曲线与方程

曲线与方程
曲线与方程

《曲线与方程》说课稿

新泰一中高振宁

各位领导、老师:您们好!

今天,我说课的内容是高中数学选修2-1第二章第一节《曲线与方程》的第一课时,下面我将围绕“教什么”、“怎样教”以及“为什么这样教”三个问题,从教材内容分析、教学目标、重难点突破、学情分析、教法分析、学法分析、教学过程几个方面逐一进行论述:

一、教材分析

《曲线与方程》这节内容揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这恰好体现了解析几何这门课的基本思想——数形结合思想,对全部解析几何教学有着指导性的意义。学生在透彻理解了曲线和方程的意义后,就可以发现解析几何学习的入门之径。

《曲线与方程》这一部分的内容在整个高中数学学习中起着承前启后的作用,一方面,这一部分内容是建立在学生掌握直线的方程和圆的方程的基础上对曲线与方程关系认识的一次飞跃;另一方面,它为下一步学习圆锥曲线方程树立了模型。《曲线与方程》这一部分内容在整个高中阶段有很重要的地位,在高考试题中有明显的体现。

二、教学目标

结合以上分析,根据教学大纲、新课程理念的要求以及教材内容的地位和作用,结合高二学生的知识储备和认知特点确定教学目标如下:知识目标:

1、了解曲线上的点与方程的解之间的一一对应关系;

2、初步领会“曲线的方程”与“方程的曲线”的概念;

3、能够利用概念证明简单的曲线方程问题。

能力目标:

1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;

2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;

3、能运用所学知识理解新概念,并能运用概念来解决实际问题,从中体会数形结合的思想方法,提高学生的思维品质,发展应用意识。

情感目标:

1、通过概念的引入,让学生感受从特殊到一般的认知规律;

2、面向学生,通过学生的观察、类比、归纳等教学活动,创造出交流协作、积极思考的教学氛围,通过师生的交流评价,使学生体验到学习数学过程中的探索和创造,给学生成功的体验,激发学生学习数学的乐趣。

三、重难点突破

“曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出

定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点,因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点是否在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了两种层次的问题,幻灯片8是概念的直接运用,幻灯片9是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。

四、学情分析

此前,学生已知在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线与方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。

五、教法分析

素质教育和新课程理念强调教师要调整自己的角色,改变传统的教育

方式,教师要由传统意义上的知识的传授者和学生的管理者,转变为学生发展的促进者和帮助者,简单的教书匠转变为实践的研究者。在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,本节课遵循了概念学习的四个基本步骤,重点采用了问题探究和启发式相结合的教学方法。

从实例、到类比、到推广的问题探究,它对激发学生学习兴趣,培养学习能力都十分有利。启发引导学生得出概念,深化概念,并应用它所解决问题去讨论、去研究。在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题的能力打下了基础。

精心准备编写好导学案,使基础知识精细化、课标内容问题化、主干知识题目化、考纲要求具体化。

六、学法分析

基础教育课程改革要求加强学习方式的改变,提倡学习方式的多样化,通过引导学生主动参与,亲身实践,独立思考,合作探究,发展学生搜集处理信息的能力,获取新知识的能力,分析和解决问题的能力,以及交流协作的能力,基于此,本节课从实例引入→类比→推广→得概念→概念挖掘深化→具体应用→作业中的研究性问题的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者。

七、教学过程分析

1、感性认识阶段——以旧带新、提出课题

出示幻灯片1

借助多媒体让学生直观上深刻体会如下结论:

出示幻灯片2

运用学生熟知的旧知识引入,再类比和推广,由特殊到一般地提出了课题,又为形成“曲线和方程”的概念提供了实际模型。但是如果就此而由教师直接给出结论,那就不仅会失去开发学生思维的机会,影响学生的理解,而且会使教学变得枯燥乏味,抑制学生学习的主动性和积极性。

出示幻灯片3,引导学生类比、推广并思考相关问题

幻灯片2

1、直线上的点的坐标都是方程的解;

2、以这个方程的解为坐标的点都在直线上。

即:直线上所有点的集合与方程的解的集合之间建立了一一对应关系。

也即:

幻灯片1

画出方程0=-y x 表示的直线

要启动学生的思维,就要有一个明确的可供思考的问题,使学生的思维有明确的指向。这里提出的思考题是以相信学生对用方程表示曲线的实事已有了初步的认识为前提,它可以说是本节课的中心议题,应引导全班学生积极思维,让多一点学生发表意见,形成学习的“热点”。在思考题的后面加上了“为什么”的问题,是为了给那些还记着“直线的方程”的定义的学生提供思考的余地,增大思考题的跨度。 2

、分化本质属性阶段——运用反例揭示内涵

在以上讨论中,学生会有各种不同的意见,教师应予鼓励,并随时补正纠错,但不要急着把两个关系并列起来抛出定义,中断学生的探索性思

维,而是再提出问题,深入探索。

幻灯片3

类比:

推广:

即:任意的曲线和二元方程是否都能建立这种对应关系呢?

也即:方程0),(=y x F 的解与曲线C 上的点的坐标具备怎样的关系就能用方程

0),(=y x F 表示曲线C ,同时曲线C 也表示着方程0),(=y x F ?为什么要具备这些条

件?

