仿生机器人发展趋势

仿生机器人发展趋势
仿生机器人发展趋势

仿生机器人发展趋势

随着生物结构和功能逐渐被认知和掌握,仿生机器人技术已逐渐应用于军事、生产生活、康复医疗等诸多领域。仿生机器人研究的前提是对生物本质的深刻认识以及对现有科学技术的充分掌握,研究涉及多学科的交叉融合,其发展趋势应该是将现代机构学和机器人学的新理论、新方法与复杂的生物特性相结合,实现结构仿生、材料仿生、功能仿生、控制仿生和群体仿生的统一,以达到与生物更加近似的性能,适应复杂多变的环境,最终实现宏观和微观相结合的仿生机器人系统,从而实现广阔的应用。

仿生机理研究由宏观向微观发展

认识生物原型的特性是仿生学的前提。随着生物学、化学、物理学、机械学等多学科在仿生机理研究上的应用,仿生机理研究将跨越宏观、微观乃至纳观尺度的多层次结构和功能,由表及里逐渐深入,通过建立更为逼真的数学模型,为仿生机器人的设计提供理论基础。

仿生结构由刚性结构向刚柔一体化结构发展

仿生刚柔性混合结构成为目前机构设计的发展趋势之一,仿生结构的设计从刚性结构转向刚柔混合结构,既可具有生物刚性的支撑结构又可具有柔性的自适应结构。通过改进现有的机械设备和工具,或设计制造新型的仿生高效机械设备和工具,仿生机器人将实现结构轻便、质量小、精密程度更高的特点。此外,变结构的复合仿生机构可针对不同环境约束的变化具有更好的适应能力,因此研究模拟生物运动过程中开链、闭链结构的相互转换、复合,设计创新的非连续变约束复合仿生新机构,是仿生机构的另一个重要发展方向。

仿生材料由传统材料向结构、驱动、材料一体化方向发展

基于智能材料与仿生结构,开展材料、结构、驱动一体化的高性能仿生机构研究,建立验证平台,实现一体化设计关键技术验证,解决航空航天、国防武器、抢险救灾等特种机器人典型复杂机构设计的瓶颈问题,是未来的发展趋势之一。仿生机器人的材料将逐渐淘汰钢材、塑料等传统材料,使用与生物性能更加接近的仿生材料,从而获得低能耗、高效率、环境适应性强的性能特点。以水下机器人的研究为例,在传统的研究中,采用刚性材料制作成的尾鳍无法和真正的鱼一样实现尾部灵活摆动,而通过采用新型的柔性材料进行仿生鱼的设计,可以更好地实现仿生鱼游动速度快、运动灵活的特点。此外,在驱动方面,仿生机器人的驱动方式将采用人工肌肉等仿生驱动形式,并实现与结构、材料一体化,使仿生机器人与被模仿生物的形态更加接近。

仿生控制由传统控制方式向神经元精细控制发展

在未来的发展中,仿生机器人将摒弃传统的机器人控制方式,重点研究生物系统的微观机电和理化特性,在现有基础上进一步深入研究肌电信号控制、脑电信号控制等仿生控制方式,通过神经元进行仿生机器人的精细控制,并在多感知信息融合、远程监控、多机器人协调控制等方面获得突破,实现更加精确、适应性更高、响应更加快速的控制过程及良好的环境感知能力。此外,仿生机构的稳定性和鲁棒性日益成为研究的前沿,从而实现更为逼真的运动仿生。

生物能量由低效的机械能转换向高效的生物能转换发展

随着机械系统能源问题的日益突出,机构节能、环保理念的深化,高效能的仿生机构必然成为现代机构学的发展趋势之一。生物能量的研究要在生物学、化学、物理学的多学科交叉的基础上,寻求生物能量高效利用的原理,研究生物能量传递和转换机理及其与生物组织之间的关系,并在新能源、新型能量转换装置等方面进行研究。研究目标集中在功能、效率、质量、损耗这四个方面,从而提高仿生机器人的能量利用率,降低能耗。

