电化学聚合研究进展 (1)

电化学聚合研究进展 (1)
电化学聚合研究进展 (1)

实验讲义- 计时电流、电化学聚合

电位分析 实验七计时电流法 一、实验目的 1、了解计时电流法的特点和基本实验技术; 2.、掌握极限扩散电流的基本理论; 3.、了解采样电流伏安法的原理。 二、基本原理 计时电流法是极谱法和伏安法的基础。它是记录当电极电位从初始电位阶跃到某一指定电位时,电流随时间的变化曲线。计时电流法又分为单电位阶跃,双电位阶跃及多电位阶跃等。计时电流法是研究极限扩散电流的工具,同时它又是常用的电化学暂态分析方法之一。当电流电位从初始电位阶跃至极限电极电位时,不管电极反应是否可逆,电流与时间的关系式均可以表示为Cottrell公式: i d(t)=nFAD o1/2C o*/(лt)1/2 (1) (1)式中i d(t)为极限扩散电流,n为电极反应的电子交换数,F为法拉第常数,A为电极的有效面积,Do为电极反应物(氧化态)的扩散系数,Co*为电极反应物的本体浓度,t为反应时间。当电极的有效面积不变时,(1)式可以简化为: i d(t)=kt-1/2(2) 即极限扩散电流随t-1/2衰减。对(1)式进行积分,得到 Q(t)=∫t0 i d(t)dt=2nFAD o1/2C o*t1/2/л1/2=k’t1/2 (3) 即Q(t) 与t1/2成正比。如果记录Q(t)—t曲线,称为计时电量法。另外,由(1)式可知: i d(t)∝C o*(4) 即极限扩散电流与溶液的本体浓度成正比这也是极谱法定量分析的依据。 三、仪器与试剂 仪器LK98BⅡ型电化学工作站(天津市兰力科公司);三电极系统:玻碳电极为工作电极,Ag/AgCl电极(或饱和甘汞电极)为参比电极,铂电极为对极(铂丝、铂片、铂柱电极均可); 试剂 1.0×10-3mol/L K3[Fe(CN)6]-K4[Fe(CN)6] (铁氰化钾)溶液(含0.2mol/L KNO3)。

电化学工程教学大纲

《电化学工程》教学大纲 课程编号 : 课程名称 :电化学工程/ 学时/学分:40/2.5 先修课程 :物理化学、有机化学、分析化学、电工学等 适用专业 :化工、制药、生物工程、轻工等 开课学院(部)、系(教研室):化工系化学工程系工艺研究所 一、课程的性质与任务 应用电化学是将有关电化学原理应用于与实际生产过程相关的领域,这些领域包括:电化学新能源、金属的表面精饰、无机、有机化合物的电解合成、金属的电化学腐蚀及防护、电化学传感器。课程的主要任务就是让学生掌握电化学理论基础知识,了解电化学理论如何应用在上述领域。使学生具备较强的理论基础和综合应用知识的能力。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1电化学理论基础:电化学体系的基本单元;电化学过程热力学;电极/溶液界面的性能;电极反应动力学;电化学研究方法介绍 2电催化过程:电催化原理;氢电极反应的电催化;氧电极反应的电催化;有机反应的电催化 3化学电源:化学电源的主要性能、选择及应用;一次电池;二次电池;燃料电池。 4金属的表面精饰:金属电沉积和电镀原理;电镀过程;电泳涂装 5电解工业:无机物的电解,工业氯碱工业;水的电解 有机物的电解合成,有机电解合成的发展方向,乙二氰的电解合成 6电化学传感器:控制电位电解型气体传感器;生物电化学传感器 7电化学腐蚀与防护:金属的电化学腐蚀;腐蚀电池;电位-PH图及其在金属防护中的应用;金属的电化学防护方法 (二)基本要求 1电化学理论基础:了解电解池的组成;可逆电化学过程与不可逆电化学过程;双电层理论;金属的零电荷电位;电极反应的种类、机理及影响因素。学会电化学研究的几种基本方法。 2电催化过程:电催化的类型、原理、影响因素及性能评价;氧电极反应的电催化;有机反应的电催化的机理 3化学电源:了解化学电源的主要性能、选择及应用;掌握一次电池;二次电池;燃料电池的机理,了解它们的结构、应用及研究现状。 4金属的表面精饰:掌握金属电沉积和电镀、电泳涂装的原理,了解电镀;电泳涂装工艺过程及相关技术。 5电解工业:掌握工业氯碱工业、水的电解、乙二氰的电解合成几个有代表性的电解工艺和机理。 6电化学传感器:了解控制电位电解型气体传感器;生物电化学传感器的电化学原理及两种传感器的应用。 7电化学腐蚀与防护:了解金属的电化学腐蚀的基本理论和过程,腐蚀倾向判断及电化学防护方法。

