中考试题几何图形中的动点与最值问题(1)

中考试题几何图形中的动点与最值问题(1)

几何图形中的动点与最值问题

1.如图,已知△ABC为等腰直角三角形,AC=BC=8,点D在BC上,CD=2,E 为AB边上的动点,则△CDE周长的最小值是________.

第1题图

【答案】12

2.(2014东营)在⊙O中,AB是⊙O的直径,AB=8 cm,

==,M是AB

AC CD BD

上一动点,CM+DM的最小值是cm.

第2题图【答案】8

1

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD . (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+. (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式是_______. 2.如图,P 是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于点Q ,已知AD=6cm,AB=8cm ,设AP=x(cm),BQ=y(cm). (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)是否存在点P ,使BQ=2AP 。若存在,求出AP 的长;若不存在,说明理由。 3.如图,矩形EFGH 内接与△ABC ,AD ⊥BC 与点D ,交EH 于点M ,BC=10cm , AD=8cm , 设EF=x cm ,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x ,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③ x 取何值时,矩形EFGH 的面积最大。 A B D A B C D E F M H G

5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l )如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l )中y 与x 之间的函数关系式还成立?试说明理由. 6.已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2. (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积(用含a 的代数式表示); D C A B E F D C A B E F H G

《几何图形初步》单元教学计划

《几何图形初步》单元计划 本章教材分析: 本章是从我们熟悉的生活中的物体开始,主要介绍了多姿多彩以及最基本的图形----点、线、角等,并在自主探究的过程中结合丰富的实例,探索两点确定一条直线和两点之间线段最短的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较和补角、余角等内容,本章出现的最基本的几何概念是使我们认识复杂图形的基础,由实物形状抽象出几何图形,或由几何图形想出实物形状,进行立体图形与平面图形的相互转化,培养我们的空间想象能力和抽象的思维能力。 教学内容:1、几何图形; 2、直线、射线、线段、3、角 教学目标: 知识与技能: 认识常见的几何图形,并能用自己的语言描述常见几何图形的特征。 过程与方法: 1.经历从现实世界中抽象几何图形的过程,通过对比,概括出几何研究的对象 2.在实物与几何图形之间建立对应关系,在复习小学学过的平面图形的基础上,建立几何图形的概念,发展空间观念情感态度价值观:体验数学学习的乐趣,提高数学应用意识。

情感态度价值观: 体验数学学习的乐趣,提高数学应用意识。 教学重点: 通过观察,讨论,思考和实践等活动,让学生会辨识几何体。教学难点: 从具体实物中抽象出几何体的概念 教具学具: 实物模型等 教学方法 自主探究、实物展示 课时安排: 4.1 几何图形-------------------------------------约4课时4.2直线、射线、线段------------------------------约3课时4.3角--------------------------------------------约5课时4.4课题学习--------------------------------------约2课时小结----------------------------------------------约2课时

几何图形中的最值问题

几何图形中的最值问题 引言:最值问题可以分为最大值与最小值。在初中包含三个方面的问题: 1、函数:①二次函数有最大值与最小值;②一次函数中有取值范围时有最大值与最小值。 2、不等式: ①如x ≤7,最大值就是7;②如x ≥5,最小值就是5、 3、几何图形: ①两点之间线段线段最短。②直线外一点向直线上任一点连线中垂线段最短,③在三角形中,两边之与大于第三边,两边之差小于第三边。 一、最小值问题 例1、 如图4,已知正方形的边长就是8,M 在DC 上,且DM=2,N 为线段AC 上的一动点,求DN+MN 的最小值。 解: 作点D 关于AC 的对称点D / ,则点D / 与点B 重合,连BM,交AC 于N,连DN,则DN+MN 最短,且DN+MN=BM 。 ∵CD=BC=8,DM=2, ∴MC=6, 在Rt △BCM 中,BM= 682 2 =10, ∴DN+MN 的最小值就是10。 例2,已知,MN 就是⊙O 直径上,MN=2,点A 在⊙O 上,∠AMN=300 ,B 就 是弧AN 的中点,P 就是MN 上的一动点,则PA+PB 的最小值就是 解:作A 点关于MN 的对称点A / ,连A / B,交MN 于P,则PA+PB 最短。 连OB,OA / , ∵∠AMN=300,B 就是弧AN 的中点, ∴∠BOA / =300, 根据对称性可知 ∴∠NOA / =600 , ∴∠MOA / =900 , 在Rt △A / BO 中,OA / =OB=1, ∴A / B=2 即PA+PB=2 图1 L B' C B A 图4 N C D M P O N M A A / E A M O P N B