总之,在国家自然科学基金的不断支持下,中国仿生机器人的研究取得了突出研究成果。在未来的发展中,对自然功能与特性的研究应既要知其然,也要知其所以然,要从对自然功能的认识层面向着深入的微观层面发展,揭示生物最本质的生命特征和机能,并通过不断将新方法、新技术应用到仿生机器人的研究中,使仿生机器人向着结构与生物材料一体

化的类生命系统方向发展,研制出在国际上具有代表性的仿生机器人,形成系统性、完整性和前沿性的国内仿生机器人科研体系和标志性研究成果。此外,在仿生机器人未来的应用过程中,让中国仿生机器人更好地为人类服务也是今后的一大发展趋势。

仿生机器人关键技术

仿生机器人关键技术 “仿生机器人”是指模仿生物、从事生物特点工作的机器人。,涉及到机械设计、计算机、传感器、自动控制、人机交互、仿生学等多个学科。因此,机器人领域中需要研究的问题非常多。主要研究问题包括以下五个方面: 1 建模问题 仿生机器人的运动具有高度的灵活性和适应性。其一般都是冗余度或超冗余度机器人,结构复杂,运动学和动力学模型与常规机器人有很大差别,且复杂程度更大。为此,研究建模问题,实现机构的可控化是研究仿生机器人的关键问题之一。 2 控制优化问题 机器人的自由度越多,机构越复杂,必将导致控制系统的复杂化。复杂巨系统的实现不能全靠子系统的堆积,要做到整体大于组分之和,同时要研究高效优化的控制算法才能使系统具有实时处理能力。 3 信息融合问题 在仿生机器人的设计开发中,为实现对不同物体和未知环境的感知,都装备有一定量的传感器。多传感器的信息融合技术是实现其具有一定智能的关键。信息融合技术把分布在不同位置的多个同类或不同类的传感器所提供的局部环境的不完整信息加以综合,消除多传感器信息之间可能存在的冗余和矛盾,从而提高系统决策、规划、反应的快速性和正确性。 4 机构设计问题 合理的机构设计是仿生机器人实现的基础。生物的形态经过千百万年的进化,其结构特征极具合理性,而要用机械来完全仿制生物体几乎是不可能的,只有在充分研究生物肌体结构和运动特性的基础上提取其精髓进行简化,才能开发全方位关节机构和简单关节组成高灵活性的机器人机构。 5 微传感和微驱动问题 微型仿生机器人有些已不是传统常规机器人的按比例缩小,它的开发涉及到电磁、机械、热、光、化学、生物等多学科。对于微型仿生机器人的制造,需要解决一些工程上的问题,如动力源、驱动方式、传感集成控制以及同外界的通讯等。实现微传感和微驱动的一个关键技术是机电光一体结合的微加工技术。同时,在设计时必须考虑到尺寸效应、新材料、新、工艺等问题。

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

仿生机器人浅谈

仿生机器人浅谈 02320902 20090440 于苏显众所周知,自然界中的生物以其多彩多姿的形态!灵巧机敏的动作活跃于自然界,这中其人类灵巧的双手和可以直立行走的双足是最具灵活特性的。而非人生物的许多机能又是人类无法比拟的,如柔软的象鼻子,可以在任意管道中爬行的蛇,小巧的昆虫等。因此,自然界生物的运动行为和某些机能已成为机器人学者进行机器人设计!实现其灵活控制的思考源泉,导致各类仿生机器人不断涌现,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。 在人类发展的历史长河中,对仿生机械(器)的研究,都是多方面的,也就是既要发展模仿人的机器人,又要发展模仿其他生物的机械(器)。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。几年前,科技工作者为圣地亚哥市动物园制造电子机器鸟,它能模仿母兀鹰,准时给小兀鹰喂食;日本和俄罗斯制造了一种电子机器蟹,能进行深海控测,采集岩样,捕捉海底生物,进行海下电焊等作业。美国研制出一条名叫查理的机器金枪鱼,长1.32米,由2843个零件组成。通过摆动躯体和尾巴,能像真的鱼一样游动,速度为7.2千米/小时。可以利用它在海下连续工作数个月,由它测绘海洋地图和检测水下污染,也可以用它来拍摄生物,因为它模仿金枪鱼惟妙惟肖。 仿生机器人主要分为仿人类肢体机器人和仿非人生物机器人。仿人类肢体又可以分为仿人手臂和双足。仿非人的主要分为宏型和微型。仿人手臂型主要是研