3 氧化还原与电化学

3 氧化还原与电化学 一、实验目的 1.了解原电池的组成及其电动势的粗略测定; 2.认识浓度、介质的酸碱性对氧化还原的影响; 3.认识一些中间价态物质的氧化还原性; 4.了解电化学腐蚀的基本原理及其防止的方法。 二、实验原理 1.原电池组成和电动势 利用氧化还原反应产生电流的装置叫做原电池。 原电池负极氧化反应 正极还原反应 正负极间必须用盐桥连接。 原电池电动势应为 2.浓度、介质对电极电势和氧化还原反应的影响 (1)浓度对电极电势的影响 例如: (2)介质的酸碱性对电极电势的影响 例如: (a) 2Zn e -2Zn +=22Cu e Cu ++=E E ??=正 - 负 22Zn e Zn +-=2220.059 Zn /Zn Zn /Zn lgc(Zn )2+θ++?=?+ 32C 1O 6H 6e C 13H O -+- +++? 1.45V θ?=3 3 63 C1O /C1C1O /C1[c(C1O )/c ][c(H )/c ]0.0591g 6[c(C1)/c ] - - -- - +-=+θθθ ??

(b) (c) (d) 3.物质的氧化还原性 例如 4.电化学腐蚀及其防止 吸氧腐蚀阳极 阴极 差异充气腐蚀 表面处高大,为阴极; 深处低,小,为阳极。 防腐蚀可用牺牲阳极法、外加电流法、缓蚀剂法。乌洛托品(六次甲基四胺)可作钢铁在酸性介质中的缓蚀剂。 三、仪器和药品 1.仪器 直流伏特计(0~3 V )(公用)盐桥(公用)① 242MnO 8H 5e Mn 4H O -++ +++?22448 42MnO /Mn MnO /Mn [c(MnO )/c ][c(H )/c ]0.0591g 5[c(Mn )/c ] -+-+ -θ+θθ +θ?=? +422MnO 2H O 3e MnO (s)4OH -- +++?MnO /MnO 4 2 4 2 44 MnO /MnO [c(MnO )/c ]0.0591g 3[c(OH )/c ]---θ θ -θ?=?+()244MnO e MnO --????→+←????强碱介质224 444 42MnO /MnO MnO /MnO 4[c(MnO )/c ]0.0591g [c(MnO )/c ] -----θ θ -θ?? +?2242PbS 4H O HAcPbSO ()4H O +↓+白色2422222MnO 6H 5H O 2Mn 5O 8H O -++ ++=++2Fe Fe 2e + =+22O 2H O 4e 4OH - ++=22 2O 4 O /OH O /OH p /p 0.059 1g 4[c(OH )/c ]- - θθ -θ?=? +2 O p 2 /O OH ?- 2 O p 2 /O OH ?-

有机电化学合成及研究进展

有机电化学合成及其发展方向 摘要 介绍有机电化学合成的原理,研究内容。有机电化学合成与传统合成的优势,介绍中国有机电化学合成的发展以及有机电化学的新进展。有机电化学的高效、经济、无污染性。还有有机电化学合成的若干发展方向。 关键词 有机电化学发展方向绿色化学 Review on organic electrosynthesis and its Development trend Abstract In this paper,the principle and the research method of organic electro- ynthesis---one of the most efficient green technology was discussed. The principle of organic electrosynthesis, applications, and the advantages co- mparing to the tradition organic synthesis were expounded. Introduction to Chinese organic electrosynthesis development and advancement of organic electrochemistry. Organic electrosynthesis of high efficiency, no pollution. There are several development directions of organic electrosynthesis. Key words:organic electrosynthesis;developments of research;Green Chemistry; 引言部分 以电化学方法合成有机化合物称为有机电合成,它是把电子作为试剂,通过电子得失来实现有机化合物合成的一种新技术,这是一门涉及电化学、有机合成及化学工程等学科的交叉学科。由于电化学早已有之,合成技术、化学工程技术和化学材料不断更新,因而,有人称之为“古老的方法,崭新的技术”[1]。 有机电合成是有机合成的一个分支学科,有其独特的优点和优势。有机电合成与一般有机合成相比,有机电合成反应是通过反应物在电极上得失电子实现的,一般无需加入氧化还原试剂,可在常温常压下进行,通过调节电位、电流密度等来控制反应,便于自动控制。这样,简化了反应步骤,减少物耗和副反应的发生。可以说有机电合成完全符合“原子经济性”要求,而传统的合成催化剂和合成“媒介”是很难达到这种要求的。从本质来说,有机电合成很有可能会消除传统有机合成产生环境污染的根源。有机电化学合成也是一种绿色化学,中国走可持续发展战略,在化学合成中有机电合成将会占很大比例。将是未来的合成化学的

