停车场 数学建模

停车场 数学建模
停车场 数学建模

停车场泊车位模型

摘要

现如今随着机动车辆的增加,车辆停放困难的问题逐渐加重,我们现在就来讨论New England的一个镇上的某停车场为场景的数学模型。

对单个停车位进行分析得出车位最佳角度,然后对整个停车区域进行规划得出车位布局,再用模糊评判来进行停车位效度评价,比较好的解决了问题。

在对停车场泊车位优化设计的模型中,我们考虑一种把车间距空间并入车辆所在的空间的方式,形成一个矩形,因其可以在空间无间隙密铺从而简化分析过程。通过分析单个车辆进入泊车位的车辆状态得到车辆的最小转弯半径,再通过非整数规划得到单个车位最佳设计角度,然后拓展到整个规划区域,最后得出停车场泊车位的整个规划,最终的设计方案总共能够提供98个泊车位,空间时间利用效率较高。

对停车场的车位效度评价,采用模糊评价模型,从停车场的安全性、便捷性和效率性三个方面来建立效度评价指标体系,得到三个一级指标,再从进出停车场、进出停车位和停车场内行车等方面考虑建立二级指标,得出比较全面的效度评价指标体系,最后再根据指标体系用层次分析法和模糊评价来进行车位效度评价。

关键词:层次分析模糊评价转弯半径停车角度

1、问题的叙述

在New England的一个镇上,有一位于街角处面积100 200平方英尺的停车场,场主请你代为设计停车车位的安排方式,即设计在场地上划线的方案。

容易理解,如果将汽车按照与停车线构成直角的方向,一辆紧挨一辆地排列成行,则可以在停车场内塞进最大数量的汽车,但是对于那些缺乏经验的司机来说,按照这种方式停靠车辆是有困难的,它可能造成昂贵的保险费用支出。为了减少因停车造成意外损失的可能性,场主可能不得不雇佣一些技术熟练的司机专门停车;另一方面,如果从通道进入停车位有一个足够大的转弯半径,那么,看来大多数的司机都可以毫无困难地一次停车到位。当然通道越宽,场内所容纳的车辆数目也越少,这将使得场主减少收入。

2、问题分析

一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一

定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”,而通道越宽越多,就会使得容纳的车辆数越少。所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。通过对单个停车位进行分析,得到每辆车占据的停车场面积函数,由车辆所占的停车位面积和所占通道面积两部分组成,面积函数可以化为角度的一次函数,再对面积函数进行数学求解可以到车位最佳设计角度。把单个车位的设计模型拓展开到整个规划区域,排列得到规划区域的车位设计。

对停车场的效度评价,评价一个停车场停车位设计的好坏,还与整个停车场有关。对一个停车场的评价,首先考虑到停车是否安全,包括进出停车场行车过程的安全程度和停车安全程度,这里主要考虑停车过程的安全程度。其次,要考虑到停车场的效率,如果停车场空间利用率低,则不能充分利用停车场的资源,这样停车场的利用率肯定会比较低,效度评价也会不好,同样,如果进入停车场泊车需要等待很长时间,那么这个停车场肯定效度不好,所以时间和空间的利用率直接关系到停车场的效率性。另外,去停车场泊车的方便程度也与停车场的效度密切相关。

3、模型假设和符号说明

3.1模型假设

1)进入停车场的车型只考虑小型车,小型车的详细指标参见附录二。

2)假设每辆车都能够按规定停车,不超出车位线。

最大特征根

4、模型建立

4.1停车场泊位规划模型

4.1.1单辆车停车位最佳角度

考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也

是停车场设计所要考虑的重要参数。所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =-=米,如图1所示。

对于每一个车位,为了便于该车位上的小轿车自由进出,必须有一条边

是靠通道的,设该矩形停车位的长边与通道的夹角为(0)2

πθθ≤≤,其中2

πθ=便是车辆垂直从通道驶入车位,0θ=就是车辆从通道平行驶入车位,即平时所说的平行泊车。为了留出通道空间和减少停车面积,显然,我们可以假设该通道中的所有车位都保持着和该车位相同的角度平行排列,如图2所示。

图1

上图中,小轿车是自东向西行驶顺时针转弯θ角度驶入车位的。我们来

具体研究一下小轿车驶入车位的情况,见图3,其中1C 为最小转弯半径,R 为通道的最小宽度。我们假定小轿车的最外端在半径为1C 的圆周上行驶,且此时轿车的最内端在半径为2C 的圆周上随之移动,然后以θ角度进入停车位,所以通道的最小宽度12cos R C C θ=-。

在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,

我们来看一下一排车位之间的各个数据,见图4。

图3

每辆车均以角度θ停放,用W 表示小轿车停车位宽度,L 表示小轿车停

车位长度(这里L 的最上方并没有取到最上端是考虑到车身以外的小三角形区域可以留给对面停车位使用),o L 表示停车位末端的距离,易见他们分别是停车角θ的函数,且有

sin W C W θ

= 1sin cos 2

L W L C C θθ=+ 01(cot )cos 2

L W L C C θθ=+ 11cos 2W L C θ= 现在按照图4所示,计算一下每辆车占据的停车场面积()S θ.考虑最佳

排列的极限情况,假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积012

L L ?,因为它们被平均到每个车位上去的公摊面积很小,可以不计。从车辆所占的停车位来看,它占据的面积为W L ?,另外,它所占的通道的面积为W R ?。考虑到通道对面(也就是图4的下部)也可以有类似的一排车位可以相互借用此通道,所以可以对占用的通道面积减半,于是我们得到:

()212cos cos 122sin 2sin 2sin W W W W L C C C C C S WL WR C C θθθθθθ

=+=++- (1) 我们的目标就是求出()S θ的最小值。

将1 5.5C =米,2 3.8C =米,5L C =米, 2.5W C =米代人(1)式,可得 () 6.875 1.625cos 12.5sin sin S θθθθ=+-,()21.625 6.875cos sin S θθθ

-'=,

图4

所以当 1.62513cos 6.87555

θ==,即76.33θ?≈时,()S θ达到最小,且(){}min 19.18S θ=平方米。

需要说明的是,当0θ=时车位与车道平行,此时每辆车都得采用平行泊车的方式进入车位,这是现实生活中马路边的停车位常见的情况,在一般的停车场中几乎很少看到。平行泊车对驾驶员的技术要求较高,所以我们不考虑这样的情况。

上述对车位的局部分析表明,当停车位与通道夹角76.33θ?≈时,可以使每单位车辆占据停车场的面积达到最小。

4.1.2整体车位规划

根据中华人民共和国行业标准中汽车库建筑设计规范(Design Code for

Garage JGJ100-98)可知汽车与汽车、墙、柱、护栏之间最小净距如下表:

5、模型的求解

图6为某公共场所附设的停车场,它是一个长90米,宽45米的矩形区域,该矩形区域的四个角落有照明灯设置,其占据矩形角上的形状为边长2.5米正方形,见图6的星号区域。区域南边,西边,北边是围墙,东边是马路,这是可以作为停车场出入口的唯一的一条边。根据对当地实际情况的调查,该停车场位设计应考虑5至6个大型客车车位,其余都作为小轿车车位设计。现在我们就按照上述要求来对这块停车场进行车位的具体安排。

90米的停车场长边可以当作足够长的边来看待,我们将90米为一排来设计小轿车的车位,即每排车位与矩形的长边平行。在理想情况下,根据第一部分讨论可知,最佳设计下的车位长度为:

1sin cos 5sin 76.33 1.25cos76.33 5.1542

L W L C C θθ??=+=+=(米) 停车场通道宽度为:

12cos 5.5 3.8cos 76.33 4.602R C C θ?=-=-=(米),

所以,理想情况下的一组(即两排车位中间加一条行通车道)的宽度约为:

214.91L R +=(米)

于是,45米宽可以考虑安置三组这样的车位,如图6的Ⅰ,Ⅱ和Ⅲ。

在小轿车的总体布局确定下来后,我们再来具体确定大型客车的车位。考虑到大型车的转弯半径比较大,借用专门为小轿车车位设计的通道是肯定不行的。相对来说,大型客车停车位只占总停车位的很小一部分,在设计停车场的位置市,为了节省面积以增加车位数,应该将所有大客车位置放在一块,同样以矩形并排的形式放置。大客车在停车场中的停放方式也可以采用直角停放的停车方式,并按照其特殊的位置设置特殊宽度的通道。另外考虑到其进出上的困难情况,一般可安置在停车场的出口部分,例如,将其安排在东边靠马路处(注:东边临街,没有围墙),且垂直东边的马路横向占用小轿车的车位设置6

个大型客车车位,45

大客车可直接由马路开进停车位,见图6的右边6个横向车位。

剩下的事情就是得解决出入口问题了,由于只能在东边设置出入口,并且Ⅰ,Ⅱ,Ⅲ三组区域为相互能借助对方区域的车位排列位置设置,通道形式方向应该间隔,即Ⅰ向东,Ⅱ向西,Ⅲ向东,或者Ⅰ向西,Ⅱ向东,Ⅲ向西。为此,必须在停车场的最西边设置南北走向的一排通道,以便让Ⅰ,Ⅱ,Ⅲ区车位的车辆都能够换向出入,具体可以参照图6的设置。

最后,考虑到既然在最西边已经设置了南北走向的一排通道,我们可以在该通道的西边设置一排车位,此时该车位设计的车辆出入可以占用南北通道,所以这排车位的设计是最合理的,如图6中的区域Ⅳ.

根据如上的分析,我们对该停车场的车位大致设计成图 6.东边的中部为入口,北部和南部为出口,这样,即使在车辆较多的时候不至于难以驶出,通道方向也如图6所示。大型客车的车位已经确定为6个,小轿车车位的个数我们将根据Ⅰ,Ⅱ,Ⅲ的车位角度θ进行变化。

由于东西走向的通道和南北走向通道已经是垂直拐弯,所以毫无疑问,区域Ⅳ的车位将垂直排列,去掉两边照明灯设置后西边宽度为40米,正好可以设置16个车位(2.5米宽和5米长),垂直于西边。我们可以计算出西边通道的宽度为12cos 5.52R C C π

=-=(米)

。考虑到对称性质,我们设横向的6排的小轿车位个数分别是1X ,2X ,2X ,2X ,2X ,1X 个,并建立如下的小轿车车位个数模型:

12max 2416X X X =++

1020325 2.5905 5.5290..63cos 450,1,202W L W i B L X W L X W L B s t L R C X i θπθ≤??+++≤??++++≤??++≤?>=??≤≤??且为整数 (4) 将公式s i n W C W θ=,1sin cos 2L W L C C θθ=+,01(cot )cos 2

L W L C C θθ=+,12cos R C C θ=-和数据5L C =, 2.5W C =,1 5.5C =,2 3.8C =,12.5L B =,3W B =分

别代人(4)式,化简后可得:

12max 2416X X X =++ 21

221820sin 5cos 33sin 2sin cos 0.5cos 26.8sin 4sin cos cos ..300sin 14cos 2850,1,202

i X X s t X i θθθθθθθθθθθθπθ≤+??≤--??≤--??-≤?>=??≤≤??且为整数 (5) 对于模型(5),如直接利用计算机编程求解会遇到一些麻烦,先是涉及θ的变化,然后又涉及1X 和2X 。为此,我们先用微积分知识来讨论一下。

对于第一个限制条件1820sin 5cos θθ≤+,设()120sin 5cos f θθθ=+,易求

得 ()120cos 5sin f θθθ'=- 当1tan 4θ=时,函数有唯一的驻点,所以()1f θ在0,4π??????

内的最大值为()1111max 0,arctan ,1844f f f π??????≥?? ? ??????

? 于是,θ的取值范围应限制在区间,42ππ??????内,容易发现当,42ππθ??∈????

时, 20sin 5cos θθ+,233sin 2sin cos 0.5cos θθθθ--

226.8sin 4sin cos cos θθθθ--,300sin 14cos θθ-

都为严格单调递增函数,这是求上面模型解的关键所在。只要求出

1820sin 5cos θθ≤+和300sin 14cos 285θθ-≤

的解集的交集,然后选取该交集中最大的θ即可,记此最大的θ为0θ,取

21000033sin 2sin cos 0.5cos 31X θθθθ??=--=??

和22000026.8sin 4sin cos cos 23X θθθθ??=--=??

模型的解就得到了(式中[]...表示取整运算)。

利用数值计算或者计算机编程容易求出1820sin 5cos θθ≤+的解集为

46.78890θ??≤≤,300sin 14cos 285θθ-≤的解集为4574.288θ??≤≤,于是

454.78874.28θ?≤≤

,取 74.288θ?=

21000033sin 2sin cos 0.5cos 31X θθθθ??=--=??

22000026.8sin 4sin cos cos 23X θθθθ??=--=??