出示幻灯片4,让学生回答问题,并加以纠正和总结

这个例题中:⑴中曲线C

上的点不全是方程0=-y x 的解,即不符合“曲线上点的坐标都是方程的解”这一结论;⑵中,尽管“曲线上点的坐标都是方程的解”,但是以方程022=-y x 的解为坐标的点却不全在曲线上,不符合“以这个方程的解为坐标的点都在曲线上”这一结论;⑶中既有以方程0=-y x 的解为坐标的点不在曲线上;又有曲线C 上的点的坐标不是方程0=-y x 的解。事实上,⑴、⑵、⑶中各方程所表示的曲线应该是如图所示的3种情况。

(出示幻灯片5)

在概念教学中,通过反例反衬,常常起着帮助学生理解概念的作用。反例一般应用在学生对概念有了初步的正面了解之后,这里却用在给出概幻灯片5

幻灯片4

用下列方程表示如图所示的曲线C ,对吗?为什么?

念的定义之前,那是出于这样的考虑:⑴相信学生已经有了用方程表示曲线的经验,已能从直觉上识别哪个方程能表示哪条曲线(当然是简单的例子),哪个方程不能表示哪条直线,缺少的只是用逻辑形式确切地加以陈述,给概念下定义;⑵将反例中出现的不完整性与直观引起矛盾,避免曲线和方程之间关系的不完整性,寻求做出必要的规定,这就是产生“曲线的方程”和“方程的曲线”的定义过程。

3、概括形成定义阶段——讨论归纳得定义

在下定义时,引导学生针对幻灯片4中的第⑴个问题“曲线上混有其坐标不是方程的解的点”应当作出规定:“曲线上的点的坐标都是这个方程的解”。针对幻灯片4中的第⑵个问题“以方程的解为坐标的点不在曲线上”应当作出规定:“以方程的解为坐标的点都有是曲线上的点”。

这样,我们可以对“曲线的方程”和“方程的曲线”下这样的定义: (出示幻灯片6)

在辨析反例之后,有了关于对象所共有的本质属性的正确认识,给对象以明确的定义是水到渠成,这里单独列出作为一个教学步骤,是想突出这个中心环节,并有意识地训练学生依据知觉中分散的已知知识给概念下定义的创造能力。

4、定义强化阶段——多种表征,深化内涵

幻灯片6

一般地,在直角坐标系中,如果某曲线C 上的点与一个二元方程0

),( y x f 的实数解建立了如下的关系:

⑴曲线上的点的坐标都是这个方程的解;

⑵以这个方程的解为坐标的点都是曲线上的点,

那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线。

引导学生利用集合的观点理解“曲线的方程”和“方程的曲线”定义中的两个关系,曲线可以看作是由点组成的集合,记作C ;一个二元方程的解可以作为点的坐标,因此二元方程的解集也描述了一个点集,记作F 。让学生探讨:如何用集合C 和F 间的关系来表述“曲线的方程”和“方程的曲线”定义中的两个关系,进而重新表述“曲线的方程”和“方程的曲线”的定义。相信学生完全可以得出:关系⑴指点集C 是点集F 的子集;关系⑵指点集F 是点集C 的子集。

出示幻灯片7

这是本节课第二个思维的“热点”,将促使学生对曲线和方程关系的理解得到强化,是认识上的再一次抽象,其结果将使学生对曲线和方程的关系的理解与记忆都趋于简化。

5、应用和强化阶段——主动参与、合作交流

(1)、初步应用、突出内涵

出示幻灯片8,让学生思考后回答下列问题

幻灯片7

这样用集合相等的概念定义“曲线的方程”与“方程的曲线”为:

F C =??

????C F (2) F C )1(

数学概念是要在运用中得以巩固,通过运用与练习,可以纠正错误的认识,促使对概念的正确理解,通过问题重现,可以不断领悟、加强记忆。这里安排的“初步应用”,目的也在于帮助学生正确理解概念,通过理解辨析“两个关系”实现本节课的教学目标。为此,题目中的“曲线”与“方程”都力求简单。

(2)出示幻灯片9,教师启发学生共同完成如下证明

引导学生回忆“曲线的方程”和“方程的曲线”的定义,探讨找出从以下两方面:(1)曲线上的点的坐标都满足方程:k xy ±=;(2)方程k xy ±=的解为坐标的点都在曲线上。

其中需要指出的曲线上的“点”和方程的“解”指的都是有关集合中的全体元素,应当用“任意一个”代表“全体”,这是数学证明中常用的方法。 幻灯片9

证明与两条坐标轴的距离的积是常数k (k>0)的点的轨迹方程为k xy ±=。

幻灯片8

下列各题中,图所示的的曲线C 的方程为所列方程,对吗?如果不对,

是不符合关系⑴还是关系⑵?