电化学直接还原

In situ synchrotron di?raction of the electrochemical reduction pathway of TiO 2q R.Bhagat a,*,D.Dye b ,S.L.Raghunathan b ,R.J.Talling b ,D.Inman b ,B.K.Jackson b , K.K.Rao c ,R.J.Dashwood a a University of Warwick,Coventry CV47AL,UK b Imperial College,London SW72AZ,UK c Metalysis,Rotherham S635DB,UK Received 2November 2009;received in revised form 17May 2010;accepted 20May 2010 Available online 16June 2010 Abstract Despite over ten years of work into the low-cost electrowinning of Ti direct from the oxide,the reduction sequence of TiO 2pellets in molten CaCl 2has been the subject of debate,particularly as the reduction pathway has been inferred from ex situ studies.Here,for the ?rst time white beam synchrotron X-ray di?raction is used to characterize the phases that form in situ during reduction and with $100l m resolution.It is found that TiO 2becomes sub-stoichiometric very early in reduction,facilitating the ionic conduction of O ions,that CaTiO 3persists to nearly the end of the process and that,?nally,CaO forms just before completion of the process.The method is quite generally applicable to the in situ study of industrial chemical processes.Implications for the industrial scale-up of this method for the low-cost production of Ti are drawn. ó2010Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved. Keywords:Electrochemistry;Titanium;Synchrotron radiation;XRD;Phase transformation kinetics 1.Introduction In the FFC Cambridge process,metal oxides are electro-chemically reduced to metal using a molten chloride ?ux [1].Currently the Kroll process is used to produce Ti from rutile [2];potentially,the FFC process may lead to a step change in the cost of extraction of this and other alloy systems. The process involves the progressive reduction and deox-idation of a porous TiO 2pellet cathode in a molten halide salt [1].At the cathode TiO 2is reduced to Ti.The oxide ions dissolve into CaCl 2and then migrate to a C anode,forming CO 2and CO.This reduction pathway has been studied using pellet reductions [3],metal-cavity electrode [4–6]and thin-?lm electrode experimentation [7,8].Using cyclic voltamme-try and X-ray di?raction (XRD)analysis of thin ?lms after each event,the electrochemical events C4,C3,C20 ,C2and C1,corresponding to reactions (1)–(6),respectively,have been identi?ed during reduction.Despite being observed in XRD,the formation of CaTiO 3was not observed on the vol-tammograms and was therefore believed to form via a chem-ical reaction [9]. 2TiO 2t2e à!Ti 3O 5tO 2àe1T2Ti 3O 5t2e à!3Ti 2O 3tO 2à e2TCaTiO 3t2e à!Ca 2ttTiO t2O 2àe3TTi 2O 3t2e à!2TiO tO 2àe4TTiO t2e à!2TiO tO 2àe5TTiO 2tCa 2ttO 2à!CaTiO 3 e6T 1359-6454/$36.00ó2010Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.actamat.2010.05.041 q R.J.D.and D.D.conceived and designed the study.B.K.J.,R.J.D.and D.D.designed the apparatus,which B.K.J.built and commissioned.R.B.,R.J.D.,D.D.,S.L.R.,R.J.T.and K.K.R.conducted the experiments.R.B.and S.L.R.analysed the data with support from R.J.T.,R.J.D.and D.D.The paper was written by R.B.with contributions and editing from R.J.D.,D.D.,D.I.,R.J.T.and S.L.R.* Corresponding author. E-mail address:r.bhagat@https://www.360docs.net/doc/d8727163.html, (R.Bhagat). https://www.360docs.net/doc/d8727163.html,/locate/actamat Acta Materialia 58(2010) 5057–5062

实验七--氧化还原反应与电化学

实验七 氧化还原反应与电化学 一.实验目的 1. 了解测定电极电势的原理及方法 2. 掌握用酸度计测定原电池电动势的方法 3. 了解原电池、电解池的装置及作用原理 二.实验原理 1.电极电势的测定 E (Zn 2+/Zn)电极电位的测定 (-) Zn ?ZnSO 4(0.10mol·dm -3)??KCl(饱和)?Hg 2Cl 2,Hg (Pt) (+) 测测甘汞E E E E E E E E -=-=-=-=+++-+V 2415.0)/Zn Zn () /Zn Zn (V 2415.0)/Zn Zn ()(222 ()()() ++++ =22O 2Zn lg 216059.0Zn Zn Zn Zn c E E 理论 2.浓度对电极电势的影响 对于任意一个电极反应 氧化型物质 + z e - 还原型物质 )()(lg 05916.0)O/R ()O/R (还原态氧化态c c z E E += c (氧化态)增大或c (还原态)减小,E (O/R)变大;c (氧化态) 减小或c (还原态)增大,E (O/R) 减小。对比下面三个原电池 (1)(-) Zn ?ZnSO 4(0.10mol·dm -3) ║ CuSO 4(0.10mol·dm -3)?Cu (+) (2)(-) Zn ?ZnSO 4(0.10mol·dm -3) ║ [Cu(NH 3)4]2+, NH 3·H 2O ?Cu (+) (3)(-) Zn ?[Zn(NH 3)4]2+, NH 3·H 2O ║ CuSO 4(0.10mol·dm -3)?Cu (+) 电池(2)中正极的氧化态生成配离子使c (氧化态)变小,则正极的电极电势变小;(3)中负极的氧化态生成配离子使c (氧化态)变小,则负极的电极电势变小,故电动势 E 3 >E 1 >E 2。 3.酸度对电极电势的影响 含氧酸盐的氧化性随介质溶液的酸度的增加而增强,如 O H 7Cr 2 e 6H 14O Cr 23272+=+++-+- ) Cr ()H ()O Cr (lg 605916.0)/Cr O Cr ()/Cr O Cr (321427232723272++-+-+-?+=c c c E E