所以最后得到小轿车车位数目应该为170个,Ⅰ,Ⅱ,Ⅲ区域的停车位方位角可取74?左右。

6、结果的分析检验

1、优点

1)巧妙地对泊车位进行了抽象处理,提出了车辆、、间距、车位一体化的概念,为构建模型提供了极大的便捷。

2)在对停车场进行效度评价时把模糊综合评价法与层次分析法结合在一起,很巧妙地处理了复杂系统的评价,而且提高了评价的可靠性。

3)在度量不确定指标时采用了稳健性原则,对于不确定的指标给予较低的评价,以最大程度保证稳定性。

4)本文提出的模糊综合模型对停车场的效度进行评估可以将难以量化

的因素进行量化,且将各个指标的不确定性通过模糊数学的方法使其变为确定性指标。

2.缺点

1)在评价停车场效度时用的主要是主观评价法,难免可能产生误差,

有失客观性。

2)在两两比较矩阵的确定上,虽然是专家打分,但是仍存在一定的主

观性。

3)模糊评判模型结果中各因素权重相差不大,对最大隶属原则应用优

点欠妥。

7、参考文献:

[1] 何文章,宋作忠,数学建模与实验[M].哈尔滨工程大学出版社,2002

[2] 周明,孙树栋,遗传算法原理及应用[M]。北京:国防工业出版社,1999

[3] Williams H P.Model Building in Mathematical Programming.John Wiley &Sons,1978

[4] 宋作忠,何文章,基于遗传算法的交易中心停车场优化设计[J].数学的实践与认识,2004,1

东华理工大学

数学建模一周论文论文题目:停车场的优化与设计

姓名1:学号:

姓名2:学号:

专业:

班级:

指导教师:

2011年12月29日

基于数学建模的停车场优化设计

基于数学建模的停车场优化设计 张伟 江西旅游商贸职业学院江西南昌330000 摘要:停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。文章通过数学建模方法探讨停车场的优化设计,的目的就是希望找出缓解停车困难的有效办法。 关键词:数学建模;停车场优化;应用数学 一、引言 假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢?一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”,而通道越宽越多,就会使得容纳的车辆数越少。 我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α?=。 再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽车之间的横向间距。 考虑到汽车从通车道驶入车位一般得转弯,所以车辆的最小转弯半径也是停车场设计所要考虑的重要参数。所谓最小转弯半径,就是汽车转弯时转向中心到汽车外侧转向车轮轨迹间的最小距离。根据实际调查,可设小轿车的最小转弯半径为1 5.5C =米,与此同时,汽车转弯时转向中心到汽车内侧转向车轮轨迹间的最小距离为21 1.7 3.8C C =?=米,如图1所示。

数学建模论文十字路口绿灯

江西师范高等专科学校 论文题目:十字路口绿灯亮30秒,最多可以通过多少辆汽车? 组长:肖根金学号:9015300135 班级:15数教1班 组员:叶强学号:9015300143 班级:15数教1班 组员:谭伟学号:9015300132 班级:15数教1班 2017年4月15日

目录 一、问题重述 (3) 1.1问题背景 (3) 1.2问题简述 (4) 二、模型假设 (4) 3.1 停车位模型 (5) 3.2 启动时间模型 (5) 3.3 行驶模型 (5) 三、模型建立 (5) 四、模型求解 (5) 五、模型的检验与应用 (6) 5.1调查一个路口有关红绿灯的数据验证模型是否正确 5.2分析绿灯亮后,汽车开始以最高限速穿过路口的时间 5.3给出穿过路口汽车的数量n随时间t变化的数学模型 六、模型的评价 (6) 6.1 模型的优点 (6) 6.2 模型的缺点 (7) 参考文献

一、问题重述 1.1问题背景 随着经济和社会快速发展,我国城市道路建设增多,出行车辆增加,城市交通进入了快速发展阶段,城市交通的几个问题,即交通阻塞、交通事故、公共交通问题城市,道路交通问题日益突出.,为城市交通建设和路网规划提供方案和依据,达到优化城市道路交通状况的目的.因此我们针对于交通问题事故,将“十字路口绿灯亮30秒问题”单独列出以建模的形式来进行合理的规划,让十字路口的交通,更安全。在每年的节假时间里,有很多的人喜欢去旅游,交通的拥挤阻塞已经是很大问题,好多事故的发生。这是我们不愿意见到的事实。“十字路口绿灯亮30时间”对于现在的这个新时代的我们来说,城市的汽车车水马龙,它的合理设计是十分重要的。在交通管理中,绿灯的作用是为了维持交通秩序。在十字路口行驶的车辆中,主要因素是机动车辆,驶近交叉路口的驾驶员,在看到绿色信号后要通过路口。利用数学模型解决绿灯在十字路口亮30秒的问题,可以减少交通事故的发生,也相对合理的运用社会科学知识解决实际问题。某一天一个式子路口的绿灯灯亮30秒,那么能通过几辆汽车呢? 1.2问题简述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路

深圳交通拥堵数学建模讲解

2013深圳夏令营数学建模 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B中选择一项填写): B 题 所属学校:运城学院 参赛队员: 1.姓名:王亮系别:物理与电子工程系签名: 2.姓名:孟福荣系别:计算机科学系签名: 3.姓名:孙静系别:数学与应用数学系签名: 指导教师或指导教师组负责人(打印并签名):

2013深圳夏令营数学建模 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注 全国统一编号(由赛区组委会送交全国前编号): 全国评阅编号(由全国组委会评阅前进行编号):

题目:深圳交通拥堵问题的研究 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,日益增长的交通需求与城市道路基础建设之间的矛盾已成为目前城市交通的主要矛盾,深圳交通拥堵已严重影响正常的生产生活。本篇论文通过研究道路交通拥挤的状况,来反映交通环境。即针对道路拥挤的问题进行数学建模分析,讨论拥堵的深层次问题及解决方案。 道路拥堵状况评价的指标有多种,为保证评价尽可能的客观、全面和科学,我们分析采用路段平均行程速度、交通流量、路段饱和度、三个评价指标来综合放映道路拥堵情况选取梅林关为例,由于数据的不完整性以及对应事件的不确定性,如:交通指示灯作用,驾驶车辆的速度不均等情况所造成的数据和对应结果的不完全对应,综合考虑我们采取模糊数学模型来对问题一进行分析和求解,列出非常顺畅、顺畅、缓慢、拥堵和严重拥堵五个评判标准来综合评价。确定出其隶属度函数() r x,通过已确定的模糊评价矩阵R得出拥挤度系数B,最终得出其实施后的各项指标。要综合考虑整体城市的交通网络情况,此时的交通状态是一种不断变化的动态过程,具有很强的随机性和偶然性。而交通拥堵的潜伏、发展和产生与具有连贯性和相关性的特点,交通阻塞的发生与它的过去和现状紧密相关,因此,有可能通过对交通状态的现状和历史进行综合分析。不确定或不精确的知识或信息中做出推理。

