晶闸管(可控硅)参数符号说明

晶闸管(可控硅)参数符号说明
晶闸管(可控硅)参数符号说明

晶闸管(可控硅)参数符号说明

以下参数符号说明的1~11符合1985年颁布的国家标准GB4940-85

1、断态及反向重复峰值电压VDRM和VRRM

控制极断路,在一定的温度下,允许重复加在管子上的正向电压为断态重复峰值电压,用VDRM表示。这个数值是不重复峰值电压VDSM的90%,而不重复峰值电压即为正向伏安特性曲线急剧弯曲点所决定的断态峰值电压。

反向重复峰值电压用VRRM表示,它也是在控制极开路条件下,规定一定的温度,允许重复加在管子上的反向电压,同样,VRRM为反向不重复峰值电压VRSM的90%。

“重复”是指重复率为每秒50次.持续时间不大于10ms。

VDRM和VRRM随温度的升高而降低,在测试条件中,将对温度作严格的规定。

生产厂把VDRM和VRRM中较小的一个数值作为管子的额定电压。

2、断态漏电流IDRM和反向漏电流IRRM

对应VDRM和VRRM的漏电流为断态漏电流和反向漏电流,分别用IDRM 和IRRM表示。这个数值用峰值表示。

3、额定通态电流IT

在环境温度为40℃和规定的冷却条件下,在单相工频(即50Hz)正弦半波电路中,导通角为不小于170°,负载为电阻性,当结温稳定且不超过额定结温时,管子所允许的最大通态电流为额定通态电流。这个值用平均值和有效值分别表示。

4、通态电压VTM

在规定环境温度和标准散热条件下,管子在额定通态电流IT时所对应的阳极和阴极之间的电压为通态电压,即一般称为管压降。此值用峰值表示。

这是一个很重要的多数,晶闸管导通时的正向损耗主要由IT与VTM之积决定,希望VTM越小越好。

5、维持电流IH

在室温下,控制极开路,晶闸管被触发导通后,维持导通状态所必须的最小电流。也就是说,在室温下,在控制极回路通以幅度和宽度都足够大的脉冲电流,同时在阳极和阴极之间加上电压,使管子完全开通。然后去掉控制极触发信号,缓慢减小正向电流,管子突然关断前瞬间的电流即为维持电流。

6、控制极触发电流IGT和触发电压VGT

在室温条件下,晶闸管阳极和阴极间施加6v或12v的直流电压,使管子完全开通所必须的最小控制极直流电流为控制极触发电流IGT。普通晶间管的IGT 一般为数毫安至几百毫安;高灵敏晶闸管的IGT小至数微安。

对应控制极触发电流的控制极电压称为控制极触发电压VGT。

7、浪涌电流

在规定条件下,晶闸管通以额定电流,稳定后,在工频正弦波半周期间内管子能承受的最大过载电流。同时,紧接浪涌后的半周期间应能承受规定的反向电压。浪涌电流用峰值表示,是不重复的额定值;在管子的寿命期内,浪涌次数有一定的限制。

8、断态电压临界上升率(dv/dt)

在额定结温和控制极断路条件下,使管子从截止转人导通的最低电压上升率称为断态电压临界上升率,用dv/dt表示,希望这个数值愈大愈好。50-100A晶闸管的dv/dt≥25V/μs,200A以上管子的dv/dt≥50V/μs。

9、通态电流临界上升率(di/dt)

在规定条件下,管子在控制极开通时能承受而不导致损坏的通态电流的最大上升率称为通态电流临界上升率,用di/dt表示。管子在开通瞬间产生很大的功率损耗,而且这种损耗由于导通扩展速度有限,总是集中在控制极附近的阴极区域,如果管子的di/dt耐力不够,就容易引起过热点,导致控制权永久性破坏,对大电流的管子,这个问题更为突出。

10、控制极开通时间(tgt)

当控制极加上足够的触发信号后,晶闸管并不立即导通,而是要延迟一小段时间。这延迟的一小段时间称为开通时间tgt。具体规定是控制极触发脉冲前沿的10%到阳极电压下降至10%的时间为tgt。

11、电路换向关断时间(tq)

从通态电流降至零这一瞬间起到管子开始能承受规定的断态电压瞬间为止的时间间隔称为电路换向关断时间tq。

开通时间tgt和关断时间tq决定管子的工作频率,工作频率较高的电路要选用tq小的管子(tq小,tgt会更小)。这一参数是普通晶闸管和快速晶闸管的主要区别。关断时间tq的大小除了和管子内部结构有关以外,还与应用条件有很大关系,关断前晶闸管所通电流大小、温度、关断时所加反向电压大小,重加dv/dt,反向di/dt对关断时间tq的影响:温度、重加dv/dt、正向电流、重加电压、反向di/dt增加,则关断时间增大;反向电压增加,则关断时间减小。

