.如图,已知△ABC 中,∠A=90°,AB=AC ,∠1=∠2,CE ⊥BD 于E .求证:BD=2CE . 23.AD 是△ABC 的角平分线,M 是BC 的中点,FM ∥AD 交AB 的延长线于F ,交AC 于E . (1)求证:CE=BF ; (2)探索线段CE 与AB +AC 之间的数量关系,并证明. 24.如图,AD 是△ABC 的中线,AB=AE ,AC=AF ,∠BAE=∠FAC=90°.判断线段AD 与EF 数量和位置关系. 25.如图,四边形ABCD 中,BC=DC ,对角线AC 平分∠BAD ,且AB=21,AD=9,BC=DC=10,求AC 的长. 26.如图,已知线段AB 的同侧有两点C 、D 满足∠ACB=∠ADB=60°,∠ABD=90°

试卷第8页,总13页 ﹣∠DBC .求证:AC=AD .

27.如图,正方形ABDE 和ACFG 是以△ABC 的AB 、AC 为边的正方形,P 、Q 为它们的中心,M 是BC 的中点,试判断MP 、MQ 在数量和位置是有什么关系?并证明你的结论.

28.如图,在△ABC 中,AD 为∠BAC 的平分线,BP ⊥AD ,垂足为P .已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB .

29.如图,在△ABC 中,∠B=90°,M 为AB 上一点,使得AM=BC ,N 为BC 上一点,使得CN=BM ,连接AN ,CM 相交于点P ,试求∠APM 的度数.

30.已知如图,在△ABC 中,∠B=60°,AD 、CE 是△ABC 的角平分线,并且它们交于点O ,

(1)求:∠AOC 的度数;

试卷第9页,总13页 (2)求证:AC=AE +CD . 31.如图,已知△ABC 中AB >AC ,P 是角平分线AD 上任一点,求证:AB ﹣AC >PB ﹣PC . 32.如图,在△ABC 中,D 为BC 的中点,点E 、F 分别在边AC 、AB 上,并且∠ABE=∠ACF ,BE 、CF 交于点O .过点O 作OP ⊥AC ,OQ ⊥AB ,P 、Q 为垂足.求证:DP=DQ . 33.如图已知△ABC 中,AB=AC ,∠ABD=60°,且∠ADB=90°﹣∠BDC ,求证:AB=BD +DC . 34.如图,点C 在线段AB 上,DA ⊥AB ,EB ⊥AB ,FC ⊥AB ,且DA=BC ,EB=AC ,FC=AB ,∠AFB=51°,求∠DFE 度数.

试卷第10页,总13页

35.如图,已知△ABC 是等腰直角三角形,∠C=90°,点M 、N 分别是边AC 和BC 的中点,点D 在射线BM 上,且BD=2BM .点E 在射线NA 上,且NE=2NA ,求证:BD ⊥DE .

36.如图,△ABC 中,BD 为∠ABC 的平分线;

(1)若∠A=100°,∠C=50°,求证:BC=BA +AD ;

(2)若∠BAC=100°,∠C=40°,求证:BC=BD +AD .

37.如图,△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD .

求证:BD=CD .

38.如图所示,在△ABF 中,已知BC=CE=EF ,∠BAC=∠CAD=∠DAE=45°,求

的值.

39.如图,已知过△ABC 的顶点A ,在∠BAC 内部任意作一条射线,过B 、C 分别作此射线的垂线段BD 、CE ,M 为BC 边中点.求证:MD=ME .

试卷第11页,总13页 40.已知,如图,在正方形ABCD 中,O 是对角线的交点,AF 平分∠BAC ,DH ⊥AF 于点H ,交AC 于点G ,DH 延长线交AB 于点E 求证:. 41.已知:在△ABC 中,∠A=90°,AB=AC ,D 为AC 中点,AE ⊥BD 于E ,延长AE 交BC 于F ,求证:∠ADB=∠CDF . 42.如图,在△ABC 中,AB=AC ,延长AB 到D ,使BD=AB ,E 为AB 中点,连接CE 、CD ,求证:CD=2EC . 43.如图,在△ABC 中,BD=CD ,AG 平分∠DAC ,BF ⊥AG ,垂足为H ,与AD 交于E ,与AC 交于F ,过点C 的直线CM 交AD 的延长线于M ,且∠EBD=∠MCD ,AC=AM . 求证:DE=CF .

试卷第12页,总13页

44.如图,BE 、CF 是△ABC 的高,它们相交于点O ,点P 在BE 上,Q 在CF 的延长线上且BP=AC ,CQ=AB ,

(1)求证:△ABP ≌△QCA .

(2)AP 和AQ 的位置关系如何,请给予证明.

45.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,AF 平分∠BAC 交CD 于E ,交BC 于F ,EG ∥AB 交BC 于G ,说明BG=CF 的理由.

46.在△ABC 中,∠ACB=90°,D 是AB 上一点,M 是CD 的中点,若∠AMD=∠BMD ,求证:∠CDA=2∠ACD .