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

停车场规划数学建模

医院停车场规划问题 摘要 本题是个优化设计问题,通过合理设计停车场的停车方式和通道大小使得停车场在有限的区域下能停放的下更多的车辆,为医院患者解决停车难的问题。 针对于问题1,由于该医院挂号是从7:30开始,但8:00之后医生才开始门诊,每个患者平均门诊时间为1小时30分钟。所以在7:30-8:00之间来的患者要到9:30才能离开医院,而在8:00之后来的患者只需门诊1小时30分钟就可离开医院。于是,可通过用Excel表对表1数据进行处理和分析,以每五分钟为单位,统计此时停车场停放的车辆数。因此,根据统计结果可知在周二9:30这个时刻医院的车辆数最多为229辆。所以,医院至少需要有229个车位才能够使得每一位患者的车到停车场就有车位停车。 对于问题2, 对于问题3,根据问题1结果可知医院至少要有229个车位才能使患者车到就有车位停车,而由问题2的结果可知,新建的停车场最多只有162个停车位,远远不能满足实际需要。所以问题可转化为从政府部门、医院以及患者的角度提出一些可行性的建议来解决这个问题。政府部门可以从建设新的停车场,开设便利的公交路线等方法来解决这一问题;医院可以通过合理利用医院内部的土地,为医护人员的上班提供便利等方法老解决这一问题;患者可以有意识的不占用停车位,按规定停车,尽可能的乘坐公交车或出租车来医院就诊。 关键词:

一、问题重述 问题背景: 随着现代技术的发展,人民生活条件的不断改善,小轿车的普及率越来越高. 患者自己开车到医院看病的情况也越来越普遍. 然而, 福州市的医院普遍存在停车位不足, 患者停车难的问题. 某医院原有若干个停车位, 零散分布于院内建筑楼房四周以及道路两侧. 现医院经重新规划整合,拆除部分旧楼,在门诊大楼旁整出一个长方形地块(见附录一),准备建公用停车场,用于患者停放小轿车. 该医院8:00开始门诊, 挂号从7:30开始, 每个患者平均门诊时间1小时30分钟(包括候诊、问诊、缴费和取药). 表1(见附录二)是某一周每天从7:30-11:30每5分钟统计的到达车辆数据。11:30-12:00以及下午,门诊患者相对较少,故未做统计. 问题提出: 问题1:假设患者取完药就开车离开,医院至少要有多少个车位能够使得患者车到就有车位停车? 问题2:根据图1的地块,设计停车场车位分布图. 设小轿车长度不超过5.2米,宽度不超过2.0米,因此,每个停车位的长度为5.6米,宽度为2.6米,车位标志线0.1米(不含在车位长、宽之内). 小轿车的转弯最小外半径和内半径分别为6.0米和4.0米,这里转弯最小外、内半径分别是指汽车转向时转向中心到汽车外侧、内侧车轮轨迹的最小距离,为了安全起见,停车场内通道的设计宽度应比理论宽度多至少0.2米,这样在小车转弯时,内侧只需按内半径考虑,不用担心小车转向内侧是否会与相邻车位车辆刮擦问题. 停车场设计入口一个,设置在东面,设计出口两个,设计在南面,请问该小轿车停车场最多能设计多少停车位? 问题3:按照目前的状况,新建的停车场是否能够满足患者停车需要?如果不能满足停车需要,请向政府部门或医院提出一些建议解决这一问题。

数学建模,红绿灯闪烁模型

建模实习作业题 之红绿灯闪烁模型班级:计算1502

交通管理中非数字灯闪烁时间模型 摘要 本文在了解过车辆通过红绿灯所遇见的情况,以及对车型的分析下,重点通过常微分方程建立起时间,刹车距离,以及刹车制动因素相关的数学模型。 在问题中对红绿灯灯应闪烁时间做出等价转换,闪烁的意图是让车辆在黄灯前停在停止线前,对于影响车辆刹车距离的因素主要由车辆制动力控制,闪烁时间应为驾驶员观察到信号变换反应的时间与驾驶员制动使车辆停在停车线所需时间之和。在法定通过红绿灯的速度下对大型车辆进行讨论,因为小型车辆制动距离明显小于大型载货汽车。 对于模型的评价,本文采用与实际生活中数据以及对车辆理论数据进行对比,以此检验模型建立的合理性及正确性。 最后,本文分析了现有模型的缺陷,并提出进一步改进方法,使之与贴合生活方面进一步。 【关键词】微分方程;刹车制动力;制动因素

目录 一、问题重 述………………………………………………………………………………… …4 二、基本假 设………………………………………………………………………………… …4 三、符号说 明………………………………………………………………………………… …4 四、模型建立、分析与求 解 (5) 五、模型评价与改 进 (6) 六、参考文 献 (7)

一、问题重述 从2013年元月一日,国家开始实行新的交通法规。在十字路口的交通管理中,最大而且最有争议的改变是闯黄灯。在以前的交规中,亮红灯之前要亮一段时间黄灯,这是为了让那些行驶在十字路口或距十字路口太近以致无法停下来的车辆通过路口.现在规定闯黄灯也是违规行为,为了不违反交通法规,对有时间数字的交通灯,司机根据时间数字可以提前对自己的行动作出决策,但还有很多交通灯是非数字的,这就不可避免的对司机的判断造成障碍,为此,非数字的交通灯在变灯前加入了闪烁,以提醒司机。为了让司机在十字路口有足够的时间决定过不过马路,请你考察实际生活中的道路,给出最佳的闪烁时间。 二、基本假设 1.假设刹车途中,刹车制动力恒定 2.行驶过程中没有意外事故

交通流量数学模型

交通流量数学模型 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

交通量优化配置 摘要 城市交通拥挤现象是城市交通规划最为明显的失策现象之一。从某种程度上说,城市交通拥挤现象是汽车社会的产物,特别是在人们上下班的高峰期.交通拥挤现象尤为明显。“据统计,上海市由于交通拥挤,各种机动车辆时速普遍下降,50年代初为25km现在却降为15kin左右。一些交通繁忙路段,高峰时车辆的平均时速只有3—4km。交通阻塞导致时间和能源的严重浪费,影响城市经济的效率。”城市交通拥挤现象是现代我国大中城市存在的普遍问题.由于公交车、小汽车流量较多,加上餐饮业商贸功能聚集,使本来就不宽的道路变得拥挤不堪,给进行物资运输,急救抢险,紧急疏散等状况带来不便。其中,城市各路段交通流量的合理分配可以有效缓解道路发生拥挤。接下来,我们将模拟一个交通网络,用节点流量方程、环路定理、网络图论模型去合理分配该交通网络的交通流量已达到交通量优化配置。 关键字:交通流量、节点、环路、网络图论

一、问题重述 我们模拟某区域道路网络如图1所示,每条道路等级(车道数)完全相同,某时间段内,有N辆车要从节点1出发,目的地是节点0(假设该时间段内,路网中没有其它车辆)。在该时间段内,道路截面经过的车辆数越多,车辆在该路段行驶的速度就越慢。 我们在此要解决的问题是确定有效的行驶路径及其算法,合理分配每条道路的交通流量,使N辆车从节点1到节点0的总行驶时间最小。 二、模型假设 1)各路段单向通车 2)道路截面经过的车辆数与车辆在该路段行驶的速度成反比例函数关系 3)车流密度均匀不变 4)假设N辆车在极短时间内全部开出(即把车当做质点)5)各环路两条支路对时间负载均衡