让同学们自己完成证明过程,之间可以探讨交流,参照课本证明纠正错误,完善证题过程,加强证明题的严密性。

本题是课本例题,本题的重点要求集中在“证明”上。解决的顺序是是先集中注意力于概念的领会上,对证明过程中思维、表述上遇到的一些困难留在后面解决,层层深入。

6、学习总结

引导学生从知识内容和思想方法两个方面进行小结,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。

在内容上:应掌握“曲线的方程”和“方程的曲线”的定义,在领会定义时,要牢记关系⑴、⑵两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件,两者都满足了“曲线的方程”和“方程的曲线”才具备充分性。

在思想方法上:曲线和方程之间一一对应的确立,进一步把“曲线”与“方程”统一了起来,在此基础上,我们就可以更多地用代数的方法研究几何问题。

7、作业布置

1、教材37页,习题1、2题。

2、思考题:如果两条曲线的方程0),(1=y x F 和0),(2=y x F 的交点为M (00,y x ),求证:方程0),(),(21=+y x F y x F λ表示的曲线也经过点M 。(λ为任意常数)

⑴题是课本习题,通过它来反馈知识掌握效果,巩固所学知识,强化

基本技能的训练,培养学生良好的学习习惯和品质;⑵题设计成选做题,是为了给学有余力的学生留出自由发展的空间。

我的说课完了,不妥之处,敬请各位领导、老师指正。谢谢!

曲线与方程练习题

曲线与方程 命题人:褚晓清 审核人:王焕功 一、选择题 1、方程(x 2+y 2-4) x +y +1=0的曲线形状是( ) 2、已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 3、已知命题“曲线C 上的点的坐标是方程(,)0f x y =的解”是正确的,则下列命题中正确的是 A .满足方程(,)0f x y =的点都在曲线C 上 B .方程(,)0f x y =是曲线 C 的方程 C .方程(,)0f x y =所表示的曲线不一定是C D .以上说法都正确 4、方程2(326)[log (2)3]0x y x y --+-=表示的图形经过点(0,1)A -,(2,3)B ,(2,0)C ,57(,)34 D -中的 A .0个 B .1个 C .2个 D .3个 52(2)0y +=表示的图形是 A .圆 B .两条直线 C .一个点 D .两个点 6、方程y =- A B C D

7、一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上 且4AM MB =,则点M 的轨迹方程是 A .221664x y += B . 221664x y += C .22168x y += D .22168x y += 8、“点M 在曲线||y x =上”是“点M 到两坐标轴距离相等”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 9、已知(2,0)M -,(2,0)N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 A . 222x y += B .224x y += C .222(2)x y x +=≠± D .224(2)x y x +=≠± 10、一动点C 在曲线221x y +=上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是 A .22(3)4x y ++= B .22(3)1x y -+= C .22(23)41x y -+= D .223()12 x y ++= 11、已知F 1,F 2分别为椭圆C :x 24+y 23 =1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29 +y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0) 12、设圆C 与圆x 2+(y -3)2 =1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆 二、填空题 13、已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________. 14、曲线y =||0()y ax a +=∈R 的交点有______个. 15、已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的 轨迹所包围的图形的面积为__________.

曲线和方程练习题

曲线和方程练习题 一、选择题 1、(2014·安徽高考文科·T3)抛物线2 14 y x = 的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【解题提示】 将抛物线化为标准形式即可得出。 【解析】选A 。22 144 y x x y = ?,所以抛物线的准线方程是y=-1. 2. (2014·新课标全国卷Ⅱ高考文科数学·T10) (2014·新课标全国卷Ⅱ高考文科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,则 AB = ( ) A. B.6 C.12 D. 【解题提示】画出图形,利用抛物线的定义求解. 【解析】选C.设AF=2m,BF=2n,F 3,04?? ??? .则由抛物线的定义和直角三角形知识可得, 2m=2· 34·34n,解得m=32 ),n=3 2 所以m+n=6. AB=AF+BF=2m+2n=12.故选C. 3. (2014·新课标全国卷Ⅱ高考理科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 4 B. 8 C. 6332 D. 9 4 【解题提示】将三角形OAB 的面积通过焦点“一分为二”,设出AF,BF,利用抛物线的定义求得面积. 【解析】选D.设点A,B 分别在第一和第四象限,AF=2m,BF=2n,则由抛物线的定义和直角三角形知识可 得,2m=2· 34+m,2n=2·34-n,解得m=32 (2+),n=3 2 (2-),所以m+n=6.所以S △OAB =1324?·(m+n)=94 .故选D. 4. (2014·四川高考理科·T10)已知F 为抛物线x y =2 的焦点,点A ,B 在该抛物线上且位于x 轴的两 侧,2OA OB ?=u u u r u u u r (其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A. 2 B.3 C. 8 【解题提示】

曲线与方程(基础+复习+习题+练习)