电化学合成技术研究进展

电化学合成技术研究进展 摘要:电化学合成作为一种新型的合成方法,其研究和工业应用进展迅速,本文重点介绍了在溶液体系和熔盐体系中一些材料的电化学合成的合成工艺研究进展。最后展望了电化学合成的发展前景。 关键词:电化学合成氧化还原合成工艺 1溶液体系的电解合成 1.1 金属及合金的电沉积 金属电沉积,主要是在外加电场的作用下,金属或其合金从电解质中以晶体形式沉积。它包含了电镀、电提取、电解精炼等多种电沉积方式,是目前电化学合成金属材料的主要方法之一。其中电镀要求沉积金属与基体结合牢固,结构致密,厚度均匀,多用于表面工程处理,合成膜材料;其余两种方法则对合成产物与基体的结合力无特殊的要求,多用作材料的制备。用电解法制备的金属产品的优点主要是:产物的纯度高,控制电解条件可制得不同聚集态的金属,另外还可制备合金、金属镀层膜材料、有色金属的冶炼和提纯。 1.2 特殊高价态元素化合物的电氧化合成 19世纪初期,Rheinold和Erman发现电是一种强有力的氧化剂和还原剂。若要进行一个氧化反应,就必须找到一个强的氧化剂。但是若需要制备这些强的氧化剂,则很难再找到更强的氧化剂,因此,必须采用电化学方法。高锰酸钾是重要的锰化合物之一,目前,电解法制备高锰酸钾的优点是利用率高、能耗少。由于在电解过程中,阳极表面容易形成一层钝化膜,阻止阳极的进一步溶解,导致电流效率不高。Bouzek分别采用电解前阳极的阴极极化和交直流叠加的方法,提高了电解效率。Denvir等发现随着阳极中碳含量的增加,相应制备的高铁酸盐产率也有所提高。 1.3 低价态元素化合物的电还原合成 阳极能够制备高价态的氧化剂,而阴极则可以进行电还原反应,制备特殊低价态的元素化合物。曾海燕以活性炭纤维作为阴极,钛钌网作为阳极,无水硫酸钠作为溶液电解质,通过硫酸和氢氧化钠调节溶液的pH值,保持恒温的条件下电解后制得H2O2。半导体材料Si 的制备目前主要依据西门子法获得,林会会选用价格相对低廉的SUP13Cr不锈钢作为工作电极,在室温条件下非水溶剂碳酸丙烯酯中利用电化学方法还原SiCl 4在室温下获得沉积Si。范小振利用草酸的电还原成功地制备了羟基乙酸,是一种有机合成中间体和化工产品,应用很广,可用于医学工程材料和高分子材料等领域。一种重要的有机精细化工中间体-对氨基苯酚(PAP)可利用硝基苯电解还原法制取,与传统的化学制备方法相比具有污染较少,产品品质高,工艺简单等优点。但是这种方法的关键问题在于硝基苯在介质中的溶解度很小,而电解合成中只有溶解的硝基苯才能有效的参与反应,Noman在含7%的硝基苯中,以硫酸作支持电解质的电解液中加入氧化二甲基十二烷基胺,作为表面活性剂,以Cu(Hg)为阴极,PAP的产率高达95%。目前,电化学方法合成有机物的报道较多,主要是利用较为廉价的有机原料(如草酸,葡萄糖等)通过电还原制备附加值较高的电化学中间体,这种方法工艺简单,节能环保,应该在以后的生物医学、高分子材料等领域发挥越来越大的作用。1.4 纳米金属氧化物的电化学合成 电化学合成是制备纳米材料的一种新思路,能够有效地控制合成产物的成分和形貌。金属氧化物是一类重要的功能材料,常需要达到纳米尺度才能表现其具备独特的物化性能。如廖学红在不同配位剂存在下,用电合成方法制备出球形银纳米粒子和树枝状的纳米银;Switzer率先介绍了用电化学的方法合成陶瓷薄膜和多晶粉体,并电解硝酸铈合成了纳米级CeO2粉体。周幸福率先实现了在非水体系中电解金属直接水解法制备纳米NiO 粉体。