交通路口红绿灯__数学建模

交通路口红绿灯 十字路口绿灯亮30秒,最多可以通过多少辆汽车?一问题重述 因为十字路口的交通现象较复杂,通过路口的车辆的多少依赖于路面上汽车的型号,数量和它们的行驶速度和方向以及同时穿过路口的非机动车辆的行人的状态等因素有关,因此,我们在求解“十字路口绿灯亮30秒,最多可以通过多少辆汽车”时应综合考虑各方面因素二模型假设 (1)十字路的车辆穿行秩序良好不会发生阻塞; (2)所有车辆都是直行穿过路口,不拐弯行驶,并且仅考虑马路一侧的车辆。 (3)所有车辆长度相同,并且都是从静止状态开始匀加速启动; (4)红灯下等侍的每辆相邻车之间的距离相等; (5)前一辆车启动后同后一辆车启动的延迟时间相等。 另外在红灯下等侍的车队足够长,以至排在队尾的司机看见绿灯又转为红灯时仍不能通过路口。 参数,变量:车长L,车距D,加速度a,启动延迟T,在时刻 t 第n 辆车的位置 S n(t) 用数轴表示车辆行驶道路,数轴的正向为汽车行驶方向, 数轴原点为红绿灯的位置。于是, 当S n(30)>0时, 表明在第30秒第n辆车已通过红绿灯,否则,结论相反。

三模型建立 1.停车位模型: S n(0)=–(n-1)(L+D) 2. 启动时间模型: t n =(n-1)T 3. 行驶模型: S n(t)=S n(0)+1/2 a (t-t n) 2, t>t n 参数估计 L=5m,D=2m,T=1s,a=2m/s 四模型求解 解: S n(30)=-7(n-1)+(30-(n-1))2>0 得 n≤19 且 t19=18<30=t 成立。 答案: 最多19辆车通过路口. 改进:考虑到城市车辆的限速,在匀加速运动启动后,达到最高限速后,停止加速, 按最高限速运动穿过路口。 最高限速:校园内v*=15公里/小时=4米/秒,长安街上v*=40公里/小时=11米/秒,环城路上 v*=60公里/小时=17米/秒 取最高限速 v*=11m/s,达到最高限速时间t n*=v* /a+t n =5.5+n-1 限速行驶模型: S n(t)=S n(0)+1/2 a(t n *–t n )2+v*(t-t n*), t>t n* =S n(0)+1/2 a (t-t n) 2, t n*>t>t n = S n(0) t n>t 解:S n(30)=-7(n-1)+(5.5)2+11(30-5.5-(n-1))>0 得 n≤17 且 t17 * =5.5+16=21.5<30=t 成立。 结论: 该路口最多通过17辆汽车.

数学建模案例_停车场的优化设计

案例16 停车场的优化设计 随着城市车辆的增加,停车位的需求量也越来越大,停车困难已逐渐成为市民们头疼的问题。要解决停车难问题,除了尽可能的增加停车场以外,对停车场进行优化设计也能在一定程度上缓解这一供需矛盾。停车场的优化设计就是在停车场大小确定的情况下,对停车区域进行优化设计,以便容纳更多的车辆。本文的目的就是希望分析一下这一情况,找出缓解停车困难的有效办法。 假设某公共场所附近有一块空地,如果不考虑建设地下或多层结构,我们该如何有效的设计停车位置呢一般来说,想尽可能的把车塞进停车场,最好的办法就是以垂直停靠的方式将车一辆挤一辆地排成行,但是这样停放的后果就是车辆不能自由出入,只有后进入的车辆全部先出去了,先进入的车才可以离开停车场,显然不符合实际的需求。因而,为了使汽车能够自由地出入停车场,必须设立一定数量具有足够宽度的通道,并且每个通道都应该有足够大的“转弯半径”, 而通道越宽越多,就会使得容纳的车辆数越少。所以我们的问题就是要确定在满足车辆能够自由进出的实际需求下,如何进行停车位置和车行通道的设计,才能够停放更多的车辆,从而做到既方便停车又能获得最大的经济效益。 我们先来看看生活中非货运车辆大小的种类。根据实际调查和经验数据,这类车辆一般可分为小轿车,中型客车和大型客车三类。其中小轿车约占九成,大型客车约占一成,而中型客车一般不多于1%。根据这样的情况,我们可以免去对中型客车的车位设计,即便有中型客车停车的需要,可以使用大型车的车位,这也符合现实生活中绝大多数停车场的车位设计情况。我们设小轿车所占的比例为0.9α=,大型客车所占的比例为10.1α-=,当然现实中也有不少全为小轿车设计的停车场,例如小区的地下车库。 再来看看车位的大小。根据实际的调查,城市内比较普通的小轿车长度一般不超过4.7米,宽度一般不超过1.7米,而一般大型客车长度不超过12米,宽度不超过2.2米。另外,经实际考察可知,停车场中标志线的宽度大约为0.1米,所以我们可以假设停车场中停放轿车需要的车位长5L C =米,宽 2.5W C =米,这其中包括了0.1米的标志线宽度和至少0.3米的汽车间的横向间距。设停放大客车需要长12.5L B =米,宽3W B =米,其中包括0.1米的标志线宽度和必要的汽

数学建模 红绿灯问题

十字路口红绿灯的合理设置 陈金康 检索词:红绿灯设置、红绿灯周期 一、问题的提出 作为城市交通的指挥棒,红绿灯对交通的影响起着决定性作用。如果红绿灯的设置不合理,不仅会影响到交通秩序;还有可能会影响到行人和自行车的安全。 目前杭城还有很多路口的红绿灯设置存在一些不合理的因素,我们以古墩路一个路口(界于天目山路和文苑路之间)的红绿灯设置为例,该路口是刚开通的,交管部门对路况和车流量的研究还不是很成熟,因此红绿灯的设置存在一些问题。该路口的车流量相对比较小,有几个方向的车流量特别小,但绿灯时间设置太长,经常出现路口空荡荡但是车辆必须长时间等待的情况;同时在这样的路口,右转红灯显得有些多余。另外,该路口不同时段的红绿灯设置没有什么区别,显然这是非常不合理的。 下面我们就针对该路口来研究一下红绿灯设置的合理方案。我们主要研究两个方面:红绿灯周期的设置以及一个周期内各个方面开绿灯的时间。 二、模型的建立 1、红绿灯周期 从《道路交通自动控制》中,我们可以找到有关红绿信号灯的最佳周期公式: s q L C ∑ -+= 15 其中 : C 为周期时间。 相位:同时启动和终止的若干股车流叫做一个相位。 L 为一个周期内的总损失时间。每一相位的损失时间I=启动延迟时间-结束滞后时间;而整个周期的总损失时间为各个相位总损失时间的和加上各个绿灯间隔时间R 。(通俗地讲,启动延迟时间即司机看到绿灯到车子启动的反应时间,结束滞后时间即绿灯关闭到最后一辆车通过的时间。) 即R I L +∑= q 为相应相位的车流量 s 为相应相位的饱和车流量。(当车辆以大致稳定的流率通过路口时,该流率即该相位的饱和车流量。) 2、南北方向和东西方向开绿灯时间的分配 不妨忽略黄灯,将交通信号灯转换的一个周期取作单位时间,又设两个方向的车流量是稳定和均匀的,不考虑转弯的情形。