2018届中考数学一轮复习讲义 第41讲几何图形折叠问题

2018届中考数学一轮复习讲义第41讲几何图形的折叠问题【知识巩固】 折叠型问题通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。下面我们一起来探究这种题型的解法。折叠的规律是:折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。 【典例解析】 典例一、三角形中的折叠 (2017湖北襄阳)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD 的长为. 【考点】PB:翻折变换(折叠问题);KQ:勾股定理. 【分析】根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=AB=5,再判定△CDF∽△CFA,得到CF2=CD×CA,进而得出CD的长.【解答】解:由折叠可得,∠DCE=∠DFE=90°, ∴D,C,E,F四点共圆, ∴∠CDE=∠CFE=∠B, 又∵CE=FE, ∴∠CFE=∠FCE, ∴∠B=∠FCE, ∴CF=BF, 同理可得,CF=AF, ∴AF=BF,即F是AB的中点,

∴Rt△ABC中,CF=AB=5, 由D,C,E,F四点共圆,可得∠DFC=∠DEC, 由∠CDE=∠B,可得∠DEC=∠A, ∴∠DFC=∠A, 又∵∠DCF=∠FCA, ∴△CDF∽△CFA, ∴CF2=CD×CA,即52=CD×8, ∴CD=, 故答案为:. 【变式训练】 如图,已知△ABC中,AC=BC,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在B'处,DB'、EB'分别交AC于点F、G,若∠ADF=66°,则∠EGC的度数为66°. 【考点】翻折变换(折叠问题);等腰三角形的性质. 【分析】由翻折变换的性质和等腰三角形的性质得出∠B′=∠B=∠A,再由三角形内角和定理以及对顶角相等得出∠B′GF=∠ADF即可. 【解答】解:由翻折变换的性质得:∠B′=∠B, ∵AC=BC, ∴∠A=∠B, ∴∠A=∠B′, ∵∠A+∠ADF+∠AFD=180°,∠B′+∠B′GF+∠B′FG=180°,∠AFD=∠B′FG,

最新中考数学复习专题《几何图形中的动点问题》

运动型问题 第17课时 几何图形中的动点问题 (58分) 一、选择题(每题6分,共18分) 1.[·安徽]如图6-1-1,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △ PAB =S 矩形ABCD ,则点P 到A ,B 两点距离之和PA +PB 的最小值为( D )13A. B. C.5 D. 2934241 图6-1-1 第1题答图 【解析】 令点P 到AB 的距离为h ,由S △PAB =S 矩形ABCD ,得×5h =×5131213 ×3,解得h =2,动点P 在EF 上运动,如答图,作点B 关于EF 的对称点B ′,BB ′=4,连结AB ′交EF 于点P ,此时PA +PB 最小,根据勾股定理求得最小值为=,选D. 52+42412.如图6-1-2,在矩形ABCD 中,AB =2a ,AD =a ,矩 形边上一动点P 沿A →B →C →D 的路径移动.设点P 经 过的路径长为x ,PD 2=y ,则下列能大致反映y 与x 的 函数关系的图象是 ( D )【解析】 ①当0≤x ≤2a 时,∵PD 2=AD 2+AP 2,AP = x ,∴y =x 2+a 2;② 图6-1-2

当2a <x ≤3a 时,CP =2a +a -x =3a -x ,∵PD 2=CD 2+CP 2,∴y =(3a -x )2+(2a )2=x 2-6ax +13a 2;③当3a <x ≤5a 时,PD =2a +a +2a -x =5a -x , ∴PD 2=y =(5a -x )2,y =∴能大致反映y {x 2+a 2(0≤x ≤2a ),x 2-6ax +13a 2(2a