标准文档 课题:曲线与方程 考纲要求:.了解方程的曲线与曲线的方程的对应关系教材复习 1.曲线的方程与方程的曲线 C(看作适合某种条件的点的集合或轨迹)上的点与一个二元在直角坐标系中,如果某曲线 f(x,y)?0的实数解建立了如下关系:方程????21以这个方程的解为坐标的点都是曲线上的点的坐标都是这个方程的;那么,这个方程叫做曲线的方程, 这条曲线叫做方程的曲线(图形). 2.两曲线的交点 ????CCC,C?yF00Fxx,y,?,则曲线的交点坐标的方程为,曲线的方程为设曲线 122121C,C . 即为方程组的实数解,若此方程组无解,则两曲线21 3.求动点轨迹方程的一般步骤 ??yxP,P所①建系:建立适当的坐标系;②设点:设轨迹上的任一点;③列式:列出动点x,y 的方程满足的关系式;④代换:依条件的特点,选用距离公式、斜率公式等将其转化为式,并化简;⑤证明:证明所求方程即为符合条件的动点轨迹方程. 4.求轨迹方程常用方法?????y0x1,Fy,x;直接法:直接利用条件建立之间的关系??2定义法:先根据定义得出动点的轨迹的类别,再由待定系数法求出动点的轨迹方程. ??3待定系数法:已知所求曲线的类型,求曲线的方程.先根据所求曲线类型设出相应曲线的方 程,再由条件确定其待定系数; ??????4y,QyxPx,代入法(相关点法)的变化而变化,并且:动点依赖于另一动点00??x,yx,y yxQ,yx,带入已知曲线又在某已知曲线上,则可先用的代数式表示,再将000000得要求的轨迹方程. ????yx5P,x,y之间的关系不易直接找到,也没有相关动点可用时,参数法:当动点的坐标x,y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程可考虑将. 5.对于中点弦问题,常用“点差法”:其步骤为:设点,代入,作差,整理. 基本知识方法 1.掌握“方程与曲线”的充要关系; 2.求轨迹方程的常用方法:轨迹法、定义法、代入法、参数法、待定系数法、直接法和交轨.. 要注意“查漏补缺,剔除多余”法、向量法典例分析:

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

高中数学曲线与方程经典考点例题及其讲解

曲线与方程 考纲解读 1.利用曲线与方程的关系辨认曲线;2.求动点的轨迹(方程). [基础梳理] 1.曲线与方程 一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点. 那么这个方程叫作曲线的方程;这条曲线叫作方程的曲线. 2.求动点轨迹方程的一般步骤 (1)建立坐标系,用(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0,并化简; (4)查漏补缺. [三基自测] 1.到点F (0,4)的距离比到直线y =-5的距离小1的动点M 的轨迹方程为( ) A .y =16x 2 B .y =-16x 2 C .x 2=16y D .x 2=-16y 答案:C 2.在△ABC 中,A (0,3),B (-2,0),C (2,0),则中线AO (O 为原点)所在的方程为________. 答案:x =0(0≤y ≤3) 3.已知方程ax 2+by 2=2的曲线经过点A ????-5 4,0和B (1,1),则曲线方程为________. 答案:1625x 2+9 25 y 2=1 4.已知A (-5,0),B (5,0),则满足k AC ·k BC =-1的点C 的轨迹方程为________. 答案:x 2+y 2=25(去掉A 、B 两点) 考点一 坐标法(直接法)求解曲线方程|模型突破 [例1] (2018·成都模拟)动点P 与两定点A (a,0),B (-a,0)连线的斜率的乘积为k ,试求点P 的轨迹方程,并讨论轨迹是什么曲线. [解析] 设点P (x ,y ),则k AP = y x -a ,k BP =y x +a . 由题意得y x -a ·y x +a =k ,即kx 2-y 2=ka 2.

曲线与方程(轨迹方程)

高二数学第二章曲线与方程学案 学习目标: 1、理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 2、掌握求曲线的方程的方法及一般步骤; 学习重点:理解曲线和方程的概念,掌握求曲线的方程的方法及一般步骤; 学习难点:曲线和方程概念的理解; 学习过程: 完成教学目标1:理解平面直角坐标中“曲线的方程”和“方程的曲线”的含义; 新授知识:曲线的方程与方程的曲线的概念 一般地,在直角坐标系中,如果其曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点; 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 例1、判断下列结论的正误并说明理由 (1)过点A (3,0)且垂直于x 轴的直线为x=3 ; (2)到x 轴距离为2的点的轨迹方程为y=2 ; (3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=1 ; 练习:1、到两坐标轴距离相等的点组成的直线方程是0=-y x 吗? 2、已知等腰三角形三个顶点的坐标是)3,0(A ,)0,2(-B ,)0,2(C ,中线O AO (为原点)的 方程是0=x 吗?为什么? 3、若曲线C 上的点的坐标满足方程(,)0f x y =,则下列说法正确的是( ) A.曲线C 的方程是(,)0f x y = B.方程(,)0f x y =的曲线是C C.坐标不满足方程(,)0f x y =的点都不在曲线C 上 D.坐标满足方程(,)0f x y =的点都在曲线C 上 例2、已知方程252 2=+by ax 的曲线经过点)3 5,0(A 和点)1,1(B ,求a 、b 的值。 练习:已知方程 2 2 25x y +=表示的曲线C 经过点)A m ,求m 的值。 完成教学目标2:掌握求曲线的方程的方法及一般步骤; 类型一:待定系数法求轨迹方程(设出标准方程,根据题意求出a ,b ,p ) 例1:已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O , 且0=?,||2||=,求椭圆的方程。 练习:已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.求椭圆C 的标准方程; 类型二:直接法求轨迹方程(根据题目条件,直译为关于动点的几何关系,即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。注意:是否应该建立适当的坐标系) 例2:已知点F(1,0),直线l:x =-1,P为平面上的动点,过点P作直线l的垂线,垂 足为点Q,且FQ FP QF QP ?=?,求动点P的轨迹C的方程; **练习:已知动点M 到定点A (1,0)与到定直线l :x=3的距离之和等于4,求动点M 的轨迹方程,并说明轨迹是什么曲线?