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模对智能交通的影响

数学建模对智能交通的影响 城市交通的发展与面临的问题。据国家统计,我国大部分客运依靠高速公路,货运的主要模式仍然是汽车运输,汽车的交通是我国经济发展的生命线。但随着汽车运输量的增长,交通拥挤、能源消耗高、交通事故等问题也随之增加。尽管引入了新的道路交通设施等方法,但远远不能满足新增车辆的交通需求。如何利用现有的道路数量来缓解交通压力是交通面临的主要问题。汽车社会造成的交通拥堵不仅将造成巨大的经济损失,而且汽车排放造成的环境污染也将对人们的生活产生巨大的影响。据统计,中国车辆排放的氮氧化合物排放量占总排放量的30%,中国各大城市出现的空气污染部分原因也在此。交通事故造成的人员伤亡和经济损失也是很大的问题,据统计,中国每年因交通事故死亡人数约20万人。由于交通问题日益严重,各地的交通部门从许多方面对城市交通系统进行了改善。传统的方法收效甚微,随着计算机技术的飞速发展,越来越多的城市开始发展出智能交通系统。借助计算机通信以及电子信息技术,城市的智能交通正在给解决交通问题提供更多帮助。计算机通信与电子信息技术在智能交通系统中的应用。智能交通经过多年的普及和发展,目前已经建成了比较完善的智能化道路交通指挥系统,包括交通检测、交通信号控制、电视监控、交通违法检

测系统等。智能交通中计算机技术的应用包括了物联网技术、传感器技术、通信技术、GIS技术等。物联网技术是将每一辆车、监控中心、路边传感器等集成在一起,形成一个通信的巨大网络。物联网技术的主要作用是采集车辆实时信息,实现车与车、车与人的通信传输,还可以感知行驶环境,实现车辆之间的通信漫游,给交通管理部门提供车辆的加工处理信息。传感器技术在智能交通中已经得到了广泛的应用,传感器具有体积小、能耗低等特点,在数据采集和信息传输上有很大的作用。通过wifi网络、移动网络等可以将传感器采集的信息保存到服务器,进而对信息进行存储、汇聚、转发等操作,从而用于智能交通上。传感器还可以利用摄像头、电子芯片等对车辆周围信息进行采集,并以文件、图片等格式传给服务器,实现智能交通的管理。智能交通中还有许多通信技术,不仅包括传统的光纤通信,还有蓝牙、RFID 等技术。这些技术可以有效实现点对点通信,完成短距离内车辆与车辆、车辆与人之间数据的发送和接收。这些技术都利用了频率多址方式,可以有效提高频段的利用率。最新的TD-LTE技术还能实现多个方向上的信号发送与接收,利用并行通道为用户提供信息,对于用户接受各类型资源有重要的作用和意义。RFID由于其非接触式特性在智能交通中也得到广泛应用,比如在高速收费站实现了即时缴费功能,在物流仓储运输中可以管理货物的流通、车辆的流通、实现车

交通状态数学建模

成都机动车尾号限行的影响分析 摘要 随着国民经济的高速发展和城市化进程的加快,我国机动车保有量及道路交通流量急剧增加,日益增长的交通需求与城市道路基础建设之间的矛盾已成为目前城市交通的主要矛盾,交通拥堵已经成为中国各大城市首要求解的顽疾。 继北京、广州等特大城市之后,西部省会城市成都于今年4月26日开始实施车牌号码尾号限行。为保障成都二环路改造工程的顺利施工,成都二环路全线及7条城区放射性主干道,对本地及外地社会车辆实施工作日分时段按车牌尾号进行限行,以缓解交通拥堵。 本篇论文通过研究道路交通拥挤的状况,来反映交通环境。即针对道路拥挤的问题进行数学建模分析,讨论“尾号限行”是否对交通状况起到积极的影响。 道路拥堵状况评价的指标有多种,为保证评价尽可能的客观、全面和科学,我们分析采用路段平均行程速度、单位里程平均延误和路段饱和度三个评价指标来综合放映道路拥堵情况。选取的片区为成都市塔子公园片区,包括蜀都大道东段和二环路东四段这两条限行道路,由于数据的不完整性以及对应事件的不确定性,如:交通指示灯作用,驾驶车辆的速度不均等情况所造成的数据和对应结果的不完全对应,综合考虑我们采取模糊数学模型来对问题一进行分析和求解,列出非常顺畅、顺畅、缓慢、拥堵和严重拥 r x,通过已确定的模糊评价矩阵R 堵五个评判标准来综合评价。确定出其隶属度函数() 得出拥挤度系数B,最终得出其实施后的各项指标。 对于问题二,要综合考虑整体城市的交通网络情况,此时的交通状态是一种不断变化的动态过程,具有很强的随机性和偶然性。而交通拥堵的潜伏、发展和产生与具有连贯性和相关性的特点,交通阻塞的发生与它的过去和现状紧密相关,因此,有可能通过对交通状态的现状和历史进行综合分析。据此,我们采取贝叶斯网络来建立数学模型,贝叶斯网络是一种对概率关系的有向图解描述,可以从不完全、不确定或不精确的知识或信息中做出推理。我们确定变量集元素有车流量、占有率、车流速度、车流密度等四个,由于数据的限制我们的变量域将设置为一百天,从而得出贝叶斯网络结构。 对于问题三,问题提出了道路负载能力分析,由有关的技术资料可知,通行能力反映了道路所能承受的交通负荷能力。通行能力是指在一定的道路、交通、控制和环境条件下,对应于一定的行驶质量即服务水平,在某一道路断面上单位时间所能通过的最大车辆数。道路通行能力受到道路、交通等多种条件影响,而交通系统中驾驶员的驾驶行为以及整个交通流又都具有显著的随机特征。所以本文通过建立仿真数学模型,构造出基本路段的道路、交通特性等因素,模拟其中车流的运行状态及其随时空变化的过程。通过对仿真运行过程的观察、仿真结果的统计以及与采集的有关数据的对比分析,研究基本路段的通行能力。 关键字:交通拥堵尾号限行模糊模型评价贝叶斯网络预测仿真模型