高中化学 氧化还原反应和电化学

第六章 氧化─还原反应和电化学 Chapt e r 6 Oxidation-Reduction Reactions & Electrochemistry 本章研究另一类化学反应──氧化─ 还原反应(有电子转移的反应) §6-1 氧化─ 还原反应 Oxidation —Reduction Reactions 一、氧化数(Oxidation Number ) 1.氧化数是一个经验值,是一个人为的概念。 2.引入此概念,有以下几方面的应用: (1) 判断是否发生氧化──氧化数升高、氧化反应、还原剂 reducing agent ( reductant );氧化数降低、还原反应、氧化剂 oxidizing agent ( oxidant )。 (2) 计算氧化──还原当量 (3) 配平氧化──还原反应方程式 (4) 分类化合物,如Fe ( Ⅲ )、Fe (Ⅱ);Cu (Ⅰ)、Cu (Ⅱ)。 引入氧化数,可以在不用详细研究化合物的结构和反应机理的情况下,实现上述四点。 3.怎样确定氧化数 (1) 在离子化合物中,元素的氧化数等于离子的正、负电荷数。 (2) 在共价化合物中,元素的氧化数为两个原子之间共用电子对的偏移数。 a .在非极性键共价分子(单质)中,元素的氧化数为零,如P 4、S 8、Cl 2中P 、S 、Cl 的氧化数都为零; b .在极性键共价分子中,元素的氧化数等于原子间共用电子对的偏移数,例如: 11H :F +-,1 1 11(-2) H :O :H +--+,11 0011(1) H :O :O:H +--+-,11 +11 (0) H ::F O +--。 (3) 具体规定: a .单质的氧化数为零,例如P 4、S 8中P 、S 的氧化数都为零,因为P -P 和 S -S 键中共用电子对没有偏移; b .除了在NaH 、CaH 2、NaBH 4、LiAlH 4中氢的氧化数为-1以外,氢的氧 化数为+1; c .所有氟化物中,氟的氧化数为-1; d .氧的氧化数一般为-2,但有许多例外,例如2O (1/2)--、22O (1)- -、3O (1/3)--、 21/2O ()++、2OF 2)(+等; 目前元素的最高氧化数达到+8,在OsO 4、RuO 4中,Os 和Ru 的氧化数均 为+8,其它元素的最高氧化数至多达到其主、副族数。例如:Na 2Cr 2O 12和CrO 5 中,Cr 的氧化数为+6,因为这些化合物中有22O - (O 的氧化数为-1)存在;

电化学发展史

电化学发展史 作者:李京遥 院系:测绘学院 专业:测绘工程 年级:测绘1304 学号:311305010414 日期:2014年12月12日

摘要: 电化学是物理化学的一个重要组成部分,它不仅与无机化学、有机化学、分析化学和化学工程等学科相关,还渗透到环境科学、能源科学、生物学和金属工业等领域。 电化学作为化学的分支之一,是研究两类导体(电子导体,如金属或半导体,以及离子导体,如电解质溶液)形成的接界面上所发生的带电及电子转移变化的科学。 关键词:电化学的产生、电化学的发展、电化学的前景 一、16-17世纪:早期的相关研究 公元16世纪标志着对于电认知的开始。在16世纪50年代,英国科学家William Gilbert (威廉·吉尔伯特,1540-1605)花了17年时间进行磁学方面的试验,也或多或少地进行了一些电学方面的研究。吉尔伯特由于在磁学方面的开创性研究而被称为“磁学之父”,他的磁学研究为电磁学的产生和发展创造了条件。 吉尔伯特按照马里古特的办法,制成球状磁石,取名为“小地球”,在球面上用罗盘针和粉笔划出了磁子午线。他证明诺曼所发现的下倾现象也在这种球状磁石上表现出来,在球面上罗盘磁针也会下倾。他还证明表面不规则的磁石球,其磁子午线也是不规则的,由此认为罗盘针在地球上和正北方的偏离是由陆地所致。他发现两极装上铁帽的磁石,磁力大大增加,他还研究了某一给定的铁块同磁石的大小和它的吸引力的关系,发现这是一种正比关系。吉尔伯特根据他所发现的这些磁力现象,建立了一个理论体系。他设想整个地球是一块巨大的磁石,上面为一层水、岩石和泥土覆盖着。他认为磁石的磁力会产生运动和变化。他认为地球的磁力一直伸到天上并使宇宙合为一体。在吉尔伯特看来,引力无非就是磁力。吉尔伯特关于磁学的研究为电磁学的产生和发展创造了条件。在电磁学中,磁通势单位的吉伯(gilbert)就是以他的名字命名,以纪念他的贡献。 1663年,德国物理学家Otto von Guericke(奥托·冯·格里克1602-1686)发明了第一台静电起电机。这台机器由球形玻璃罩中的巨大硫磺球和转动硫磺球用的曲轴组成的。当摇动曲轴来转动球体的时候,衬垫与硫磺球发生摩擦产生静电。这个球体可以拆卸并可以用作电学试验的来源。 二、18世纪:电化学的诞生 在18世纪中叶,法国化学家夏尔·杜菲发现了两种不同的静电,他将两者分别命名为“玻璃电”和“松香电”,同种相互排斥而不同种相互吸引。杜菲因此认为电由两种不同液体组成:正电“vitreous”(玻璃),以及负电“resinous”(树脂),这便是电的双液体理论,这个理论在18世纪晚期被本杰明·富兰克林的单液体理论所否定。 1781年,法国物理学家Charles Augustin de Coulomb (夏尔·奥古斯丁·库仑1736-1806)在试图研究由英国科学家Joseph Priestley (约瑟夫·普利斯特里1733-1804)提出的电荷相斥法则的过程中发展了静电相吸的法则。 1771年,意大利生理学家、解剖学家Luigi Galvani(路易吉·伽伐尼1737-1798)发现蛙腿