中考数学重难点专题讲座第八讲动态几何与函数问题

中考数学重难点专题讲座 第八讲 动态几何与函数问题 【前言】 在第三讲中我们已经研究了动态几何问题的一般思路,但是那时候没有对其中夹杂的函数问题展开来分析。整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。但是这两种侧重也没有很严格的分野,很多题型都很类似。所以相比昨天第七讲的问题,这一讲将重点放在了对函数,方程的应用上。其中通过图中已给几何图形构建函数是重点考察对象。不过从近年北京中考的趋势上看,要求所构建的函数为很复杂的二次函数可能性略小,大多是一个较为简单的函数式,体现了中考数学的考试说明当中“减少复杂性”“增大灵活性”的主体思想。但是这也不能放松,所以笔者也选择了一些较有代表性的复杂计算题仅供参考。 【例1】 如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E. (1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积. (2)当24t <<时,求S 关于t 的函数解析式. 【思路分析】本题虽然不难,但是非常考验考生对于函数图像的理解。很多考生看到图二

的函数图像没有数学感觉,反应不上来那个M 点是何含义,于是无从下手。其实M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。 【解】 (1)由图(2)知,M 点的坐标是(2,8) ∴由此判断:24AB OA ==, ; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为: ()()112441222 AB OC OA +?=+?=..... (3分) (2)当24t <<时, 阴影部分的面积=直角梯形OABC 的面积-ODE ?的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系) ∴1122S OD OE =-? ∵142 OD OD t OE ==-, ∴()24OE t =- . ∴()()()21122441242 S t t t =-?-?-=-- 284S t t =-+-. 【例2】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)k y k x =>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;

41几何图形导学案.docx

新晃思源实验学校导学案 备课日期 :—年—月—日 上课时间:—年—月—H 总课时 _____________________ 授课课题 4.1几何图形 主备者 吴燕 辅备者 姚尚典 杨 婷 张子燕 教学目标 1、 在现实的情景中认识平面图形与立体图形; 2、 掌握几何体的基本单元点、线、面、体之间的区别和联系; 3、 能从具体物体中抽象出立体图形。 教学重点 能结合生活中的图形,正确认识立体图形和平面图形。 教学难点 如何从现实屮的图形抽象出立体图形和平面图形。 一、课堂导入: 现实世界充满了多姿多彩的图形,我们在小学阶段认识了那些图形?…(板书课题) 二、新课学习: (一)阅读思考:阅读课本P112-114:思考并尝试完成下列练习: 要点感知1 :长方形、正方形、圆柱、球、点、线段、三角形、四边形等他们都是 从各式各样的物体外形屮抽象出来的图形,这种图形统称为 __________ 图形。 练习1: 数学课本的外形可以抽象出的几何图形是 _______________ 。 要点感知2 :有些几何图形的各个部分不都在同一平面内,它们是 __________________ , 如 ________________________ 等;有些图形各个部分在同一个平面内,是 _____________ 如 _______________________________ 等。 导 学 过 程 及 内 容 要点感知3:从不同方向看立体图形,往往会得到不同形状的 ____________________ , 有些立体图形由一些 _____________________ 围成的,将它们的表面适当剪开,可以展开 成 ___________________ o 练习3:展开下列长方体,分别得到什么平面图形? ① 练习:

中考二次函数与几何图形动点问题--答案

二次函数与几何图形 模式1:平行四边形 分类标准:讨论对角线 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成平行四边形,则可分成以下几种情况 (1)当边AB 是对角线时,那么有BC AP // (2)当边AC 是对角线时,那么有CP AB // (3)当边BC 是对角线时,那么有BP AC // 1、本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点. (1)求抛物线的解析式; (2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值; (3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

2、如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D . (1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴; (2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m . ①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.

模式2:梯形 分类标准:讨论上下底 例如:请在抛物线上找一点p 使得P C B A 、、、四点构成梯形,则可分成以下几种情况 (1)当边AB 是底时,那么有PC AB // (2)当边AC 是底时,那么有BP AC // (3)当边BC 是底时,那么有AP BC // 3、已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为(4,0),点C 的坐标为)20(-,,直线x y 3 2 -=与边BC 相交于点D . (1)求点D 的坐标; (2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式; (3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.