数学建模--交通问题

摘要 近年来随着机动车辆的迅猛增长,城市道路的交通压力日渐增大,各大城市对旧城改造及城市道路建设的投入也不断扩大,交通拥挤问题却仍旧日益严重。因此,科学全面地分析和评价城市的绩效,进而找到适合我国的城市交通规划模式,已成为我国城市交通迫切需要解决的课题。 本文通过大量查阅城市交通绩效评价指标,结合目前我国交通发展现状,以兰州为例,首先建立了绩效评价指标的层次结构模型,确定了目标层,准则层(一级指标),子准则层(二级指标)。 其次,建立评价集V=(优,良,中,差)。对于目标层下每个一级评价指标下相对于第m 个评价等级的隶属程度由专家的百分数u 评判给出,即U =[0,100]应用模糊统计建立它们的隶属函数A(u), B(u), C(u) ,D(u),最后得出目标层的评价矩阵Ri ,(i=1,2,3,4,5)。利用A,B 两城相互比较法,根据实际数据建立二级指标对于相应一级指标的模糊判断矩阵P i (i=1,2,3,4,5) 然后,我们经过N 次试验调查,明确了各层元素相对于上层指标的重要性排序,构造模糊判断矩阵P ,利用公式 1 ,ij ij n kj k u u u ==∑ 1 ,n i ij j w u ==∑ 1 ,i i n j j w w w ==∑ []R W R W R W R W R W W R W O 5544332211,,,,==计算出权重值,经过一致性检验公式RI CI CR = 检验后,均有0.1CR <,由此得出各层次的权向量()12,,T n W W W W =K 。然后后, 给出建立绩效评价模型(其中O 是评价结果向量),应用模糊数学中最大隶属度原则,对被评价城市交通的绩效进行分级评价。 接着,为了优化兰州安宁区道路交通,我们建立了评价城市交通的指标体系,继而构造模糊判断矩阵P ,计算出相应的权重值。我们挑选了道路因素进行优化,以主干道利用率约束、红绿灯效率约束、公交站点数目约束、非负约束为约束条件建立了安宁区道路交通优化方案的权系数模型,最后利用实际测算数据给出最终优化模型,提出合理化的优化建议,希望能为更好的建设兰州交通体系作出贡献。 关键词:城市交通 层次分析 模糊综合评判 绩效评价 隶属度

数学建模模最短路

基于最短路问题的研究及应用令狐采学 姓名:Fanmeng 学号: 指导老师:

摘要 最短路问题是图论中的一大问题,对最短路的研究在数学建模和实际生活中具有很重要的实际意义,介绍最短路问题的定义及这类问题的解决办法Dijkstra算法,并且能够在水渠修建实例运用到此数学建模的方法,为我们解决这类图论问题提供了基本思路与方法。 关键字数学建模最短路问题Dijkstra算法水渠修建。

目录 第一章.研究背景1 第二章.理论基础2 2.1 定义2 2.2 单源最短路问题Dijkstra求解:2 2.2.1 局限性2 2.2.2 Dijkstra算法求解步骤2 2.2.3 时间复杂度2 2.3 简单样例3 第三章.应用实例4 3.1 题目描述4 3.2 问题分析4 3.3符号说明4 3.4 模型假设5 3.5模型建立与求解5 3.5.1模型选用5 3.5.2模型应用及求解5 3.6模型评价5 第四章. 参考文献5 第五章.附录6

第一章.研究背景 在现实生活中中,我们经常会遇到图类问题,图是一种有顶点和边组成,顶点代表对象,在示意图中我们经常使用点或者原来表示,边表示的是两个对象之间的连接关系,在示意图中,我们使用连接两点G点直接按的下端来表示。顶点的集合是V,边的集合是E的图记为G[V,E] ,连接两点u和v的边用e(u,v)表示[1]。最短问题是图论中的基础问题,也是解决图类问题的有效办法之一,在数学建模中会经常遇到,通常会把一个实际问题抽象成一个图,然后来进行求的接任意两点之间的最短距离。因此掌握最短路问题具有很重要的意义。

第二章.理论基础 2.1 定义 最短路问题(short-path problem ):若网络中的每条边都有一个数值(长度、成本、时间等),则找出两节点,(通常是源节点和目标节点)之间总权和最小的路径就是最短路问题。最短路问题是网络理论解决的典型问题之一,可用来解决管道铺设,线路安装,厂区布局和设备更新等实际问题[2]。 2.2 单源最短路问题Dijkstra 求解: 2.2.1局限性 Dijkstra 算法不能够处理带有负边的图,即图中任意两点之间的权值必须非负。 2.2.2Dijkstra 算法求解步骤 (1).先给图中的点进行编号,确定起点的编号。 (2).得到图的构成,写出写出图的矩阵 0000(,)(,) (,) (,) n n n n u u u u G u u u u = (3).根据要求求出发点S 到终点E 的最短距离,那么需要从当前没被访问过的结点集合 unvist={u | u {1,2,3...}}n ∈中找到一个距离已经标记的点的集合中vist={u | u {1,2,3...}}n ∈的最短距离,得到这个顶点; (4).利用这个顶点来松弛其它和它相连的顶点距离S 的值 (5).重复步骤(2)和(3),直到再也没有点可以用来松弛其它点,这样我们就得到了由起点S 到其它任意点的最短距离。 2.2.3时间复杂度 时间复杂度达到 2 ()O N

汽车流量问题数学建模

汽车流量问题数学建模

————————————————————————————————作者:————————————————————————————————日期:

交通流量图模型 摘 要 本论文解决的是交通流量的问题。本文根据某城市的单行道各交叉路口流入流出量相等列出方程组,利用线性代数的相关知识,求得各交叉路口交通流量通 解为),6000(05004002006001101111且为整数≤≤??????? ?????????+????????????????--=k k x ,此结果即为交通流量图的模型。 关键词:流入等于流出 线性代数 通解

一、问题重述 在某市中心单行道交叉路口,驶入和驶出如图所示,图中给出了上下班高峰时每个道路交叉口的交通流量(以每小时平均车辆数计),利用所学知识,建立这个交通流量图的模型。 二、问题分析 城市道路网中每条道路,交叉路口车流量分析是改善评价交通情况的基础。必要时设置单行线,减少了转弯时的交通容量,解决了大量车辆长时间拥堵问题。几条单行道彼此交叉,存在交叉点分别为A、B、C、D。本题给出了上下班高峰时每个道路交叉口的每小时交通流量。对于四个点流入量等于流出量,从而得出方程组,利用增广矩阵的初等变换,求出齐次方程组的解,得到线性方程组的通解,从而得最终结果。 三、问题假设 (1)假定全部流入网络的流量等于全部流出网络的流量; (2)假定全部流入一个节点的流量等于全部流出此节点的流量.试建立数学模型确定该交通网络未知部分的具体流量. (3)假定汽车行驶的方向随机且概率相同 (4)假定每个道路交叉口的交通流量(以每小时平均车辆数计) (5)假定车与车之间是相互独立的,互不影响 四、符号说明