究其自由度和多自由度的关节型机器人操作臂!多指灵巧手及手臂和灵巧手的组合。仿人双足型主要是研究双足步行机器人机构。宏型仿非人生物机器人主要是研究多足步行机器人(四足,六足,八足),蛇形机器人、水下鱼形机器人等,其体积结构较大。微型仿非人生物机器人主要是研究各类昆虫型机器人,如仿尺蠖虫行进方式的爬行机器人、微型机器狗、蟋蟀微机器人、蟑螂微机器人、蝗虫微机器人等。仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,采用绳索或人造肌肉驱动。 仿生式体系结构的思想原理:从本质上来讲,慎思式智能、反应式智能以及分布式智能,都是对生物控制逻辑和推理方式的一种借鉴和仿生,但由于客观条件的限制和需求目的的局限,它们都只是从某一个角度和方向对生物智能的一种片面的、局部的模仿。本文的仿生式体系结构就是以前述的生物控制逻辑和行为推理为基础,充分借鉴基于慎思式智能、反应式智能和分布式智能等三种体系结构思想的优点与不足之处,针对目前机器人特别是未知环境下工作的移动机器人在控制体系结构方面所存在的缺点和问题,提出一种具有适应行为与进化能力的新的控制思想与理念。 借鉴分布式智能的思想,在控制体系结构中引人社会式行为控制层; 借鉴生物的自适应性思想,在控制体系结构中实现本代内的由慎思式行为层到反射式行为层的学习; 借鉴生物的自进化性思想,在控制体系结构中实现多代间的由反射式行为层向本能式行为层的进化(或退化)。 所以,仿生式体系结构共有四个行为控制层组成,即本能式行为控制层、反

机器人研究现状及发展趋势

机器人发展历史、现状、应用、及发展 趋势 院系:信息工程学院 专业:电子信息工程 姓名:王炳乾

机器人发展历史、现状、应用、及发展趋势 摘要:随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展历史、状况、应用、并对机器人的发展趋势作了预测。 关键词:机器人;发展;现状;应用;发展趋势。 1.机器人的发展史 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶并公开表演。 1738年,法国技师杰克·戴·瓦克逊发明了机器鸭,它会嘎嘎叫、进食和游泳。 1773年,瑞士钟表匠杰克·道罗斯发明了能书写、演奏的玩偶,其体内全是齿轮和发条。它们手执画笔、颜料、墨水瓶,在欧洲很受青睐。 保存至今的、最早的机器人是瑞士的努萨蒂尔历史博物馆里少女形象的玩偶,有200年历史。她可以用风琴演奏。 1893年,在机械实物制造方面,发明家摩尔制造了“蒸汽人”,它靠蒸汽驱动行走。 20世纪以后,机器人的研究与开发情况更好,实用机器人问世。 1927年,美国西屋公司工程师温兹利制造了第一个机器人“电报箱”。它是电动机器人,装有无线电发报机。 1959年第一台可以编程、画坐标的工业机器人在美国诞生。 现代机器人 有关现代机器人的研究始于20世纪中期,计算机以及自动化技术的发展、原子能的开发利用是前提条件。1946年,第一台数字电子计算机问世。随后,计算机大批量生产的需要推动了自动化技术的发展。1952年,数控机床诞生,随后相关研究不断深入;同时,各国原子能实验室需要代替人类处理放射性物质的机械。