47.如图,已知:四边形ABCD 中,AD=BC ,E 、F 分别是DC 、AB 的中点,直线EF 分别与BC 、AD 的延长线相交于G 、H .求证:∠AHF=∠BGF .

试卷第13页,总13页 48.如图,在等腰直角△ABC 中,AD=AE ,AF ⊥BE 交BC 于点F ,过F 作FG ⊥CD 交BE 延长线于G ,求证:BG=AF +FG . 49.已知△ABC ,∠C=90°,AC=BC .M 为AC 中点,延长BM 到D ,使MD=BM ;N 为BC 中点,延长NA 到E ,使AE=NA ,连接ED ,求证:ED ⊥BD . 50.如图,在△ABC 中,∠BAC=90°,AB=AC ,D 是△ABC 内一点,且∠DAC=∠DCA=15°,求证:BD=BA .

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

1

2018年05月17日张朋松的初中数学组卷

参考答案与试题解析

一.解答题(共50小题)

1.已知△ABC 是等边三角形,D 是BC 边上的一个动点(点D 不与B ,C 重合)△ADF 是以AD 为边的等边三角形,过点F 作BC 的平行线交射线AC 于点E ,连接BF .

(1)如图1,求证:△AFB ≌△ADC ;

(2)请判断图1中四边形BCEF 的形状,并说明理由;

(3)若D 点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.

【分析】(1)利用有两条边对应相等并且夹角相等的两个三角形全等即可证明△AFB ≌△ADC ;

(2)四边形BCEF 是平行四边形,因为△AFB ≌△ADC ,所以可得∠ABF=∠C=60°,进而证明∠ABF=∠BAC ,则可得到FB ∥AC ,又BC ∥EF ,所以四边形BCEF 是平行四边形;

(3)易证AF=AD ,AB=AC ,∠FAD=∠BAC=60°,可得∠FAB=∠DAC ,即可证明△AFB ≌△ADC ;根据△AFB ≌△ADC 可得∠ABF=∠ADC ,进而求得∠AFB=∠EAF ,求得BF ∥AE ,又BC ∥EF ,从而证得四边形BCEF 是平行四边形.

【解答】证明:(1)∵△ABC 和△ADF 都是等边三角形,

∴AF=AD ,AB=AC ,∠FAD=∠BAC=60°,

又∵∠FAB=∠FAD ﹣∠BAD ,∠DAC=∠BAC ﹣∠BAD ,

∴∠FAB=∠DAC ,

在△AFB 和△ADC 中,

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

2

∴△AFB ≌△ADC (SAS );

(2)由①得△AFB ≌△ADC ,

∴∠ABF=∠C=60°.

又∵∠BAC=∠C=60°,

∴∠ABF=∠BAC ,

∴FB ∥AC ,

又∵BC ∥EF ,

∴四边形BCEF 是平行四边形;

(3)成立,理由如下:

∵△ABC 和△ADF 都是等边三角形,

∴AF=AD ,AB=AC ,∠FAD=∠BAC=60°,

又∵∠FAB=∠BAC ﹣∠FAE ,∠DAC=∠FAD ﹣∠FAE ,

∴∠FAB=∠DAC ,

在△AFB 和△ADC 中,

∴△AFB ≌△ADC (SAS );

∴∠AFB=∠ADC .

又∵∠ADC +∠DAC=60°,∠EAF +∠DAC=60°,

∴∠ADC=∠EAF ,

∴∠AFB=∠EAF ,

∴BF ∥AE ,

又∵BC ∥EF ,

∴四边形BCEF 是平行四边形.

【点评】本题考查了等边三角形的性质、全等三角形的判定和性质以及平行四边形的判定,熟练掌握性质、定理是解题的关键.

2.在△ABC 中,AH ⊥BC 于H ,D ,E ,F 分别是BC ,CA ,AB 的中点(如图所示).求证:∠DEF=∠HFE .

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

【分析】EF为中位线,所以EF∥BC,又因为∠HFE和∠FHB,∠DEF和∠CDE 分别为一组平行线的对角,所以相等;转化成求证∠FHB=∠CDE.

【解答】证明:∵E,F分别为AC,AB的中点,

∴EF∥BC,

根据平行线定理,∠HFE=∠FHB,∠DEF=∠CDE;

同理可证∠CDE=∠B,

∴∠DEF=∠B.

又∵AH⊥BC,且F为AB的中点,

∴HF=BF,

∴∠B=∠BHF,

∴∠HFE=∠B=∠DEF.

即∠HFE=∠DEF.

【点评】本题考查了三角形的中位线定理,平行四边形的判定,直角三角形中斜边的中线为斜边边长的一半.

3.在△ABC中,∠B=60°,∠A,∠C的角平分线AE,CF相交于点O,(1)如图1,若AB=BC,求证:OE=OF;

(2)如图2,若AB≠BC,试判断线段OE与OF是否相等,并说明理由.

【分析】(1)可证明△ACF≌△CAE,再由角平分线的性质得出∠OAC=∠OCA,从而得出OE=OF;

(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.根据角平分线的性质定理以及逆定理可推得点O在∠B的平分线上,从

3

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

而得出∠OBN=∠OBM=30°,由已知得出∠OEM=∠OFN,能证明Rt△OFN≌Rt △OEM,则OE=OF成立.