电化学合成聚苯胺

电化学合成聚苯胺复合薄膜及其抗腐蚀性能研究 专业:**** 学号:09020*** 姓名:*** 指导教师:** 教授 摘要 采用循环伏安法(CV)在不锈钢基体(SS)表面电化学合成聚苯胺(PANI)以及掺杂态PANI/Co2+复合薄膜。利用傅里叶红外光谱(FT-IR)、X-衍射(XRD)等手段对薄膜的微观结构进行表征;在0.5 mol·L-1 H2SO4中,通过循环伏安法(CV)、交流阻抗法(EIS)、动电位极化曲线法(Tafel曲线)等方法考察了不同合成条件对聚苯胺、掺杂态PANI/Co2+薄膜抗腐蚀性能的影响。结果表明:酸浓度、苯胺浓度、掺杂剂离子浓度、扫描速度、扫描圈数等对合成聚苯胺薄膜的性质有影响。在0.5 mol·L-1硝酸、0.2 mol·L-1苯胺、0.1 mol·L-1硝酸钴下,制得的掺杂态聚苯胺薄膜膜层致密,厚度均匀,较单纯聚苯胺膜表现出最佳的抗腐蚀性能。 关键词:聚苯胺;电化学合成;抗腐蚀性 Abstract Polyaniline (PANI ) film and the Polyaniline composite film doped nickel ions(PANI/Co2+) was synthesized in stainless steel substrate(SS) by cyclic voltammetry(CV). The structure and morphology of the films were characterized by fourier transform infrared (FTIR), X-ray diffraction(XRD) techniques. The electrochemical properties of the films composited under different conditions were investigated by cyclic voltammetry, Tafel polarization curve(Tafel)and electrochemical impedance spectroscopy (EIS) in 0.5 mol·L-1 H2SO4 electrolyte. The results suggest that the corrosion resistance of the composite films were affected by the the concentration of the acid, aniline and dopants together with the scan ning speed, and number of scan cycles. In a word, the doped polyaniline thin film prepared in 0.5mol·L-1nitric acid,and 0.2mol·L-1aniline with 0.1 mol·L-1Co(NO3)2 showed the best corrosion resistance than pure polyaniline film. Keywords: Polyaniline; Electrochemical synthesis; anti-corrosion 一、前言 导电高分子聚苯胺由于其原料廉价易得,合成容易且性能稳定等优点,成为世界研究的一个热点,被开发应用到多个领域如用作电极材料、防腐材料、防静电材料方面[1]。目前关于电合成过渡金属离子掺杂聚苯胺复合薄膜的耐蚀性能的研究报道还比较少[2]。本文通过对本征态聚苯胺和掺杂态PANI/Co2+复合型导电薄膜在不同合成条件下的抗腐蚀能力研究,力图找到较优的合成条件,提高聚苯胺的抗腐蚀性。 二、实验 采用循环伏安法在CHI660B电化学工作站 (上海辰华仪器有限公司) 上进行苯胺、掺杂态PANI/Co2+薄膜的电化学聚合。实验为三电极体系,304不锈钢片(25mm×10mm×0.5mm)为工作电极,201不锈钢片(25mm×15mm×0.5mm)为辅助电极,饱和甘汞电极(SCE)为参比电极。不锈钢片经砂纸打磨后,再依次用丙酮、无水乙醇、蒸馏水超声清洗干净,吹干待用。 聚苯胺电解液的组成为:0.2mol·L-1的苯胺和0.5 mol·L-1的硝酸,扫描电位范围:先在-0.2~1.2V扫描2个循环,再在-0.2~1.0V扫描25个循环,扫描速率20 mV·s-1。掺杂态PANI/Co2+电解液的组成为:0.2 mol·L-1的苯胺、0.5mol·L-1的硫硝酸和0.1mol·L-1硝酸钴,参数与上述相同。上述所有薄膜沉积面积均为1cm2,单面沉积。聚合完毕取出工作电极,依次用0.5mol·L-1硝酸和蒸馏水清洗,以除去未聚合和低聚合度的物质。将合成的样品材料的工作电极在真空干燥箱以60℃~80℃干燥,烘干后待用。 用傅立叶红外光谱仪((FT-IR ,Cocolet 210型,美国)测定样品FT-IR谱图; X射线衍射仪(D/MAX-2400X,日本理学公司)(CuKa)分析样品物相结构。 采用上海辰华CHI660B电化学工作站对材料进行循环伏安、恒流充放电和交流阻抗性能测试。将所得的沉积有聚苯胺的钢片作为工作电极,铂电极为辅助电极,饱和甘汞电极为参比电极组成三电极体系。电解液为0.5 mol·L-1的硫酸溶液,测定电极材料的循环伏安曲线(电压范围(-0.2~1.0V)、交流阻抗(测试频率范围0.01Hz~100kHz,振幅为5mV)和动电位极化曲线。 三、结果与讨论 (一)聚苯胺及掺杂态PANI/Co2+的电化学合成