曲线与方程word版

8.10 曲线与方程 一、选择题 1.方程|x |-1= 1-(y -1)2 所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆 D .两个半圆 解析:|x |-1= 1-(y -1)2 ?????? |x |-1≥01-(y -1)2≥0 (|x |-1)2=1-(y -1)2 ? ? ???? |x |-1≥0 (|x |-1)2=1-(y -1)2 ?????? x ≥1或x ≤-1(|x |-1)2+(y -1)2 =1?????? x ≥1(x -1)2+(y -1)2 =1 或????? x ≤-1,(x +1)2+(y -1)2 =1. 则方程|x |-1=1-(y -1)2 所表示的曲线如图所示. 答案:D 2.如图所示,已知两点A (-2,0)、B (1,0),动点P 不在x 轴上,且满足 ∠APO =∠BPO ,其中O 为坐标原点,则点P 的轨迹方程是( ) A .(x +2)2 +y 2 =4(y ≠0) B .(x +1)2 +y 2 =1(y ≠0) C .(x -2)2 +y 2 =4(y ≠0) D .(x -1)2 +y 2 =1(y ≠0) 解析:由∠APO =∠BPO ,设P 点坐标为(x ,y ), 则|PA |∶|PB |=|AO |∶|BO |=2,即|PA |=2|PB |, ∴ (x +2)2 +y 2 =2 (x -1)2 +y 2 整理得(x -2)2 +y 2 =4,且y ≠0. 答案:C 3.与圆x 2 +y 2-4x =0外切,又与y 轴相切的圆的圆心的轨迹方程是( ) A .y 2 =8x B .y 2 =8x (x >0)和y =0 C .y 2 =8x (x >0) D .y 2 =8x (x >0)和y =0(x <0) 解析:如图,设与y 轴相切且与圆C :x 2 +y 2 -4x =0外切的圆心为P (x ,y ),半径为r , 则(x -2)2+y 2=|x |+2,若x >0,则y 2 =8x ;若x <0,则y =0. 答案:D 4.如图,设圆(x +1)2 +y 2 =25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点,线段

圆锥曲线与方程基础题

圆锥曲线与方程基础题Prepared on 21 November 2021

1.已知抛物线的准线方程为x=-7,则抛物线的标准方程为() A.x2=-28y B.y2=28x C.y2=-28x D.x2=28y 2.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是( ) A.+=1 B.+=1 C.+=1 D.+=1 3.双曲线x2-=1的离心率大于的充分必要条件是( ) A.m> B.m≥1 C.m>1 D.m>2 4.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为( ) A.-=1 B.-=1 C.-=1 D.-=1 5.在y=2x2上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点P的坐标是( ) A.(-2,1) B.(1,2) C.(2,1) D.(-1,2) 6.已知抛物线的顶点为原点,焦点在y轴上,抛物线上点 M(m,-2)到焦点的距离为4,则m的值为( ) A.4或-4 B.-2 C.4 D.2或-2

7.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直x轴的直线交C于A,B两点,且|AB|=3,则C的方程为( ) A.+y2=1 B.+=1 C.+=1 D.+=1 8.动圆的圆心在抛物线y2=8x上,且动圆恒与直线x+2=0相切,则动圆必过点( ) A.(4,0) B.(2,0) C.(0,2) D.(0,-2) 9.椭圆+=1(a>b>0)上任意一点到两焦点的距离分别为d1,d2,焦距为2c,若d1,2c,d2成等差数列,则椭圆的离心率为( ) A. B. C. D. 10.已知F是抛物线y=x2的焦点,P是该抛物线上的动点,则线段PF中点的轨迹方程是( ) A.x2=y-B.x2=2y- C.x2=2y-1 D.x2=2y-2 11.若双曲线-=1(b>0)的渐近线方程为y=±x,则b等于 ________. 12.若中心在坐标原点,对称轴为坐标轴的椭圆经过点(4,0),离心率为,则椭圆的标准方程为________. 13.设F1和F2是双曲线-y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积为________.14.(10分)已知抛物线y2=6x,过点P(4,1)引一条弦P1P2使它恰好被点P平分,求这条弦所在的直线方程及|P1P2|.