几何图形中的动态问题

几何图形中的动态问题 ★1.如图,在矩形ABCD中,点E在BC边上,动点P 以2厘米/秒的速度从点A出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从点A出发经x(x>0)秒后,△ABP的面积是y. (1)若AB=8cm,BE=6cm,当点P在线段AE上时,求y关于x的函数表达式; (2)已知点E是BC的中点,当点P在线段ED上时,y=12 5x;当点P在线段AD上时,y=32-4x.求y关于x的函数表达式. 第1题图 解:(1)∵四边形ABCD是矩形,∴∠ABE=90°, 又∵AB=8cm,BE=6cm,

∴AE=AB2+BE2=82+62=10厘米,如解图①,过点B作BH⊥AE于点H, 第1题解图① ∵S△ABE=1 2AE·BH=1 2AB·BE, ∴BH=24 5cm,又∵AP=2x, ∴y=1 2AP·BH=24 5x(0

∴AE =DE , ∵y =12 5x (P 在ED 上), y =32-4x (P 在AD 上), 当点P 运动至点D 时,可联立得,?????y =125x y =32-4x , 解得x =5, ∴AE +ED =2x =10, ∴AE =ED =5cm , 当点P 运动一周回到点A 时,y =0, ∴y =32-4x =0, 解得x =8, ∴AE +DE +AD =16, ∴AD =BC =6cm ,∴BE =3cm , 在Rt △ABE 中, AB = AE 2-BE 2=4cm , 如解图②,过点B 作BN ⊥AE 于N ,则BN =12 5cm ,

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

题型四_几何图形的折叠与动点问题

题型四几何图形的折叠与动点问题 试题演练 1. 如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折 叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原,则x的取值围是__________. 2. 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB 上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF长的最小值是________. 3. (’15模拟)如图,在边长为4的正方形ABCD中,M为BC的中点,E、F分别为AB、CD 边上的动点.在点E、F运动的过程中始终保持△EMF为直角三角形,其中∠EMF=90°. 则直角三角形的斜边EF的取值围是________. 4. 如图,在边长为2的菱形ABCD中,∠A=60°,点P为射线AB上一个动点,过点P作 PE⊥AB交射线AD于点E,将△AEP沿直线PE折叠,点A的对应点为F,连接FD、FC,若△FDC为直角三角形时,AP的长为________.

5. 如图,正方形ABCD的边长为2,∠DAC的平分线AE交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值为________. 6. 如图,在矩形ABCD中,AD=3,AB=4,点E为DC上一个动点,把△ADE沿AE折叠,当 点D的对应点D′落在矩形的对角线上时,DE的长为________. 7. 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,对应点为点E, 若BG=10,则折痕FG的长为________. 8. 如图,在Rt△ABC中,∠ABC=90°,AC=10,BC=8,AD是∠BAC的平分线,点E是斜 边AC上的一点,且AE=AB,沿△DEC的一个角平分线折叠,使点C落在DE所在直线上,则折痕的长度为________. 9. (’15模拟)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点E是AB边上一动点, 过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的点F处,当△BCF为等腰三角形时,AE的长为________.

初中数学专题04几何最值存在性问题(解析版)

专题四几何最值的存在性问题 【考题研究】 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。 【解题攻略】 最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型. 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题. 【解题类型及其思路】 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。 【典例指引】 类型一【确定线段(或线段的和,差)的最值或确定点的坐标】

中考数学知识点专题分类复习:第41讲几何图形折叠问题

中考数学知识点专题分类复习:第41讲几何图形的折叠问题【知识巩固】 折叠型问题通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。下面我们一起来探究这种题型的解法。折叠的规律是:折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。 【典例解析】 典例一、三角形中的折叠 (2017湖北襄阳)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD 的长为. 【考点】PB:翻折变换(折叠问题);KQ:勾股定理. 【分析】根据D,C,E,F四点共圆,可得∠CDE=∠CFE=∠B,再根据CE=FE,可得∠CFE=∠FCE,进而根据∠B=∠FCE,得出CF=BF,同理可得CF=AF,由此可得F是AB的中点,求得CF=AB=5,再判定△CDF∽△CFA,得到CF2=CD×CA,进而得出CD的长.【解答】解:由折叠可得,∠DCE=∠DFE=90°, ∴D,C,E,F四点共圆, ∴∠CDE=∠CFE=∠B, 又∵CE=FE, ∴∠CFE=∠FCE, ∴∠B=∠FCE, ∴CF=BF, 同理可得,CF=AF, ∴AF=BF,即F是AB的中点,