电化学工程

电化学工程 一、专业介绍 1、学科简介 电化学工程属于自设专业(自设专业是指在教育部专业目录中没有、而学校根据自己的特点和社会发展的需要设立的专业)、属于冶金工程一级学科下的二级学科。本专业学生主要学习电化学工业生产中所必需的基础理论和各种类型电化学反应器的设计方法,学习将小型实验成功地向电化学过程实现工业化生产的方法,优化生产条件以取得最佳经济效益的途径。 2、研究方向 01电化学基础理论02冶金过程电化学03化学电源 04材料电化学05电化学腐蚀与防腐06电镀与化学镀 07新型电池材料(含锂离子电池、镍氢电池、燃料电池、太阳能电池等电池材料)08新型电极材料09环境电化学 10电化学合成11电催化与电化学节能 12电化学过程的计算机仿真、优化与控制 3、考试科目 ①101政治②201英语 ③301数学一④912无机化学或976冶金原理 (注:研究方向及考试科目以中南大学为例) 二、专业培养目标 1.掌握物理化学、化学工程学、工程力学、电工学与工业电子

学、理论电化学与应用电化学等电化学工程的必需的基础理论、基础知识和基本技能; 2.具有设计电化学反应器和设计工艺流程的能力; 3.具有组织与管理电化学过程的生产与监控和解决生产中出现的问题的能力; 4.具有电化学产品性能检测及产品质量控制的能力; 5.具有对新工艺、新技术、新材料研究与开发的能力; 三、与此专业相近的自设专业 应用电化学工程 四、相同一级学科下的其他专业 冶金物理化学、钢铁冶金、有色金属冶金 五、招收此自设专业的院校及开设年份 中南大学(2002年) 六、就业方向 毕业生既可从事电化学(化学电源、电镀、电解等)金属腐蚀与防护等领域内的生产教学科学研究工作,又可从事与电化学结合的边缘科学的研究工作,如光电化学、生物电化学等。 七、就业前景 电化学是国民工业的一个主题技术之一,涉及到生活的很多方面。该专业毕业生不用怕找工作难,而且待遇也还行,不过化学这东西始终是有毒的,如果是女生最好不要选择该专业,而且该专业的女生相对于男生来说就业比较困难。但该专业相对有机来说还算好一

氧化还原反应与电化学

第一章氧化—还原反应·电化学 1. 已知X的氧化数为+1; +2; +3; +4; +5; +3/4。试写出X在这些氧化数下的氧化物分子式。 2. 写出下列分子或离子中,硫的氧化数: S22-,HSO4-,S2O32-,SO3,H2S,S4O62-,SO2,S8。 3. 写出下列分子或离子中,锰的氧化数: MnF2,K4Mn(CN)6, K2MnO4, Mn2(CO)10, MnO4-, MnO2, Mn2O7, Mn(CO)5I。 4. 写出下列各分子或离子中,P的氧化数: H3PO4,P4O6,P4O10,P4,P2H4,H3PO3,HPO42-,HPO3,PH4+。 5. 用氧化数法配平下列反应方程式: (1) H2S + SO2→S + H2O (2) NH3 + NO →N2 + H2O (3) CuS + HNO3→Cu(NO3)2 + S + NO + H2O (4) CuFeS2 + SO2 + HCl →CuCl2 + FeCl2 + S + H2O (5) Zn + AgO + H2O →Zn(OH)2 + Ag2O (6) I2 + Cl2 + H2O →HIO3 + HCl (7) BaO2 + HCl →BaCl2 + H2O + Cl2 (8) K2Cr2O7 + FeSO4 + H2SO4→Cr2(SO4)2 + Fe2(SO4)3 + K2SO4 + H2O (9) KClO3→KClO4 + KCl

(10) As2S3 + HNO3 + H2O →H3AsO4 + H2SO4 + NO 6. 用氧化数法配平: (1) K2CrO4 + S →Cr2O3 + K2SO4 + K2O (2) KMnO4 + C12H22O11→CO2 + MnO2 + H2O + K2CO3 (3) HCNS + KClO3→CO2 + NO + SO2 + KCl + H2O (4) C3H8 + O2→CO2 + H2O (5) KMnO4 + H2C2O4→K2CO3 + MnO2 + H2O + CO2 7. 用离子?电子法配平如下反应方程式: (1) NO2- + Al →NH3 + Al(OH)4-(在OH-中) (2) Cu(NH3)42+ + CN-→Cu(CN)32-+ CNO-+ NH3(在OH-中) (3) HIO →IO3-+ I-+ H2O (在OH-中) (4) CN-+ O2→CO32-+ NH3(在OH-中) (5) MnO4-+ H2O2→Mn2+ + H2O + O2(在H+中) (6) Zn + CNS-→Zn2+ + H2S + HCN (在H+中)8. 用离子?电子法配平下列各反应方程式: (1) MnO4-+ Sn2+→Sn4+ + Mn2+(在H+中) (2) BrO3-+ Br-→Br2(在H+中) (3) Cr2O72-+ SO32-→SO42-+ Cr3+(在H+中) (4) Cr3+ + H2O2→CrO42-+ H2O (在OH-中) (5) Fe + NO2-→FeO22-+ NH3(在OH-中)