仿生机器人的应用及发展

仿生机器人的应用及发展 1、仿生机器人发展概述 首先,模仿某些昆虫而制造出来的机器人并非简单。比如,国外有的科学家观察发现,蚂蚁的大脑很小,视力极差,但它的导航能力高超:当蚂蚁发现食物源后回去召唤同伴时,是把这一食物的映像始终存储在它的大脑里,并利用大脑里的映像与眼前真实的景像相匹配的方法,循原路返回。科学家认为,模仿蚂蚁这一功能,可使机器人在陌生的环境中具有高超的探路能力。 其次,不论何时,对仿生机械(器)的研究,都是多方面的,也就是既要发展模仿人的机器人,又要发展模仿其他生物的机械(器)。机器人未问世之前,人们除研究制造自动偶人外,对机械动物非常感兴趣,如传说诸葛亮制造木牛流马,现代计算机先驱巴贝吉设计的鸡与羊玩具,法国著名工程师鲍堪松制造的凫水的铁鸭子等,都非常有名。 在机器人向智能机器人发展的时程中,就有人提出“反对机器人必须先会思考才能做事”的观点,并认为,用许多简单的机器人也可以完成复杂的任务。20世纪90年代初,美国麻省理工学院的教授布鲁克斯在学生的帮助下,制造出一批蚊型机器人,取名昆虫机器人,这些小东西的习惯和蟑螂十分相近。它们不会思考,只能按照人编制的程序动作。 几年前,科技工作者为圣地亚哥市动物园制造电子机器鸟,它能模仿母兀鹰,准时给小兀鹰喂食;日本和俄罗斯制造了一种电子机器蟹,能进行深海控测,采集岩样,捕捉海底生物,进行海下电焊等作业。美国研制出一条名叫查理的机器金枪鱼,长1.32米,由2843个零件组成。通过摆动躯体和尾巴,能像真的鱼一样游动,速度为7.2千米/小时。可以利用它在海下连续工作数个月,由它测绘海洋地图和检测水下污染,也可以用它来拍摄生物,因为它模仿金枪鱼惟妙惟肖。有的科学家正在设计金枪鱼潜艇,其实就是金枪鱼机器人,行驶速度可达20节,是名副其实的水下游动机器。它的灵活性远远高于现有的潜艇,几乎可以达到水下任何区域,由人遥控,它可轻而易举地进入海底深处的海沟和洞穴,悄悄地溜进敌方的港口,进行侦察而不被发觉。作为军用侦察和科学探索工具,其发展和应用的前景十分广阔。 同样,研究制造昆虫机器人,其前景也是非常美好的。例如,有人研制一种有弹性腿的机器昆虫,大小只有一张信用卡的1/3左右,可以像蟋蟀一样轻松地跳过障碍,一小时几乎可前进37米。这种机器昆虫最特殊的地方是突破了“牵动关节必须加发动机”的观念。发明家用的新方法是:由铅、锆、钛等金属条构成一个双压电晶片调节器。当充电时,调节器弯曲,充完电了它又弹回原状,反复充电,它就成了振动条。在振动条上装有昆虫肢体,振动条振动就成了机器昆虫

仿生机器人论文

目录 摘要 (2) 1 目前仿生机器人的发展状况 (2) 2 预测未来仿生机器人的发展 (2) 2.1 群体型机器人 (2) 2.2 多环境适应型机器人 (3) 2.3 学习型机器人 (3) 3 结语 (3) 参考文献 (4)