【解答】证明:(1)∵∠B=60°,AB=BC,

∴∠A=∠C=60°,

∵AECF分别平分∠A,∠C,

∴∠OAC=∠OCA=30°,

∴OA=OC,△ACF≌△CAE(ASA),

∴AE=CF,

∴OE=OF;

(2)过点O作OH⊥AC,OM⊥BC,ON⊥AB,垂足分别为H,M,N,连接OB.

∵点O在∠A,∠C的平分线上,

∴ON=OH,OH=OM,从而OM=ON,

∴点O在∠B的平分线上(1分)

∴∠OBN=∠OBM=30°,ON=OM (2分)

又∠OEM=∠B +∠A=60°+∠A

∠OFN=∠A +∠C=(∠A+∠C)+∠A=(180°﹣60°)+∠A=60°+∠A.∴∠OEM=∠OFN.(2分)

∴Rt△OFN≌Rt△OEM(AAS),(1分)

∴OE=OF.(1分)

【点评】本题考查了全等三角形的判定和性质以及角平分线的性质,注意一题多解以及方法的简单性.

4.如图,在△ABC中,BD是∠ABC的平分线,在△ABC外取一点E,使得∠EAB=∠ACB,AE=DC,并且线段ED与线段AB相交,交点记为K,问线段EK

4

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

与DK有怎样的大小关系?并说明理由.

【分析】首先作出EI⊥AB,DH⊥AB,证明△EAI≌△DCF再得出DH=DF进而得出△EKI≌△DKH即可证出.

【解答】解:结论:EK=DK.(2分)

理由:过点E作EI⊥AB,过点D作DH⊥AB于H,DF⊥BC于F,

在△EAI和△DCF中

∵,

∴△EAI≌△DCF(AAS),(2分)

∴EI=DF,(2分)

∵BD是∠ABC的平分线,

∴DH=DF,(2分)

∴DH=EI,

在△EKI和△DKH中,

∵,

∴△EKI≌△DKH(AAS),(2分)

∴EK=DK.(2分)

【点评】此题主要考查了三角形全等证明方法,根据题意作出EI⊥AB,DH ⊥AB,从而利于全等证明是解决问题的关键.

5.已知如图,AC=BC,∠C=90°,∠A的平分线AD交BC于D,过B作BE垂

5

本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

6

直AD 于E ,求证:BE=AD .

【分析】延长AC 、BE 交于点M ,易证得△ACD ≌△BCM ,可得AD=BM ①,可证得△AEM ≌△AEB ,可得EM=BE ,即BM=2BE ②,由①②即可得结论.

【解答】解:如图,延长AC 、BE 交于点M ,

∵∠A 的平分线AD ,BE 垂直AD 于E ,

∴∠MAE=∠BAE ,∠AEM=∠AEB=90°,

∵AE=AE ,

∴△AEM ≌△AEB (ASA ),

∴EM=BE ,即BM=2BE ①;

∵∠A 的平分线AD ,AC=BC ,∠C=90°,

∴∠CAD=∠DAB=22.5°,∠ABC=45°,

∵BE 垂直AD 于E ,

∴∠DAB +∠ABC +∠DBE=90°,即∠DBE=22.5°,

∴∠CAD=∠DBE ,

又∵AC=BC ,且∠ACB=∠BCM=90°,

∴△ACD ≌△BCM (ASA ),

∴AD=BM ②;

由①②得AD=2BE ,

BE=AD .

【点评】本题主要考查了全等三角形的判定和性质,涉及到等腰直角三角形的性质、三角形内角和定理等知识点,正确作出辅助线是解题的关键.

6.如图,已知AB=AC ,∠BAC=60°,∠BDC=120°,求证:AD=BD +CD .

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略 陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和 22(,)B x y ,其中12x x ≠且124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=- -y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-=-y y x y ,联立抛物线方程消去x 可得:22 00 22120-+-=y y y y (1), 由题意, 12,y y 是方程(1)的两个实根,且12≠y y ,所 以 22 00044(212)0?=-->?-<

(完整版)初中几何证明题五大经典(含答案)

经典题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴ FG EO =HG GO ∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴ CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP ∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15° ∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD ∴△BAP ≌∠CDP ∴∠BPA=∠CPD ∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° ∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形

3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 证明:连接AC ,取AC 的中点G ,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN= 2 1AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM= 2 1BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB ⌒ ∴∠F=∠ACB 又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD ⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC ∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM= 2 1 ∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM ∴AH=BO=AO

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,错角相等,同旁角互补.利用这些 性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . ∥= A D B P Q 图1 P E D G A B F C 图2

数学竞赛《解析几何》专题训练(答案)