曲线与方程,圆的方程

曲线与方程、圆的方程 江苏 郑邦锁 1.曲线C 的方程为:f(x,y)=0?曲线C 上任意一点P (x 0,y 0)的坐标满足方程f(x,y)=0,即f (x 0,y 0)=0;且以f(x,y)=0的任意一组解(x 0,y 0)为坐标的点P (x 0,y 0)在曲线C 上。 依据该定义:已知点在曲线上即知点的坐标满足曲线方程;求证点在曲线上也只需证点的坐标满足曲线方程。求动点P(x,y)的轨迹方程即求点P 的坐标(x,y)满足的方程(等式)。求动点轨迹方程的步骤:①建系,写(设)出相关点的坐标、线的方程,动点坐标一般设为(x,y),②分析动点满足的条件,并用等式描述这些条件,③化简,④验证:满足条件的点的坐标都是方程的解,且以方程的解为坐标的点都满足条件。 [举例1] 方程04)1(22=-+-+y x y x 所表示的曲线是: ( ) A B C D 解析:原方程等价于:???≥+=--4 0122y x y x ,或422=+y x ; 其中当01=--y x 需422-+y x 有意义,等式才成立,即422≥+y x ,此时它表示直 线01=--y x 上不在圆422=+y x 内的部分,这是极易出错的一个环节。选D 。 [举例2] 已知点A (-1,0),B (2,0),动点M 满足2∠MAB=∠MBA ,求点M 的轨迹方程。 解析:如何体现动点M 满足的条件2∠MAB=∠MBA 是解决本题的关键。用动点M 的坐标体现2∠MAB=∠MBA 的最佳载体是直线MA 、MB 的斜率。 设M (x ,y ),∠MAB=α,则∠MBA=2α,它们是直线 MA 、MB 的倾角还是倾角的补角,与点M 在x 轴的上方 还是下方有关;以下讨论: ① 若点M 在x 轴的上方, ,0),90,0(00>∈y α 此时,直线MA 的倾角为α,MB 的倾角为π-2α, ,2 )2tan(,1tan -=-+==∴x y x y k MA απα (2090≠α) ,2tan )2tan(ααπ-=- ,)1(11222 2+-+?=--∴x y x y x y 得: 132 2 =-y x ,∵1,>∴>x MB MA .

高中数学选修1-1《圆锥曲线与方程》知识点讲义

高中数学选修1-1《圆锥曲线与方程》知识点讲义

第二章 圆锥曲线与方程 一、曲线与方程的定义: (),C F x y 设曲线,方程=0,满足以下两个条件: ()(),,C x y F x y ?①曲线上一点的坐标满足=0; ()(),,. F x y x y C ?②方程=0解都在曲线上 ()(),,. C F x y F x y C 则曲线称是方程=0的曲线,方程=0是曲线的方程 二、求曲线方程的两种类型: () 1、已知曲线求方程;用待定系数法 ()()() 2,;,x y x y 、未知曲线求方程①设动点②建立等量关系; ③用含的式子代替等量关系;④化简;别出现不等价情况⑤证明;高中不要求

椭圆 一、椭圆及其标准方程 1、画法 {} 121222,2P PF PF a F F a +=<、定义: 3、方程 ()()22 22 22221010x y y x a b a b a b a b +=>>+=>>①或 ② () 22 22+10x y a b a b =>>二、几何性质: 1,. x a y b ≤≤、范围: 2x y O 、对称性:关于、、原点对称. ()()()()12123,0,,0,0,,0,. A a A a B b B b --、顶点 222 4,,a b c a b c =+、之间的关系: () 2 25101c b e e a a ==-<<、离心率: 0, 1e e →→越圆越扁

扩展: ()2222 22222x y x y m b a b a m b m <--①与椭圆+=1有相同焦点的椭圆方程为+=1 ()() 2222 22221010x y y x k k ka kb ka kb +=>+=>②有相同离心率的椭圆为或 . a c a c -+③椭圆上的点到焦点的最小距离是,最大距离是 12P P F PF ∠④为椭圆上一动点,当点为短轴端点时,最大. 24. AB F ABF a V ⑤为过焦点的弦,则的周长为 ()()1122,,,y kx b A x y B x y l =+⑥直线与圆锥曲线相交于两点,则当直线的斜率存在时,弦长为: ()( )2 22 121 2 12114l k x k x x x x ?? =+-= ++-?? ()2 12121222110114k l y y y y y k k ??=+ -=++-??或当存在且不为时,()2210,0. Ax By A B +=>>⑥当椭圆的焦点位置不确定时,可设椭圆的方程为

2020年高考理科数学原创专题卷:《圆锥曲线与方程》

原创理科数学专题卷 专题 圆锥曲线与方程 考点40:椭圆及其性质(1-5题,13,14题) 考点41:双曲线及其性质(6-10题,15题) 考点42:抛物线及其性质(11,12题) 考点43:直线与圆锥曲线的位置关系(17-22题) 考点44:圆锥曲线的综合问题(16题,17-22题) 考试时间:120分钟 满分:150分 说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上 第I 卷(选择题) 一、选择题(本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.【来源】2017届湖南省长沙市高三上学期统一模拟考试 考点40 易 椭圆E 的焦点在x 轴上,中心在原点,其短轴上的两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆E 的标准方程为( ) A. 2212x += B. 22 12x y += C. 22142x y += D. 22142y x += 2.【2017课标3,理10】 考点40 易 已知椭圆C :22 2 21x y a b +=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的 圆与直线20bx ay ab -+=相切,则C 的离心率为( ) A . B . C . D .13 3.【来源】重庆市第一中学2016-2017学年高二月考 考点40 中难 已知椭圆 2 21(0)1 x y m m +=>+的两个焦点是12,F F , E 是直线2y x =+与椭圆的一个公共点,当12EF EF +取得最小值时椭圆的离心率为( ) A. 2 3 4.【来源】湖南省湘潭市2017第三次高考模拟 考点40 难 如图, 12,A A 为椭圆22 195 x y +=长轴的左、右端点, O 为坐标原点, ,,S Q T 为椭圆上不同于12,A A 的三点,直线12,,,QA QA OS OT 围成一个平行四边形OPQR ,则