论仿生机器人未来的几种可能发展 摘要:自然界在长期的演化中孕育出了各种各样的生物,而这些生物都具有神奇的结构和功能,能够在复杂多变的环境中生存下去,因此,通过研究,学习,模仿来复制和再造某些生物特性和功能将极大的提高人类对自然的适应和改造能力。从20世纪60年代开始仿生学诞生,到现在短短的几十年时间,在这方面的研究成果已经非常可观,大到军事小到日常生活,我们已经可以处处见其身影了。那么未来的仿生机器人又会往什么方向发展呢?该文将对未来仿生机器人的几种可能的发展趋势,包含群体型机器人,多环境适应型机器人以及学习型机器人进行分析。 关键词:群体型机器人多环境适应型机器人学习型机器人 1 目前仿生机器人的发展状况 仿生学发展到现在已经延伸到很多领域,机器人学就是其主要的结合和应用领域之一。仿生学在机器人上的应用可以分为五个方面,它们分别是:结构仿生,材料仿生,功能仿生,控制仿生以及群体仿生。而且目前世界上的仿生机器人已经涉及海陆空各个领域,并且在各个领域上的发展都已经达到盛况空前地步。而在仿人机器人方面也在不断的突破中。 但是,目前的仿生机器人大多都是独立的一个个体,也就是彼此之间并没有什么联系。然而就目前的机器人技术水平而言,单机器人在信息的获取,处理以及控制能力等方面都是有限的,对于复杂的工作任务及多变的工作环境,单机器人更显不足。所以,当前的仿生机器人虽然已经发展到一定的高度,可是,它们本身还是存在不少的局限性的。 为了改善日前机器人存在的不足,新的技术手段已经成为了一种必须。在未来的日子里,新型机器人的性能将大幅度的提高,它们将会一步步的取代现有的机器人。 2 预测未来仿生机器人的发展 2.1 群体型机器人 在自然界中有着众多不是独立生存的生物,他们靠着一门属于自己的社交语言和其他的个体组成一个集体一起生活,并借着集体的力量去完成个体很难或者无法办到的事情,比如生活中常见的蚂蚁和蜜蜂,它们的强大我们都是已经有着切身体会的了。所以,如果我们能够借鉴生物间的这种生存方式去制造群体型的机器人,那么,在机器人这条道路上我们将会有一个质的飞跃,看到另一片新的天地。 那么群体型机器人比单个机器人的优势体现在哪里呢?首先,由于群体机器人彼此之间会有信息的交流和互动,那么,单个个体的结构和性能复杂程度将会得到大大的降低,因为它们可以通过群体的协调来弥补掉这些不足。其次,群体型机器人在执行任务的时候完成任务的概率要比单个机器人大很多,同时还能够减少完成任务的时间,提高任务的效率,这些,都是我们一直以来所要追求的。再者,群体型机器人通过彼此之间的联系,可以达到预测未知状况的目的,这样的一种能力对于完成任务来说有着举足轻重的作用。所以,群体型机器人在未来的机器人发展中是一种必然的趋势。

仿生机器人的研究综述

仿生机器人的研究综述 华明亚 (上海大学机电工程与自动化学院,上海200072) 摘要:在人类认识世界和改造世界的过程中,存在人类无法到达的地方和可能危及人类生命的特殊场合,如星球探测、深海探测、减灾救援和反恐活动等,而仿生机器人为解决上述问题提供了一条有效途径。随着机器人技术和仿生学的发展,仿生机器人的研究正受到学者们的普遍关注。在对仿生机器人进行分类的基础上,从地面仿生机器人、水下仿生机器人以及空中仿生机器人3个方而简要介绍了国内外典型仿生机器人的研究进展,并介绍其发展趋势。 关键词:仿生机器人;机器人运动;发展趋势; Research review on bionic robot Hua Mingya (School of mechanical engineering and automation, Shanghai University, Shanghai 200072, China) Abstract:: In the human understanding and transforming the world in the process, the existence of human beings can not reach the place and special occasions may endanger human life, such as planetary exploration, deep sea exploration,disaster relief and anti terrorist activities, and bionic robot provides an effective way for solving the above problems. With the development of robot technology and bionic, bionic robot research has received wide attention of scholars. In the classification based on bionic robot, bionic robot, bionic robot from air groundbionic robot, underwater 3 party and briefly introduced the research progress oftypical bionic robot at home and abroad, and introduces its development trend. Key words: Bionic robot; robot movement; development trend; 1 机器人的研究现状 1.1 机器人国外研究现状 由于仿生机器人所具有的灵巧动作对于人类的生产和科学研究活动有着极大的帮助,所以,自80年代中期以来,机器人科学家们就开始了有关仿生机器人的研究。 自1983年以来,美国Robotics Research Corporation以拟人臂组合化为设想,基于系列关节研制出K-1607等系列7自由度拟人单臂和K/ B 2017双臂一体机器人,其单臂K/ B 2017已用于空间站实验。