《解析几何》专题训练 一、选择题 1、(04福建)在平面直角坐标系中,方程 1(,22x y x y a b a b +-+ =为相异正数),所表示的曲线 是 A,三角形 B,正方形 C,非正方形的长方形 D,非正方形的菱形 1,D 令y x =,得y x a ==±,令y x =-得x y b =-=±,由此可见,曲线必过四个点:(,)a a , (,)a a --,(,)b b ,(,)b b --,从结构特征看,方程表示的曲线是以这四点为顶点的四边形,易知 它是非正方形的菱形. 2、若椭圆22 13620 x y +=上一点P 到左焦点的距离等于它到右焦点距离的2倍,则P 点坐标为 A, B,(- C,(3, D,(3,- C 设00(,)P x y ,又椭圆的右准线为9x =,而122PF PF =,且1212PF PF +=, 得24PF =,又 20 2 93 PF e x == -,得03x =, 代入椭圆方程得0y =3、设双曲线22 221x y a b -= 的离心率 e 2?∈??? ,则双曲线的两条渐近线夹角α的取值范围是 ( ) C A. ,63ππ?????? B .,62ππ?????? C .,32ππ?????? D .2,33ππ?? ???? 4、已知两点A (1,2), B (3,1) 到直线L 的距离分别是25,2-,则满足条件的直线L 共有 条。 ( C ) (A )1 (B )2 (C )3 (D )4 解: 由,5= AB 分别以A ,B 为圆心,2,5为半径作两个圆,则两圆外切,有三条 共切线。正确答案为C 。 5、双曲线122 22=-b y a x 的一个焦点为F 1,顶点为A 1、A 2,P 是双曲线上任意一点.则分别 以线段PF 1、A 1A 2为直径的两圆一定(B ) (A )相交 (B )相切 (C )相离 (D )以上情况均有可能

中考几何经典题参考答案

初中几何经典题 参考答案与试题解析 一、解答题(共20小题,满分0分) 1.已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) 考点:相似三角形的判定与性质;圆周角定理. 分析:首先根据四点共圆的性质得出GOFE四点共圆,进而求出△GHF∽△OGE,再利用GH∥CD,得出==,即可求出答案. 解答:证明:作GH⊥AB,连接EO. ∵EF⊥AB,EG⊥CO, ∴∠EFO=∠EGO=90°, ∴G、O、F、E四点共圆, 所以∠GFH=∠OEG, 又∵∠GHF=∠EGO, ∴△GHF∽△OGE, ∵CD⊥AB,GH⊥AB, ∵GH∥CD, ∴==, 又∵CO=EO, ∴CD=GF. 点评:此题主要考查了相似三角形的判定以及其性质和四点共圆的性质,根据已知得出GOFE四点共圆是解题关键. 2.已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二)

考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质;等边三角形的判定. 专题:证明题. 分析:在正方形内做△DGC与△ADP全等,根据全等三角形的性质求出△PDG为等边,三角形,根据SAS证出△DGC≌△PGC,推出DC=PC,推出PB=DC=PC,根据等边三角形的判定求出即可. 解答:证明: ∵正方形ABCD, ∴AB=CD,∠BAD=∠CDA=90°, ∵∠PAD=∠PDA=15°, ∴PA=PD,∠PAB=∠PDC=75°, 在正方形内做△DGC与△ADP全等, ∴DP=DG,∠ADP=∠GDC=∠DAP=∠DCG=15°, ∴∠PDG=90°﹣15°﹣15°=60°, ∴△PDG为等边三角形(有一个角等于60度的等腰三角形是等边三角形), ∴DP=DG=PG, ∵∠DGC=180°﹣15°﹣15°=150°, ∴∠PGC=360°﹣150°﹣60°=150°=∠DGC, 在△DGC和△PGC中 , ∴△DGC≌△PGC, ∴PC=AD=DC,和∠DCG=∠PCG=15°, 同理PB=AB=DC=PC, ∠PCB=90°﹣15°﹣15°=60°, ∴△PBC是正三角形. 点评:本题考查了正方形的性质,等边三角形的性质和判定,全等三角形的性质和判定等知识点的应用,关键是正确作出辅助线,又是难点,题型较好,但有一定的难度,对学生提出了较高的要求. 3.如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.求证:四边形A2B2C2D2是正方形.(初二)

高中数学竞赛题之平面几何

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1 为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利 用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 设P 、Q 为线段BC 上两点,且BP =CQ ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D .连结DA . 在△DBP =∠AQC 中,显然 ∠DBP =∠AQC ,∠DPB =∠C . 由BP =CQ ,可知 △DBP ≌△AQC . 有DP =AC ,∠BDP =∠QAC . 于是,DA ∥BP ,∠BAP =∠BDP . 则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP . 所以AB =AC . 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2 如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE .求证:∠EBA =∠ADE . 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P ,连PE . 由AB CD ,易知△PBA ≌△ECD .有PA =ED ,PB =EC . 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE . 由∠BAF =∠BCE ,可知 ∠BAF =∠BPE . 有P 、B 、A 、E 四点共圆. 于是,∠EBA =∠APE . 所以,∠EBA =∠ADE . 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2 欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3 在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂线,M 、N 、Q 为垂足.求证:PM +PN =PQ . 证明:如图3,过点P 作AB 的平行线交BD 于F ,过点F 作BC 的平行线分别交PQ 、AC 于K 、G ,连PG . 由BD 平行∠ABC ,可知点F 到AB 、BC 两边距离相等.有KQ =PN . 显然,PD EP =FD EF =GD CG ,可知PG ∥EC . 由CE 平分∠BCA ,知GP 平分∠FGA .有PK =PM .于是, PM +PN =PK +KQ =PQ . 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK ,就有PM +PN =PQ .证法非常简捷. 3 为了线段比的转化 ∥= A D B P Q 图1P E D G A B F C 图2 A N E B Q K G C D M F P 图3