2.4 曲线与方程

2.4曲线与方程 基础过关练 题组一曲线与方程的关系及其应用 1.若等腰三角形ABC底边的两端点分别是A(-4,0),B(2,0),则顶点C的轨迹是( ) A.一条直线 B.一条直线去掉一点 C.一个点 D.两个点 2.若点(2,-3)在曲线2x2-ay2=5上,则实数a的值等于( ) A.1 3B.1 C.3 D.±1 3 3.已知曲线y=x2-x+2与直线y=x-m有两个交点,则实数m的取值范围是( ) A.(-1,+∞) B.(-∞,-1] C.(-∞,-1) D.(-∞,1) 4.在平面直角坐标系中,方程|x| 3+|y| 2 =1所表示的曲线是( ) A.两条平行线 B.一个矩形 C.一个菱形 D.一个圆 5.方程x+|y-1|=0表示的曲线是( ) 6.(2020山东日照高二月考)方程4x2-y2-4x+2y=0表示的图形是( ) A.直线2x-y=0 B.直线2x+y-2=0 C.点(1 2 ,1) D.直线2x-y=0和直线2x+y-2=0

题组二 求曲线的方程 7.在平面直角坐标系中,到两坐标轴的距离之和等于3的点M 的轨迹方程为( ) A.x+y=3 B.x+y=-3 C.|x+y|=3 D.|x|+|y|=3 8.(2020浙江湖州高二期中)在平面直角坐标系xOy 中,若定点A(-1,2)与动点P(x,y)满足OP ????? ·AO ????? =8,则点P 的轨迹方程为( ) A.x-2y-8=0 B.x-2y+8=0 C.x+2y-8=0 D.x+2y+8=0 9.已知动点A 在圆x 2+y 2=1上,则点A 与定点B(4,0)连线的中点的轨迹方程是( ) A.(x-2)2+y 2=1 4 B.(x-2)2+y 2=1 C.(x-4)2+y 2=14 D.(x+2)2+y 2=1 4 10.已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0),则动点P 的轨迹方程为 . 11.已知A(-1,0),B(2,4),△ABC 的面积为10,则顶点C 的轨迹方程是 . 12.(2020吉林省实验中学高二月考)已知线段AB 的长等于10,两端点A,B 分别在x 轴,y 轴上移动,若点M 在线段AB 上,且AM ?????? +4BM ?????? =0,则点M 的轨迹方程是 . 13.已知圆C 的方程为x 2+y 2=4,过圆C 上的一动点M 作平行于x 轴的直线m,设m 与y 轴的交点为N,若向量OQ ?????? =OM ?????? +ON ?????? (O 为坐标原点),求动点Q 的轨迹方程.

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

曲线与方程(基础+复习+习题+练习)

课题:曲线与方程 考纲要求:了解方程的曲线与曲线的方程的对应关系. 教材复习 1.曲线的方程与方程的曲线 在直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下关系: ()1曲线上的点的坐标都是这个方程的 ;()2以这个方程的解为坐标的点都是 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线(图形). 2.两曲线的交点 设曲线1C 的方程为()1,0F x y =,曲线2C 的方程为()2,0F x y =,则曲线12,C C 的交点坐标 即为方程组 的实数解,若此方程组无解,则两曲线12,C C . 3.求动点轨迹方程的一般步骤 ①建系:建立适当的坐标系;②设点:设轨迹上的任一点(),P x y ;③列式:列出动点P 所满足的关系式;④代换:依条件的特点,选用距离公式、斜率公式等将其转化为,x y 的方程式,并化简;⑤证明:证明所求方程即为符合条件的动点轨迹方程. 4.求轨迹方程常用方法 ()1直接法:直接利用条件建立,x y 之间的关系(),0F x y =; ()2定义法:先根据定义得出动点的轨迹的类别,再由待定系数法求出动点的轨迹方程. ()3待定系数法:已知所求曲线的类型,求曲线的方程.先根据所求曲线类型设出相应曲线的 方程,再由条件确定其待定系数; ()4代入法(相关点法) :动点(),P x y 依赖于另一动点()00,Q x y 的变化而变化,并且()00,Q x y 又在某已知曲线上,则可先用,x y 的代数式表示00,x y ,再将00,x y 带入已知曲线得要求的轨迹方程. ()5参数法:当动点(),P x y 的坐标,x y 之间的关系不易直接找到,也没有相关动点可用时, 可考虑将,x y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程. 5.对于中点弦问题,常用“点差法” :其步骤为:设点,代入,作差,整理. 基本知识方法 1.掌握“方程与曲线”的充要关系; 2.求轨迹方程的常用方法:轨迹法、定义法、代入法、参数法、待定系数法、直接法和交轨法、向量法. 要注意“查漏补缺,剔除多余”. 典例分析: 考点一 曲线与方程 问题1.()1(06调研)如果命题“坐标满足方程(,)0f x y =的点都在曲线C 上” 是不正确的,那么下列命题正确的是 .A 坐标满足方程(,)0f x y =的点都不在曲线C 上; .B 曲线C 上的点不都满足方程(,)0f x y =;