仿生机器人概述

仿生机器人概述 一、仿生机器人的定义 简单来说,仿生机器人就是模仿自然界中生物的外部形状或某些机能的机器人系统。从本质上来讲,所谓“仿生机器人”就是指利用各种机、电、液、光等各种无机元器件和有机功能体相配合所组建起来的在运动机理和行为方式、感知模式和信息处理、控制协调和计算推理、能量代谢和材料结构等多方面具有高级生命形态特征从而可以在未知的非结构化环境下精确地、灵活地、可靠地、高效地完成各种复杂任务的机器人系统.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著) 二、对仿生机器人的理解 仿生机器人是一个很宏大的概念,字面上讲任何模仿自然界生物的机器都可以称之为仿生机器人。但是根据诸多文献的定义,现在人们倾向于将第四代及之后的机器人称之为仿生机器人,也就是2000年之后产生的机器人。我认为这样界定的根据在于第四代机器人具有了完备的感知能力和面对简单问题时的处理能力,如现在的两足机器人能够根据地形的变化自行调整行走模式,从容的绕开障碍物并且保持重心平衡,而这是以前的机器人所无法实现的。所以我们认为这时的机器人初步具有了人的智力,可以与生物的智能相比拟,是仿生机器人。 三、仿生机器人的产生前提与发展动力 生物在经过了千百万年的进化之后,由于遗传和变异的原因,已经形成了从执行方式、感知方式、控制方式,一直到信息加工处理方式、组织方式等诸多方面的优势和长处.仿生机器人这门学科产生和存在的前提就在于,生物经过了长期的自然选择进化而来,在结构、功能执行、信息处理、环境适应、自主学习等多方面具有高度的合理性、科学性和进步性.而非结构化的、未知的工作环境、复杂的精巧的高难度的工作任务和对于高精确度、高灵活性、高可靠性、高鲁棒性、高智能性的目标需求则是仿生机器人提出和发展的客观动力.(摘自《仿生机器人的研究》许宏岩,付宜利,王树国,刘建国著) 生物在漫长的进化过程中演变出的无比精巧、合理的结构,是目前人类所有的理论和技术都无法达到的。任何由人类设计的堪称完美的结构,放到自然界的生物面前,都相形见绌。因此,研究现成的最优化、最完美的生物体就成为人类设计机械最廉价、最可靠的范本,由此诞生了仿生学这一专门的学科,而仿生机器人则是机械与仿生学两者结合的最佳产物。这也是仿生机器人产生的前提与发展的动力。 四、仿生机器人的现状