【竞赛】解析几何3——曲线系

高二数学竞赛——曲线系 曲线系是具有某种性质的曲线集合,利用曲线系解题体现了参数变换的数学思想,整体处理的钥匙策略,以及“基本量”和“待定系数”等重要的解题方法. 曲线系:如果两条曲线方程是 f 1(x ,y )=0和 f 2(x ,y )=0, 它们的交点是P (x 0,y 0),则方程 f 1(x ,y )+ f 2(x ,y )=0的曲线也经过点P (x 0,y 0) (是任意常数). 证明:由方程?? ?f 1(x ,y )=0·······①f 2(x ,y )=0·······② 得到 f 1(x ,y )+ f 2(x ,y )=0·······③ 只须 将(x 0, y 0)代入证明. ◆ 设圆C 1∶x 2 +y 2 +D 1x +E 1y +F 1=0和圆C 2∶x 2 +y 2 +D 2x +E 2y +F 2=0.若两圆相交,则过交点的圆系 方程为x 2+y 2+D 1x +E 1y +F 1+ (x 2+y 2 +D 2x +E 2y +F 2)=0 ( 为参数,圆系中不包括圆C 2, =-1为两圆的公共弦所在直线方程). ◆ 设圆C ∶x 2 +y 2+Dx +Ey +F =0与直线l :Ax +By +C =0,若直线与圆相交,则过交点的圆系方程为 x 2+y 2+Dx +Ey +F + (Ax +By +C )=0( 为参数). 曲线系方程③不能包含过两曲线公共点的所有曲线,那么使用时怎么知道所求方程在不在方程③中呢? ——m ·f 1(x ,y )+n ·f 2(x ,y )=0 由直线生成的二次曲线系: 设f i =A i x +B i y +C i (i =1,2,3,···) (1)若三角形三边的方程为:f i =0(i =1,2,3),则经过三角形三个顶点的二次曲线系为: f 1·f 2+ f 2·f 3+ f 3·f 1=0( 、 为参数) (2)若四边形四条边的方程为:f i =0(i =1,2,3,4),则经过四边形四个顶点的二次曲线系为: f 1·f 3+ f 2·f 4=0( 为参数), 其中f 1=0与f 3=0、f 2=0与f 4=0分别为四边形的对边所在直线方程. (3)与两条直线f 1=0、f 2=0分别相切于M 1、M 2的二次曲线系为: f 1·f 2+ f 3·f 3=0( 为参数), 其中f 3=0是过M 1、M 2的直线方程. (3)过直线f 1=0、f 2=0与一个二次曲线F (x ,y )=0的4个交点的二次曲线系为: F (x ,y )+ f 1·f 2=0( 为参数). 【例题选讲】 例1. 求经过两圆x 2+y 2+6x -4=0和x 2+y 2 +6y -28=0的交点,并且圆心在直线x -y -4=0上的圆 的方程. 解: 构造方程 x 2+y 2+6x -4+ (x 2+y 2 +6y -28)=0 即:(1+ )x 2 +(1+ )y 2 +6x +6 y -(4+28 )=0 此方程的曲线是过已知两圆交点的圆,且圆心为(-3 1+ ,-3 1+ ) 当该圆心在直线x -y -4=0上时,即 -3 1+ +3 1+ -4=0,解得: =-7. ∴ 所求圆方程为 x 2 +y 2 -x +7y -32=0 例2. 求与圆x 2 +y 2 -4x -2y -20=0切于A (―1,―3),且过B (2,0)的圆的方程. 解法一:视A (―1,―3)为圆(x +1)2+(y +1)2=r 2,当r →0时,极限圆(x +1)2+(y +3)2 =0 构造圆系:(x 2+y 2-4x -2y -20)+ [(x +1)2+(y +3)2 ]=0

初中数学经典几何题及答案经典

经典难题(一) 1、已知:如图,O就是半圆的圆心,C、E就是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) 2、已知:如图,P就是正方形 求证:△PBC就是正三角形.( 3、如图,已知四边形ABCD、A1 CC1、DD1的中点. 求证:四边形A2B2C2D2 4、已知:如图,在四边形ABCD中 线交MN于E、F. 求证:∠DEN=∠F. 1、已知:△ABC中,H为垂心( (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH= 2、设MN就是圆O外一直线,过 D、E,直线EB及CD分别交 求证:AP=AQ.(初二) 3、如果上题把直线MN 设MN就是圆O的弦,过 P、Q. 求证:AP=AQ.(初二) 4、如图,分别以△ABC的AC与 点P就是EF的中点. 求证:点P到边AB 1、如图,四边形ABCD为正方形 求证:CE=CF.(初二) 2、如图,四边形ABCD为正方形 求证:AE=AF.(初二) 3、设P就是正方形ABCD一边 求证:PA=PF.(初二) 4、如图,PC切圆O于C,AC 求证:AB=DC,BC=AD.(初三 1、已知:△ABC就是正三角形,P 求:∠APB的度数.(初二)