以下内容供参考:

1、反向不重复峰值电压VRSM:控制极开路条件下,反向伏安特性曲线急剧弯曲点所决定的反向峰值电压;

2、正向转折电压VBO:晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。

3、断态重复峰值电压VDRM:断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。

4、通态平均电流IT:通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。

5、反向击穿电压VBR:反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。

6、反向重复峰值电压VRRM:反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。此电压约为反向击穿电压减去100V后的峰值电压。

7、正向平均电压降VF:正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。

8、门极触发电压VGT:门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。

9、门极触发电流IGT:门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。

10、门极反向电压:门极反向电压是指晶闸管门极上所加的额定电压,一般不超过10V。

11、断态重复峰值电流IDR:断态重复峰值电流IDR,是指晶闸管在断态下的正向最大平均漏电电流值,一般小于100μA

12、反向重复峰值电流IRRM:反向重复峰值电流IRRM,是指晶闸管在关断状态下的反向最大漏电电流值,一般小于100μA。

晶闸管

课堂教学安排 晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP 晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G 加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K

之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。 双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

晶闸管的电路符号和图片识别

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅。它是由PNPN四层半导体构成的元件,有三个电极、阳极A、阴极K和控制极G,晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。 可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好.在调速、调光、调压、调温以及其他各种中都有它的身影. 可控硅分为单向的和双向的,符号也不同.单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极. 一、晶闸管的种类 晶闸管有多种分类方法。 (一)按关断、导通及控制方式分类 晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。 (二)按引脚和极性分类 晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。 (三)按封装形式分类 晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。 (四)按电流容量分类 晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。 (五)按关断速度分类

晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。 二:晶闸管的工作条件: 1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于关断状态。 2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。 3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。 4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。三:晶闸管的电路符号

贴片可控硅MACASOTL规格参数

双向可控硅MAC97A6 (SOT23-3L) MAC97A6(SOT23-3L)双向可控硅 n特点: l先进的平面钝化技术,进一步提高了电压稳固性和可靠性,具有通态压 降低,门极逻辑电平触发,耐电流冲击能力强,全循环交流导通,在所 有四个象限中触发,兼容正栅极触发电路,出色的可靠性和产品质量, 可直接应用IC驱动。 n用途: l广泛应用于调光、调温、调速等调压电路;微波炉、洗衣机、空调、电 风扇、饮水机、夜明灯等家电的控制电路及用于交流相控、斩波器、逆 变器和变频器等电路;阻性负载;不苛刻的电机负载;虚假触发干扰并 非首要关注点的负载;灯具调光器;电阻加热和照明负载;低成本电器。 n极限参数: 名称符号数值单位条件 重复峰值阻断电压V DRM≥600 V I DRM=20μA 通态均方根电流I T(RMS) 1 A所有导通角 通态浪涌电流I TSM 10 A t=10ms 12 A t=16.7ms 门极峰值电流I GM 1.2 A T j=125℃ 结温范围T j-40~125 ℃--- 贮存温度T stg-40~150 ℃--- n电特性(T j=25℃): 名称符号测试条件Min Max Type 单位正向断态峰值电流I RRM T j=125℃V RRM=V DRM---- 0.1 ---- mA 通态峰值电压V TM I TM=6A t=380μs---- 1.5 ---- V 门极触发电流Ⅰ-Ⅱ-Ⅲ I GT V D=12V R L =100Ω ---- 5 ---- mA Ⅳ---- 7 ---- mA 门极触发电压V GT V D=12V R L =100Ω---- 2 0.8 V 门极不触发电压V GD V D=1/2 V DRM T J=125℃0.2 ---- ---- V 断态电压临界上升率dV/dt V DM=67%V DRM Gate open Tj=110℃ 10 ---- ---- V/μs 通态电流临界上升率dI/dt I G=0.2A I T=1A d I G/dt=0.2 A/μs50 A/μs 维持电流I H V D=24V I GT=50m A≤25 mA SZJBL 1

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

晶闸管的电路符号和图片识别

晶闸管的电路符号和图 片识别 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅。它是由PNPN四层半导体构成的元件,有三个电极、阳极A、阴极K和控制极G,晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好.在调速、调光、调压、调温以及其他各种中都有它的身影. 可控硅分为单向的和双向的,符号也不同.单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极. 一、晶闸管的种类 晶闸管有多种分类方法。 (一)按关断、导通及控制方式分类 晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。 (二)按引脚和极性分类 晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。 (三)按封装形式分类 晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。 (四)按电流容量分类 晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。 (五)按关断速度分类