全美数学建模大赛A论文-环岛城市交通

摘 要 一、本文主要有三个数学模型: 1. 通过环岛的理想模型,分析推出计算环岛的最大交通能力;对比设置停让 交通标志控制以及信号灯控制对环岛通行能力。得出:当经过环岛的实际流量'Q <环岛的最大通行能力Z Q ,应用指示牌控制法较宜,做法是在交通环岛的各个进口处设置指示牌,并设置环岛内交通车流的方向指示牌。当'Z Q Q ≥时,宜采用信号灯控制法,并采用指示牌控制法予以辅助。信号控制的目的在于最大限度地提高交叉口的使用效率。 2. 引入精英蚂蚁寻优策略模型。针对城市道路交叉口的交通流特性,对单 路口交通信号多相位实时控制的模型和算法进行研究。采用能随交通需求的变化而实时变化的加权系数,将交叉口3 个优化目标函数转化为单目标函数优化的问题。为提高模型的计算速度以及降低交叉口信号机的单机计算量,采用蚂蚁算法中的精英蚂蚁寻优 3. 策略求解模型。模型的目标方程为: ? 42421411(1(/))min (,)2(1.0)[(1.0/)]/[2(1.0)](2(/)) 1.1(1.0)0.9(1.0/)/(1.0)2(3600/)(/)i i i i i i i i i i i i i i i Z l c Z x c s y Y c x c y l c s y Y c x c y c Y x c s Q ===-=?-?-?-+ +??-???---???+∑∑∑ 4. 基于精英蚂蚁寻优策略模型,对其进行优化得到理想状态下计算信号灯 系统中各路口的绿灯时间的目标方程z max (,)[2(3600/)(/)]Q i i Z x c c Y x c s =???+∑,引入算例,将算例所提供的数据代入优化得到的模型,使用软件求解。当通过交通工程师通过观察法得到平稳期、高峰期的Y,S,当预设C 值,即可通过上述计算方法获得最大的通行量的四个信号的绿灯时长配置。该优化模型可以将其应用到交通环岛各路口红绿灯时长的控制,并用交通标志配合控制交通流量。验证了模型及其求解算法是合理的和有效的。 二、据我国交通规则,转盘内车道的行驶方向为逆时针方向。我们在转盘入口处设置红 ?绿灯控制车流进出,其中当c =101s ,Y =0.68时达到控制最优,Z =6932/pcu h , ?第1x 相位绿灯亮15s ,第2x 相位绿灯亮90s ,第3x 相位绿灯亮65s ,第4x 相位 绿灯亮90s 。转盘内运动的最佳方法是各驶入环岛车道的车辆匀速行驶,右转行 ??驶车辆不参与环岛车道的交织,左转行驶车辆靠内行驶,直行车辆靠外行驶,且未? 进环岛车道的车辆须等候环岛车辆经过,才可进入环岛车道。 关键词:平面环形交叉、通行能力、精英蚂蚁寻优策略( )、多相位交通信号( )

2104数学建模美赛A 交通流 安全性 参考资料 交通量

RELATIONSHIP BETWEEN CONGESTION AND TRAFFIC ACCIDENTS ON EXPRESSWAYS AN INVESTIGATION WITH BAYESIAN BELIEF NETWORKS By Charitha Dias**, Marc Miska***, Masao Kuwahara****, and Hiroshi Warita***** 1. Introduction Accidents and congestion are two frustrating events, which can be observed very frequently on roads. Accidents, especially on expressways, can trigger heavy traffic congestions imposing huge external costs and reducing the level of service. Therefore it is obvious that accidents clearly have an impact on congestion. But the opposite, i.e. the effect of congestion on occurrence of accidents, is less studied and still questionable 11). One can argue that congestion can reduce the high speeds on expressways and as a result of that the accident rate is reduced. But in a congested road section vehicles are closely packed and as a result of that rear-end collisions, back-up collisions as well as side collisions can occur. Therefore it is important to analyze the impact on the accidents by congestion so that the policy makers can implement relevant measures to reduce the external costs of both accidents and congestion. This paper investigates the effects of traffic congestion on the occurrence of accidents on 8 radial routes (inbound direction) of Metropolitan Expressway (MEX). Data were obtained from the International Traffic Database (ITDb) 6). Two softwares, namely WinMine Toolkit 2) and MSBNx 5), which use the concept of Bayesian Belief Networks (BBN), were used to model the interrelationships among occurrence of accidents and other variables such as congestion index (CI), traffic density and volume. 2. Relationship between congestion and accidents Very limited attempts have been made, in the past by several authors, to describe the relationship between accidents and congestion. Among those, Wang et al.11) claimed that traffic congestion, controlling other factors such as flow, curvature, gradient, section length, no. of lanes etc., has little or no impact on frequency of accidents (fatal or non-fatal), using data for M25 highway. But the CI values in their data were relatively low, i.e. less than 0.5, for most of the cases. Therefore, it is questionable that those data really represented congested situations. Noland and Quddus8) used a series of negative binomial models to analyze the effect of congestion on road safety. Their results were not conclusive, suggesting that there is little effect of congestion on road safety. They suspected that this might be due to the weakness of proxies they used to represent congestion, plus might be due to the method they implemented to model relationships. While above mentioned studies claimed that there is no any significant relationship between accidents and congestion, Golob and Recker 4), using nonlinear multivariate statistical analysis, concluded that rear-end collisions are more likely to occur under heavily congested stop-and-go traffic. Though this is an indication that congestion has an effect on accidents, the * Keywords: traffic accidents, congestion, Bayesian belief networks ** Non-member of JSCE, M. Sc., Chodai Co., Ltd. (2-1-3 Higashi-Tabata, Kita-Ku, Tokyo, Japan 114-0013, Tel: +81-3-3894-3236, Fax: +81-3-3894-3265) *** Member of JSCE, Lecturer, Institute of Industrial Science, University of Tokyo (4-6-1 Komaba, Meguro-ku, Tokyo, Japan 153-8505, Tel: +81-3-5452-6419, Fax: +81-3-5452-6420) **** Member of JSCE, Professor, Institute of Industrial Science, University of Tokyo (4-6-1 Komaba, Meguro-ku, Tokyo, Japan 153-8505, Tel: +81-3-5452-6419, Fax: +81-3-5452-6420) ***** Member of JSCE, Planning and Environment Department, Metropolitan Expressway Co., Ltd. (1-4-1 Kasumigaseki, Chiyoda-ku, Tokyo, Japan 100-8930, Tel: +81-3-3539-9389, Fax: +81-3-3502-2412)

相关文档
最新文档