电化学工程课程复习思考题 - 2013

《电化学工程》复习思考题---电化2010级 1、⑴离子淌度、离子迁移数的基本概念?(7) ⑵电解液电导率(7)、摩尔电导的基本概念?(10) ⑶影响电解液电导率的因素有哪些?(8-9) 2、⑴平衡电极电位基本含义是什么?(14) ⑵标准平衡电极电位的基本含义是什么(14)? 3、电极电位的测量中参比电极应如何选择?(14) 4、⑴何谓电池的电动势?(11) ⑵电解池的理论分解电压?(12) ⑶电池标准电动势如何计算?(12) ⑷“电动势的温度系数”与“电化学反应器工作时的热效应”有什么关系?(13) 5、一个完整的电极过程包括哪些基本单元步骤?何为电极过程的速率控制步骤?(25) 6、电极过程的基本特征是什么?(26) 7、为什么可以用电流密度来表示电解过程的反应速率?(27) 8、⑴电极极化的基本含义是什么?(24) ⑵何为理想极化电极(19)、不极化电极(20)? ⑶阳极极化与阴极极化的特征有什么区别? ⑷何为电极的过电位?(25) 9、何为极化曲线?(25)电化学中通常采用哪几种极化曲线?(25) 10、⑴“电化学极化”基本动力学方程(Butler-V olmer方程)是什么?如何理解?(29) ⑵“电化学极化”的基本动力学方程在强极化区、弱极化区的简化方式?(29) ⑶浓差极化条件下的动力学方程?(49) ⑷电化学极化、浓差极化共同作用下的动力学方程?(50) 11、⑴液相传质的基本方式有哪几种?其对应的质量传递方程式?(93-94) ⑵稳态扩散的基本概念?(33) 理想稳态扩散条件下,电流密度如何计算?(34) ⑶对于O + ne→ R 的电极反应,当R的活度为1 时,电极的浓差极化方程式?(35) ⑷何为对流扩散?(35)

电化学工程

电化学工程(课程)教学大纲 一、课程信息 二、课程内容 1、课程教学目标 “电化学工程”是应用化学专业的专业任选课。电化学工程学是现代化学工程科学中的新分支,萌发于20世纪40年代末,60年代末形成初步的理论框架,电化学工程学的问世,推动电化学工业进入崭新的发展时期。通过本课程的学习,能较扎实地掌握电化学工程学的重要概念与原理,加强科学与工程原理的进一步融合,培养科学思维和利用基础理论知识解决实际问题的能力,了解和掌握工业电化学过程的开发、设计、操作与管理的重要概念,培养电化学工业生产的管理和设计能力,培养工业电化学过程的开发与研究能力。 2、教学内容基本要求 (1)绪论:要求了解电化学工业的概况、特点与发展方向。 (2)电化学过程设计与优化:要求掌握工业电化学过程的设计、管理与经济优化的重要概念。 (3)电化学热力学与动力学:要求掌握膜电位、非反应物种吸附的影响和电催化作用与电极材料。 (4)物料衡算与能量衡算:要求掌握物料衡算、电压衡算、能量衡算的计算

方法与影响因素。 (5)电化学体系的传输过程:要求掌握在三维电极、隔膜和离子交换膜中的传质过程。 (6)电流分布:要求了解三维电极中的电流和电位分布。 (7)电化学反应器设计:要求了解几种电化学反应器的结构及特点、结构设计和结构材料。 3、实践(含实验、上机等)环节要求 本课程为课堂教学,不含实践环节。 4、能力培养要求 (1)分析能力的培养培养学生能针对具体问题进行分析,结合电化学工程学原理和所学的基础理论知识,解决一些较为复杂的工业电化学过程中的现象和问题。 (2)自学能力的培养通过本课程的学习,培养和提高学生对所学知识和规律进行整理、归纳、总结和消化吸收的能力;能围绕教学内容,阅读参考书籍和资料,自我扩充知识的能力。 (3)表达能力的培养主要通过课堂作业和讨论,学会简明扼要的表达自己解决问题的思路和步骤的能力。 (4)工艺设计能力的培养培养学生学会独立思考,深入钻研各工业电化学过程与工艺的特点,经济合理地进行设计选择和正确计算。 三、学时分配

相关文档
最新文档