晶闸管的结构以及工作基本知识

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

可控硅参数列表

March 2008 Rev. 21/9 AN2703 Application note Parameter list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each datasheet, two classes of parameters are available:■ Absolute ratings, corresponding to critical parameters, not to be exceeded for safe operation. If the absolute rating is exceeded, the component may be damaged.■Electrical, thermal and static characteristics, defining limits on product https://www.360docs.net/doc/d68619909.html,

Parameters AN2703 1 Parameters 2/9

AN2703Parameters 3/9I GM Peak gate current This is the maximum peak current allowed through gate and cathode, defined for a 20 μs pulse duration. If the absolute rating is exceeded, the component may be damaged. P G(AV)Average gate power dissipation This is the maximum average power that can be dissipated by the gate junction. If the absolute rating is exceeded, the component may be damaged. V RGM Peak reverse gate voltage This parameter is only defined for SCRs. It is the maximum reverse voltage than can be applied across gate and cathode terminals, without risk of destruction of the gate to cathode junction. V GM Peak positive gate voltage (with respect to the pin "COM") This parameter is only defined for ACSs. It is the maximum voltage than can be applied across gate and COM terminals without risk of destruction of the gate to COM junction.Table 2.Electrical characteristics parameters Parameter Name and description P Average power dissipation This is the average power dissipated by current conduction through the device for one full cycle operation. I GT Triggering gate current This is the current to apply between gate and cathode (or gate and electrode A1 for TRIAC) to turn-on the device. This parameter defines the sensitivity of the component. For a SCR, the gate current has always to be sunk by the gate. For a TRIAC, I GT is define for 3 or 4 quadrants corresponding to the different polarities of A2, A1 and gate: - Q1: I g sunk by the gate, V A2-A1 > 0 - Q2: I g sourced by the gate, V A2-A1 > 0 - Q3: I g sourced by the gate, V A2-A1 < 0 - Q4: I g sunk by the gate, V A2-A1 < 0 The I GT value is higher in Q4 quadrant. For ACS types, I GT is defined in two quadrants (Q2 and Q3). V GT Triggering gate voltage This is the voltage to apply across gate and cathode (or gate and electrode A1 for TRIAC) to reach the IGT current and then to trigger the device. V GD Non-triggering gate voltage V GD is the maximum voltage which can be applied across gate and cathode (or gate and electrode A1 for TRIAC) without causing undesired turn-on. This parameter is specified, for the worst case scenario, at the maximum junction temperature.Table 1.Absolute ratings parameters (continued) Parameter Name and description

场效应管的分类和作用

场效应管的分类和作用分别是什么? 根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 概念: 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件. 特点: 具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者. 场效应管的作用 1、场效应管可应用于放大。由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。 2、场效应管很高的输入阻抗非常适合作阻抗变换。常用于多级放大器的输入级作阻抗变换。 3、场效应管可以用作可变电阻。 4、场效应管可以方便地用作恒流源。 5、场效应管可以用作电子开关。 场效应管的测试 1、结型场效应管的管脚识别: 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。 2、判定栅极

用万用表黑表笔碰触管子的一个电极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管,黑表笔接的也是栅极。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。源极与漏极间的电阻约为几千欧。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。 3、估测场效应管的放大能力将万用表拨到R×100档,红表笔接源极S,黑表笔接漏极D,相当于给场效应管加上1.5V的电源电压。这时表针指示出的是D-S极间电阻值。然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。 由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。本方法也适用于测MOS管。为了保护MOS 场效应管,必须用手握住螺钉旋具绝缘柄,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。 MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。 2.场效应管的分类: 场效应管分结型、绝缘栅型(MOS)两大类 按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种. 按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类. 3.场效应管的主要参数:

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

场效应管参数解释(精)

场效应管 根据三极管的原理开发出的新一代放大元件,有 3个极性,栅极, 漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件 -------------------------------------------------------------- 1. 概念 : 场效应晶体管(Field Effect Transistor缩写 (FET简称场效应管 . 由多数载流子参与导电 , 也称为单极型晶体管 . 它属于电压控制型半导体器件 . 特点 : 具有输入电阻高(100000000~1000000000Ω、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点 , 现已成为双极型晶体管和功率晶体管的强大竞争者 . 作用 : 场效应管可应用于放大 . 由于场效应管放大器的输入阻抗很高 , 因此耦合电容可以容量较小 , 不必使用电解电容器 . 场效应管可以用作电子开关 .