2、设P 就是平行四边形ABCD 内部的一点,且∠PBA =∠PDA. 求证:∠PAB =∠PCB.(初二) 3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC 4、平行四边形ABCD 中,设E 、F 分别就是BC 、 AB 上的一点AE =CF.求证:∠DPA =∠DPC.(初二) 经典难题(五) 1、设P 就是边长 为1的正△ABC 内任一点证 :≤L <2. 2、已知:P 就是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值. 3、P 为正方形ABCD 内的一点,并且PA =a,PB =2a,PC =3a, 4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别就是AB 、AC =200,求∠BED 的度数. 经典难题(一) ⊥AB,连接EO 。由于GOFE 四点共圆,所以∠GFH OGE,可得EO GF =GO GH =CO CD ,又CO=EO,所以CD=GF

平面几何三角形四心竞赛题A卷及答案

三角形四心竞赛训练题1 一、填空题 1、三角形的三条边的垂直平分线的交点叫做三角形的 心;三个角的平分线的交点叫做三角形的 心;三条中线的交点叫做三角形的 心;三条高线的交点叫做三角形的 心。 2、在△ABC 中,∠A=40o,为△ABC 的内心,则∠BOC = 度。 3、圆的外切正三角形的边长是圆内接三角形的边长的 倍。 4、已知三角形三边长分别为3、4、5,则其内切圆半径为 。 5、设△ABC 的垂心为H ,则∠BHC +∠BAC= 度。 二、解答题 6、如图1,△ABC 中,AD 为BC 边的高线,点O 为△ABC 的外心,求 证:∠BAO=∠DAC 。 7、求证:三角形的三条中线交于一点,且这一点到顶点的距离等于中线长的2 3。 8、如图2,Rt △ABC 的内切圆⊙O 和斜边BC 的切点为T ,求证: ABC BT TC S ??=。 9、如图3,已知△ABC 的内心为I ,△BCI 的外心为D ,求证:A 、B 、C 、D 四点共圆。 10、如图4,已知△ABC 的内切圆和BC 相切于D ,求证:△ABD 、△ACD 的内 切圆相切。 11、如图5,设△ABC 的垂心为H ,并且直线AH 和外接圆及边BC 的交点分别为E 、D ,求证:HD=DE 。 12、如图6,△ABC 的垂心为H ,外心O 到边BC 的距离为OM ,求证:AH=2OM 。 13、如图7,△ABC 的垂心为H ,外心为O ,若∠A =60o;求证:三直线HO 、AB 、AC 所作成的△APQ 是正三角形。 14、如图8,△ABC 的垂心H ,若垂足三角形DEF 的外接圆和HC 的交点为G ,求证:HG=CG 。 15、设从△ABC 的外接圆的圆心O 向BC 边作垂线OD ,求证:∠BOD=∠A 或者∠BOD+∠A=180o 16、如图9,△ABC 中,∠A=2∠B ,由顶点C 作∠A 的平分线AD 的垂线CF ,垂足为F ,求证:CF 经过△ABC 的外心。 17、如图10,设过△ABC 的内心I 作BC 的平行线和AB 、AC 分别交于D 、E 、M 是BC 的中点,求证:∠DME 是钝角。 重内垂外A 卷 (1) (5) (2) I (3) C B A (4) D C B A (6)M O H D C B A (7)(9) F E D C B A (10)D (8) H G F E C B A

高中数学竞赛专题讲座(解析几何)

高中数学竞赛专题讲座(解析几何) 一、基础知识 1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF 1|+|PF 2|=2a (2a>|F 1F 2|=2c). 第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0), 参数方程为? ? ?==θθ sin cos b y a x (θ为参数)。 若焦点在y 轴上,列标准方程为 12 2 22=+b y a y (a>b>0)。 3.椭圆中的相关概念,对于中心在原点,焦点在x 轴上的椭圆 122 22=+b y a x , a 称半长轴长,b 称半短轴长,c 称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a, 0), (0, ±b), (±c, 0);与左焦点对应的准线(即第二定义中的定直线)为 c a x 2-=,与右焦点对应的准线为c a x 2=;定义中的比e 称为离心率,且a c e =,由c 2+b 2=a 2 知0b>0), F 1(-c, 0), F 2(c, 0)是它的两焦点。 若P(x, y)是椭圆上的任意一点,则|PF 1|=a+ex, |PF 2|=a-ex. 5.几个常用结论:1)过椭圆上一点P(x 0, y 0)的切线方程为 12020=+b y y a x x ; 2)斜率为k 的切线方程为222b k a kx y +±=;