∴Rt△ABC中,CF=AB=5, 由D,C,E,F四点共圆,可得∠DFC=∠DEC, 由∠CDE=∠B,可得∠DEC=∠A, ∴∠DFC=∠A, 又∵∠DCF=∠FCA, ∴△CDF∽△CFA, ∴CF2=CD×CA,即52=CD×8, ∴CD=, 故答案为:. 【变式训练】 如图,已知△ABC中,AC=BC,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在B'处,DB'、EB'分别交AC于点F、G,若∠ADF=66°,则∠EGC的度数为66°. 【考点】翻折变换(折叠问题);等腰三角形的性质. 【分析】由翻折变换的性质和等腰三角形的性质得出∠B′=∠B=∠A,再由三角形内角和定理以及对顶角相等得出∠B′GF=∠ADF即可. 【解答】解:由翻折变换的性质得:∠B′=∠B, ∵AC=BC, ∴∠A=∠B, ∴∠A=∠B′, ∵∠A+∠ADF+∠AFD=180°,∠B′+∠B′GF+∠B′FG=180°,∠AFD=∠B′FG,

几何图形中的函数问题

D C B A 几何图形中的函数问题 1如图,在梯形ABCD 中,AB ∥CD 、 (1)如果∠A =?50,∠B =?80,求证:AB CD BC =+、 (2)如果AB CD BC =+,设∠A =?x ,∠B =?y ,那么y 关于x 的函数关系式就是_______、 2、如图,P 就是矩形ABCD 的边CD 上的一个动点,且P 不与C 、D 重合,BQ ⊥AP 于 点Q,已知AD=6cm,AB=8cm,设AP=x(cm),BQ=y(cm)、 (1)求y 与x 之间的函数解析式并求自变量x 的取值范围; (2)就是否存在点P,使BQ=2AP 。若存在,求出AP 的长;若不存在, 说明理由。 3、如图,矩形EFGH 内接与△ABC,AD ⊥BC 与点D,交EH 于点M,BC=10cm, AD=8cm, 设EF=x cm,EH=y cm ,矩形EFGH 的面积为S cm2, ①分别求出y 与x,及S 与x 的函数关系式,写出x 的取值范围; ②若矩形EFGH 为正方形,求正方形的边长; ③x 取何值时,矩形EFGH 的面积最大。 5.如图,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=x, CE=y (l)如果∠BAC=30°,∠DAE=l05°,试确定y 与x 之间的函数关系式; (2)如果∠BAC=α,∠DAE=β,当α, β满足怎样的关系时,(l)中y 与x 之间的函数关系式还成立?试说明理由. 6、已知:在矩形ABCD 中,AB =10,BC =12,四边形EFGH 的三个顶点E 、F 、H 分别在 矩形ABCD 边AB 、BC 、DA 上,AE =2、 (1)如图①,当四边形EFGH 为正方形时,求△GFC 的面积;(5分) (2)如图②,当四边形EFGH 为菱形,且BF = a 时,求△GFC 的面积 (用含a 的 A B C D P Q A B C D E F M H G

人教版七年级数学上册第四章《几何图形》初步小结与复习教案

几何图形初步小结与复习教案 教学目标: 1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章全部知识; 2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识; 教学重点: 理解本章的知识结构,掌握本章的全部定理和公理; 教学难点: 理解本章的数学思想方法. 一、本章的知识结构框图 二. 知识点梳理 (一)几何图形 1.几何图形:平面图形,三角形、四边形、圆等. 立体图形,棱柱、棱锥、圆柱、圆锥、球等. 2. 立体图形的平面展开图:三视图 3. 点、线、面、体: 点:线和线相交的地方是点,它是几何图形最基本的图形. 线:面和面相交的地方是线,分为直线和曲线. 面:包围着体的是面,分为平面和曲面. 体:几何体也简称体. 点动成线,线动成面,面动成体. (二)直线、射线、线段 1、基本概念 直线射线线段 图形 端点个数无一个两个 表示法 直线a 直线AB (BA) 射线AB 线段a 线段AB(BA) 作法叙述作直线AB; 作直线a 作射线AB 作线段a 作线段AB

连接AB 延长叙述不能延长反向延长射线AB 延长线段AB; 反向延长线段BA 2、直线的性质 经过两点有一条直线,并且只有一条直线. 简单地:两点确定一条直线. 3、画一条线段等于已知线段 (1)度量法(2)用尺规作图法 4、线段的大小比较方法 (1)度量法(2)叠合法 5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点. 图形: C B A 符号:若点C是线段AB的中点,则AC=BC=1 2 AB,AB=2AC=2BC. 6、线段的性质 两点的所有连线中,线段最短.简称:两点之间,线段最短. 7、两点的距离 连接两点的线段长度叫做两点的距离. 8、点与直线的位置关系 (1)点在直线上(2)点在直线外. (三)角 1、角:由公共端点的两条射线所组成的图形叫做角. 2、角的表示法(四种): 3、角的度量单位及换算 4、角的分类 5、角的比较方法 (1)度量法(2)叠合法 6、角的和、差、倍、分及其近似值 7、画一个角等于已知角 (1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. (2)借助量角器能画出给定度数的角. (3)用尺规作图法. 8、角的平线线 定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形:

最全初中数学几何动点问题专题分类归纳汇总训练

最全初中数学几何动点问题专题分类归纳汇总 近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题. 最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴). 我们知道“对称、平移、旋转” 是三种保形变换。通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。 数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。 (1)去伪存真。刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。 (2)科学选择。捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。 (3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。 (4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

中考数学专题训练—几何图形动点问题分类

中考数学专题训练—几何图形动点问题分类 类型一 圆的动点问题 1.如图,在平面直角坐标系中,直线y =-x +3与x 轴、y 轴分别交于 3 4A 、B 两点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线; (2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为点M ,若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围); (3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切,若存在,请直接写出此时点C 的坐标,若不存在,请说明理由. 第1题图 (1)证明:如解图,连接QP ,

∵y =-x +3交坐标轴于A ,B 两点, 3 4∴A (4,0),B (0,3), ∴OA =4,OB =3,AB =22OB OA =5,∵AQ =5t ,AP =4t ,在△APQ 与△AOB 中,==t ,==t ,AQ AB 5t 5AP AO 4t 4∴ =,AQ AB AP AO 又∵∠PAQ =∠OAB ,∴△APQ ∽△AOB ,∴∠APQ =∠AOB =90°,又∵PQ 为⊙Q 的半径,∴AB 为⊙Q 的切线; 第1题解图①

(2)解:①当直线CM 在⊙Q 的左侧与⊙Q 相切时,如解图①,连接DQ ,∵AP ⊥QP ,AP =4t ,AQ =5t ,∴PQ =3t , ∴易得四边形DQPM 为正方形,∴MP =DQ =QP =3t ,∴cos ∠BAO ===, MA AC PA QA 4 5又∵MA =MP +PA =3t +4t =7t ,AC =AO -CO =4-m ,∴ =,∴m ==-t +4;7t 4-m 4516-35t 4354 ②当直线CM 在⊙Q 的右侧与⊙O 相切时,如解图②,连接DQ ,PQ ,由①易得MA =PA -PM =4t -3t =t , 第1题解图② AC =4-m ,∴=, t 4-m 45∴m =-t +4; 5 4

几何中的函数问题(一)

几何中的函数问题 金汇学校初三数学备课组 教学目标: 以四边形为载体探究几何图形中两个变量的数量关系,了解、掌握在几何图形背景中建立函数解析式常见的方法;研究几何图形的性质,沟通函数与几何的关系,体验函数在几何图形中的应用;进一步感悟和运用数形结合思想、分类讨论思想、方程思想解决综合问题。 教学重点与难点: 探求几何图形中两个变量之间的函数关系,寻找解题规律,并正确写出函数定义域。 教学过程: 问题1:已知正方形ABCD 中,点P 在对角线BD 上,联结PC ,过点P 作PE ⊥PC ,交AB 于点E ,如图1所示。 求证:PE=PC . (学生独立思考并解答,让学生体会随着点P 的运动,变量PE 、 PC 之间的关系) 问题2:如果把条件中的正方形改为梯形ABCD ,其中AD ∥BC , ∠ABC = 90,并设AD =3,AB =4,BC =6,(如图)若将一个直角顶点P 放在对角线BD 上移动,一条直角边过点C ,另一条直角边与腰AB (或AB 思考:图中哪些量在变化? 探究一:当Q 在AB 的上 时试探究PQ 、PC 之间有怎样的数量关系,并证明你的结论; (说明:以问题(1)为铺垫,从几何图形入 手,根据几何图形的特点,运用几何图形的有关 性质,来找到两个变量PQ 、PC 之间的关系。) 探究二、在图2中,联结AP ,且点Q 在线段AB 上时,设点B Q 、之间的距离为x , APQ PBC S y S △△,其中APQ S △表 示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函 数解析式,并写出函数定义域; 说明:(1)解题的关键是用含x 的代数式表示出相关的线段,利 图1 D C B A E P 。 O

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

相关文档
最新文档