场效应管很高的输入阻抗非常适合作阻抗变换 . 常用于多级放大器的输入级作阻抗变换 . 场效应管可以用作可变电阻 . 场效应管可以方便地用作恒流源 . 2. 场效应管的分类 : 场效应管分结型、绝缘栅型 (MOS两大类 按沟道材料 :结型和绝缘栅型各分 N 沟道和 P 沟道两种 . 按导电方式 :耗尽型与增强型 , 结型场效应管均为耗尽型 , 绝缘栅型场效应管既有耗尽型的 , 也有增强型的。 场效应晶体管可分为结场效应晶体管和 MOS 场效应晶体管 , 而 MOS 场效应晶体管又分为 N 沟耗尽型和增强型 ;P 沟耗尽型和增强型四大类 . 见下图 : 3. 场效应管的主要参数 : Idss —饱和漏源电流 . 是指结型或耗尽型绝缘栅场效应管中 , 栅极电压 UGS=0时的漏源电流 . Up —夹断电压 . 是指结型或耗尽型绝缘栅场效应管中 , 使漏源间刚截止时的栅极电压 . Ut —开启电压 . 是指增强型绝缘栅场效管中 , 使漏源间刚导通时的栅极电压 . gM —跨导 . 是表示栅源电压 UGS —对漏极电流 ID 的控制能力 , 即漏极电流ID 变化量与栅源电压 UGS 变化量的比值 .gM 是衡量场效应管放大能力的重要参数 . BVDS —漏源击穿电压 . 是指栅源电压 UGS 一定时 , 场效应管正常工作所能承受的最大漏源电压 . 这是一项极限参数 , 加在场效应管上的工作电压必须小于BVDS.

可控硅的工作原理带图

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。

晶闸管的结构及性能特点

晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或

阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K 之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。

双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

晶闸管参数名词解释

晶闸管参数名词解释 1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包 括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态 反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定V RSM=1.11V RRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3.通态方均根电流:通态电流在一个周期内的方均根值。 4.通态平均电流:通态电流在一个周期内的平均值。 5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温 的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态 电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7.I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。 通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。 8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。 1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S; d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。 9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。 10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。 1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)的结构和工作原理 1. JFET的结构和符号 N沟道JFET P沟道JFET 2. 工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0,在D-S间加一个正电压——V DS>0. 栅极—沟道间的PN结反偏,栅极电流i G≈0,栅极输入电阻很高(高达107Ω以上)。 N沟道中的多子(电子)由S向D运动,形成漏极电流i D。i D的大小取决于V DS的大小和沟道电阻。改变V GS可改变沟道电阻,从而改变i D。

主要讨论V GS对i D的控制作用以及V DS对i D的影响。 ①栅源电压V GS对i D的控制作用 当V GS<0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D≈0。这时所对应的栅源电压V GS称为夹断电压V P。 ②漏源电压V DS对i D的影响 在栅源间加电压V GS< 0 ,漏源间加正电压V DS > 0。则因漏端耗尽层所受的反偏电压为V GD=V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V GS=-2V, V DS =3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。 当V DS增加到使V GD=V GS-V DS =V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。预夹断后I D基本不随V DS增大而变化。

可控硅的符号

可控硅的符号、性能和参数介绍一、可控硅符号与性能介绍 可控硅符号: 可控硅也称作晶闸管,它是由PNPN四层半导体构成的元件,有三个电极,阳极A,阴极K和控制极G。 可控硅在电路中能够实现交流电的无触点控制,以小电流控制大电流,并且不象继电器那样控制时有火花产生,而且动作快、寿命长、可靠性好。在调速、调光、调压、调温以及其他各种控制电路中都有它的身影。 可控硅分为单向的和双向的,符号也不同。单向可控硅有三个PN结,由最外层的P极和N极引出两个电极,分别称为阳极和阴极,由中间的P极引出一个控制极。 单向可控硅有其独特的特性:当阳极接反向电压,或者阳极接正向电压但控制极不加电压时,它都不导通,而阳极和控制极同时接正向电压时,它就会变成导通状态。一旦导通,控制电压便失去了对它的控制作用,不论有没有控制电压,也不论控制电压的极性如何,将一直处于导通状态。要想关断,只有把阳极电压降低到某一临界值或者反向。 双向可控硅的引脚多数是按T1、T2、G的顺序从左至右排列(电极引脚向下,面对有字符的一面时)。加在控制极G上的触发脉冲的大小或时间改变时,就能改变其导通电流的大小。 与单向可控硅的区别是,双向可控硅G极上触发脉冲的极性改变时,其导通方向就随着极性的变化而改变,从而能够控制交流电负载。而单向可控硅经触发后 只能从阳极向阴极单方向导通,所以可控硅有单双向之分。 电子制作中常用可控硅,单向的有MCR-100等,双向的有TLC336等。 这是TLC336的样子: 二、向强电冲击的先锋—可控硅 可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件。实际上,可控硅的功用不仅是整流,它还可以用作无触点开关以快速接通或切断电路,实现将直流电变成交流电的逆变,将一种频率的交流电变

相关文档
最新文档