最新全国大学生数学竞赛简介

全国大学生数学竞赛 百度简介

中国大学生数学竞赛

该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 编辑本段竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分

一、集合与函数 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略

解析几何竞赛题求解的几种常见策略陈硕罡吴国建(浙江 省东阳中学 322100)解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30 分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题函数是描 述客观世界中变量间依赖关系的重要数学模型。抓住问题 中引起变化的主变量,并用一个具体的量(斜率或点的坐 标等)来表示它,同时把问题中的的因变量用主变量表示 出来,从而变成一个函数的问题,这就是解决问题的函 数观点。在解析几何问题中,经常会碰到由于某个量 (很多时候是线或点)的变化,而引起图形中其它量(面 积或长度等)的变化的情况,所以函数观点成为了解决解 析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线y2 6x上的

两个动点和B(X2,y2),其中人x?且人x? 4.线段AB的垂直平分线与x轴交于点C ,求厶ABC面积的最大值. 【分析】通过对题目的分析可以发现线段AB中点的横坐标已经是定值,只有纵坐标在变化,可以把AB中点的纵坐标作为主变量,这样只要把ABC 的面积表示成以AB中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB的中点M坐标为((2, y o),贝I」则直线AB的斜率:k 7 42 —- X i X2 、亘y y2 y o 6 6 线段AB的中垂线方程:八。鲁(X 2),易知线段 AB的中垂线与x轴的交点为定点C(5,0)直线AB的方程:y y o 2(x 2),联立抛物线方程消 y o 去x可得:y2 2y o y 2y2 12 0 ( 1 ), 由题意,y1,y2是方程(1 )的两个实根,且y1 y2,所以4y; 4(2 y2 12) o 2.3 y 2 3 弦长|AB| ..1 (;)2|% y2| (1 ?)[(% y2)2 4^2〕21(9 S)(12 y;) 点C(5,o)到直线AB的距离:h |CM|十

初中数学经典几何题(附答案)

初中数学经典几何题(附答案) 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、 N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B

经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH = 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) · A D H E M C B O · G A O D B E C Q P N M

P C G F B Q A D E 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) · O Q P B D E C N M · A

平面几何习题集大全

平面几何习题大全 下面的平面几何习题均是我两年来收集的,属竞赛围。共分为五种类型,1,几何计算;2,几何证明;3,共点线与共线点;4,几何不等式;5,经典几何。 几何计算-1 命题设点D是Rt△ABC斜边AB上的一点,DE⊥BC于点E,DF⊥AC于点F。若AF=15,BE=10,则四边形DECF的面积是多少? 解:设DF=CE=x,DE=CF=y. ∵Rt△BED∽Rt△DFA, ∴BE/DE=DF/AF <==> 10/y=x/15 <==> xy=150. 所以,矩形DECF的面积150. 几何证明-1 命题在圆接四边形ABCD中,O为圆心,己知∠AOB+∠COD=180.求证:由O向四边形ABCD所作的垂线段之和等于四边形ABCD的周长的一半。 证明(一) 连OA,OB,OC,OD,过圆心O点分别作AB,BC,CD,DA的垂线,垂足依次为P,Q,R,S。 易证ΔAPO≌ΔORD,所以DR=OP,AP=OR, 故OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。

证明(二) 连OA,OB,OC,OD,因为∠AOB+∠COD=180°,OA=OD,所以易证 RtΔAPO≌RtΔORD,故得DR=OP,AP=OR, 即OP+OR=DR+AP=(CD+AB)/2。 同理可得:OQ+OS=(DA+BC)/2。 因此有OP+OQ+OR+OS=(AB+BC+CD+DA)/2。 几何不等式-1 命题设P是正△ABC任意一点,△DEF是P点关于正△ABC的接三角形[AP,BP,CP延长分别交BC,CA,AB于D,E,F],记面积为S1;△KNM是P点关于正△ABC的垂足三角形[过P 点分别作BC,CA,AB垂线交于K,N,M],记面积为S2。求证:S2≥S1 。 证明设P点关于正△ABC的重心坐标为P(x,y,z),a为正△ABC的边长,则正△ABC的面积为S=(a^2√3)/4。 由三角形重心坐标定义易求得: AD=za/(y+z),CD=ya/(y+z),CE=xa/(z+x),AE=za/(z+x),AF=ya/(x+y),BF=xa/(x+y). 故得: △AEF的面积X=AE*AF*sin60°/2=Syz/(z+x)(x+y); △BFD的面积Y=BF*BD*sin60°/2=Szx/(x+y)(y+z); △CDE的面积Z=CD*CE*sin60°/2=Sxy/(y+z)(z+x). 从而有S1=S-X-Y-Z=2xyzS/(y+z)(z+x)(x+y)。 因为P点是△KNM的费马点,从而易求得:

解析几何竞赛题求解的几种常见策略

陈硕罡 吴国建(浙江省东阳中学322100) 解析几何作为高中数学的重要内容之一,研究问题的主要方法是坐标法,解题的基本过程是:首先用代数语言(坐标及其方程)描述几何元素及其关系,将几何问题代数化,解决代数问题,得到结果,分析代数结果的几何意义,最终解决几何问题。解决几何问题的解决往往需要具有较强的观察、分析问题、解决问题的能力,需要熟练掌握数形结合与转换的思想,同时还要具有较强的运算能力,所以解析几何一直是各级高中数学竞赛命题的热点和难点。在近几年的全国数学联赛中一试试题中,一般有一或两道填空题和一道解答题,分值在30分左右,占一试总分值的四分之一,其重要性不言而喻。下面笔者结合自己的教学实践,提出解析几何竞赛题求解的几种常见策略,与同仁们探讨。 一、用函数(变量)的观点来解决问题 函数是描述客观世界中变量间依赖关系的重要数学模型。抓住问题中引起变化的主变量,并用一个具体的量(斜率或点的坐标等)来表示它,同时把问题中的的因变量用主变量表示出来,从而变成一个函数的问题, 这就是解决问题的函数观点。在解析几何问题中,经常会碰到由于某个量(很多时候是线或点)的变化,而引起图形中其它量(面积或长度等)的变化的情况,所以函数观点成为了解决解析几何的一种重要方法。 【例1】(2010全国高中数学联赛试题)已知抛物线2 6y x =上的两个动点11(,)A x y 和22(,)B x y ,其中12x x ≠且 124x x +=.线段AB 的垂直平分线与x 轴交于点C ,求△ABC 面积的最大值. 【分析】通过对题目的分析可以发现线段AB 中点的横坐标已经是定值,只有纵坐标在变化,可以把AB 中点的纵坐标作为主变量,这样只要把?ABC 的面积表示成以AB 中点的纵坐标的函数即可,这是问题就转化为求函数的最值问题。 【解析】设线段AB 的中点M 坐标为(0(2,)y ,则 则直线AB 的斜率:121222 1212120 63 66 --= ===-+-y y y y k y y x x y y y 线段AB 的中垂线方程:0 0(2)3 -=--y y y x ,易知线段AB 的中垂线与x 轴的交点为定点(5,0)C 直线AB 的方程:00 3(2)-= -y y x y ,联立抛物线方程消去x 可得:22 0022120-+-=y y y y (1), 由题意,12,y y 是方程(1)的两个实根,且12≠y y ,所以22 00044(212)0?=-->?-<

初中数学经典几何题及答案经典

经典难题(一) 仁已知:如图,0是半圆的圆心,C. E是圆上的两点,CD丄AB, EF丄AB, EG丄CO. 求证:CD=GF?(初二) 2、已知:如图,P是正方形ABCD内点,ZPAD=ZPDA=15°. 求证: APBC是正三角形.(初二) 3、如图,已知四边形ABCD、AiBiQDi都是正方形,毗、B2. DDj 的中点. 求证:四边形A2B2C2D2是正方形.(初二) 4、已知:如图,在四边形ABCD中.AD=BC, M、N分别是AB. CD的中点,AD、BC的延 长线交MN于E、F. 求证:ZDEN=ZF.

经典难题(二) 仁已知:AABC中,H为垂心(各边髙线的交点),0为外心,且0M丄BC于M. (1)求证:AH=20M; (2)若ZBAC = 60°,求证:AH=A0?(初二) 2、设MN是圆0外一直线,过0作0A丄MN于A,自A引圆的两条直线,交圆于B、C及 D、E,直线EB及CD分别交MN于P、Q. 求证:AP=AQ?(初 二) 3、如果 上题把 直线MN 由圆外 平移至 圆内, 则由此 可得以 下命题: G N A

4、如图,分别以ZkABC的AC和BC为一边?在AABC的外侧作正方形ACDE和正方形CBFG, 点P是EF的中点?

仁如图,四边形ABCD为正方形,DE〃AC, AE=AC, AE与CD相交于F?求证:CE=CF.(初二) 2、如图,四边形ABCD为正方形,DE〃AC,且CE=CA,直线EC交DA延长线于F?求证: AE=AF.(初二)亠 3、设P是正方形A BCD-边BC上的任一点,PF丄AP, CF平分ZDCE. 求证:PA = PF?(初二) 4、如图,PC切圆0于C, AC为圆的直径,PEF为圆的割线,AE、AF与直线P0相交于B、 D.求证:AB = DC, BC=AD?(初三) A C

解析几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第08讲:解析几何 1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ?中,45BAC ∠=?,AB 过圆心M ,则点A 横坐标范围为. 【答案】[]36, 【解析】设()9A a a -, ,则圆心M 到直线AC 的距离sin 45d AM =?,由直线AC 与圆M 相交,得 d 36a ≤≤. 2、(2009一试5)椭圆22 221x y a b +=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ?的最小值为. 【答案】22 222a b a b + 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ??????±± ? ? ?????? ?,. 由P ,Q 在椭圆上,有 222221 cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ② ①+②得222211 11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22 222a b a b +. 3、(2010一试3)双曲线12 2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】9800 4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,?=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(- 即0)(24)(21212212214=?++-+?++-y y t y y t x x t x x t ,

相关文档
最新文档