2015高考理科数学《曲线与方程》练习题

2015高考理科数学《曲线与方程》练习题 [A组基础演练·能力提升] 一、选择题 1.方程x2-y2=0对应的图象是( ) 解析:由x2-y2=0得,y=x或y=-x,故选C. 答案:C 2.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是( ) A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 解析:设Q(x,y),则P为(-2-x,4-y),代入2x-y+3=0得2x-y+5=0. 答案:D 3.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点的椭圆经过A,B两点,则椭圆的另一个焦点F的轨迹方程是( ) A.y2-x2 48 =1(y≤-1) B.y2- x2 48 =1(y≥1) C.x2-y2 48 =1(x≤-1) D.x2- y2 48 =1(x≥1) 解析:由题意知|AC|=13,|BC|=15,|AB|=14, 又∵|AF|+|AC|=|BF|+|BC|, ∴|AF|-|BF|=|BC|-|AC|=2,故点F的轨迹是以A,B为焦点,实轴长为2的双曲线的下支.又 c=7,a=1,b2=48,∴点F的轨迹方程为y2-x2 48 =1(y≤-1). 答案:A 4.有一动圆P恒过定点F(a,0)(a>0)且与y轴相交于点A、B,若△ABP为正三角形,则点P的轨迹为( )

A .直线 B .圆 C .椭圆 D .双曲线 解析:设P (x ,y ),动圆P 的半径为R ,由于△ABP 为正三角形, ∴P 到y 轴的距离d =32R ,即|x |=32 R . 而R =|PF |=x -a 2 +y 2, ∴|x |= 32 ·x -a 2 +y 2. 整理得(x +3a )2-3y 2=12a 2, 即 x +3a 2 12a 2 -y 2 4a 2=1. ∴点P 的轨迹为双曲线. 答案:D 5.已知点A (1,0)和圆C :x 2 +y 2 =4上一点R ,动点P 满足RA →=2AP → ,则点P 的轨迹方程为( ) A.? ? ???x -322+y 2=1 B.? ? ???x +322+y 2=1 C .x 2 +? ? ???y -322=1 D .x 2 +? ? ???y +322=1 解析:设P (x ,y ),R (x 0,y 0), 则有RA → =(1-x 0,-y 0),AP → =(x -1,y ). 又RA →=2AP → , ∴?? ? 1-x 0=2x -1, -y 0=2y . ∴?? ? x 0=-2x +3,y 0=-2y . 又R (x 0,y 0)在圆x 2+y 2=4上, ∴(-2x +3)2+(-2y )2=4,即? ? ???x -322+y 2=1. 答案:A 6.设A 1,A 2是椭圆x 29+y 2 4 =1的长轴两个端点,P 1,P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与 A 2P 2交点的轨迹方程为( ) A.x 29+y 24=1 B.y 29+x 24=1 C.x 29-y 2 4 =1 D.y 29-x 2 4 =1

高考数学一轮复习专题:9.8 曲线与方程(教案及同步练习)

1.曲线与方程的定义 一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系: 那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.求动点的轨迹方程的基本步骤 【知识拓展】 1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件. 2.曲线的交点与方程组的关系: (1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解; (2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点. 【思考辨析】

判断下列结论是否正确(请在括号中打“√”或“×”) (1)f (x 0,y 0)=0是点P (x 0,y 0)在曲线f (x ,y )=0上的充要条件.( √ ) (2)方程x 2+xy =x 的曲线是一个点和一条直线.( × ) (3)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (4)方程y =x 与x =y 2表示同一曲线.( × ) (5)y =kx 与x =1 k y 表示同一直线.( × ) 1.(教材改编)已知点F (14,0),直线l :x =-1 4,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线 B .椭圆 C .圆 D .抛物线 答案 D 解析 由已知|MF |=|MB |,根据抛物线的定义知, 点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线. 2.(2017·广州调研)方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B .两条射线 C .两条线段 D .一条直线和一条射线 答案 D 解析 原方程可化为? ???? 2x +3y -1=0, x -3≥0或x -3-1=0, 即2x +3y -1=0(x ≥3)或x =4, 故原方程表示的曲线是一条射线和一条直线. 3.(2016·南昌模拟)已知A (-2,0),B (1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则P 点的轨迹方程是( ) A .(x +2)2+y 2=4(y ≠0) B .(x +1)2+y 2=1(y ≠0) C .(x -2)2+y 2=4(y ≠0) D .(x -1)2+y 2=1(y ≠0) 答案 C 解析 由角的平分线性质定理得|P A |=2|PB |, 设P (x ,y ),则(x +2)2+y 2=2(x -1)2+y 2, 整理得(x -2)2+y 2=4(y ≠0),故选C.

曲线与方程教案(详细)

2.1曲线与方程 2.1.1曲线与方程2.1.2求曲线的轨迹方程 一、教学目标 (一)知识教学点 使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.(二)能力训练点 通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.(三)学科渗透点 通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础. 二、教材分析 1.重点:求动点的轨迹方程的常用技巧与方法. (解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)2.难点:作相关点法求动点的轨迹方法. (解决办法:先使学生了解相关点法的思路,再用例题进行讲解.) 教具准备:与教材内容相关的资料。 教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神. 三、教学过程 学生探究过程: (一)复习引入 大家知道,平面解析几何研究的主要问题是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.(二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R 或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM.∵k OM·k AM=-1,

相关文档
最新文档