仿生机器人的研究现状及其发展方向

学号1210111188 论文题目仿生机器人的研究进展及发展趋势学生姓名颛孙鹏 院别机械工程学院 专业班级12机自(3)班 指导教师周妍

仿生机器人的研究进展及其发展趋势 摘要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注。主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望。 关键词:仿生机器人;研究现状;发展方向 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作。1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实。随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求。在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员。 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人。仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类。仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动。 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大。在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑。以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压。由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展。鱼类在水下的行进速度很快,金枪鱼速度可达105km/h,而人类最快的潜艇速度只有84km/h。所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象。仿鱼推进器效率可达到70%~90%,与水的相对速度比螺旋桨推进器小得多,有效地解决了噪音问题。美国麻省理工学院和日本都研制出了仿鱼机器人。在国内,中科院沈阳自动化研究所和北京航空航天大学机器人研究所已研制了机器鱼样机。

仿生学的发展及应用

仿生学的发展及应用 摘要:仿生学科的出现发展已经有将近60年的历史,在这期间仿生学得到了快速的发展,并对人类生活产生了各方面的影响。本文介绍了从古到今仿生学的发展历程及今后仿真学的发展趋势。并对不同领域内仿真学的应用做了简要的介绍和举例,从而更好的了解认识仿真学。 关键词:仿真学;发展;应用 引言 地球上的生物在经历了漫漫的进化之后,到现在人类已知的已经有170多万个物种,科学家推测世界上的物种大约在500-1000万种之间甚至更多。生物为了求得生存和发展,在进化中逐渐形成了各自适合自身的形态结构及生命系统等。不同的物种都各自有着自身的特点,人类在进化发展的过程中,对这些特点的应用就是仿生学最初的起源。自古以来,自然界就是人类各种科学技术原理、重大发明的源泉。在500万年的进化中,人类不断模仿自然,提升生产能力,才有现在人类社会的发展程度。而这种行为,在现代社会催生出了一门科学——仿生学。 仿生学是一门综合性的,由生命科学和工程技术相互结合而产生的新技术,在现代社会广泛应用于军事、医疗、工业和日常生活等多个领域。了解仿生学的发展过程,清楚仿生学在各个领域的具体应用,对于研究仿生技术,进一步促进仿生学的发展有着重要的意义。 仿生学诞生前的发展及应用 仿生学的发展可以追溯到人类文明的早期,人类文明的形成过程中不自觉的对仿生学的应用,这些应用仍旧停留在比较原始的阶段,由于环境的恶劣,人类不得不从自然界的其它生物及自然现象中学习从而保证自己的生存。因此,从远古时代起,人们实际上已经就已在从事仿生学的工作[1]。例如,人类现在仍在使用的工具:锯子,相传是中国古代的春秋战国时代,鲁班上山伐木途中,手指为锯齿草划破,从而受到启发,经反复实践,终于制成了人类史上第一架带有锯齿的木工锯[2]。古代人类就有着想要利用工具飞翔的期望,自古以来就有很多人模仿鸟类制作出许多“飞行器”,但是由于科学发展的程度不够,都没有成功。直到1903年12月17日,美国人莱特兄弟发明并成功试飞了人类历史上的第一台飞机。以上两个例子都是人类发展中仿生学的应用,然而这些发明等都只是科学史上各自独立的发展成

仿生四足机器人的研究:回顾与展望(3)

仿生四足机器人的研究:回顾与展望 摘要:本文侧重于仿生四足机器人。在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。然后回顾了仿生四足机器人驱动模式的现代技术。随后,描述了四足机器人的发展趋势。基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。又介绍了山东大学研制的液压四足机器人。最后是总结和展望未来的四足机器人。 一、导言 代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。地面机器人的开发主要是运用轨道或轮子。轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。换句话说,现有的地面机器人只能在部分地面工作。与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。因此,近些年人们积极地投入腿式机器人的研究中。腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。 基于机械结构,腿式机器人可分为步行机器人和爬行机器人。与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。步行机器人可以有效地承受更大的载重。具有联合执行机构的步行机器人具有良好的行走速度和运输能力。因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。 现已有一、二、三、四甚至更多条腿的腿式机器人。最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。在腿式机器人中,四足机器人具

仿生机器人现状

仿生机器人现状

仿生机器人现状 1.仿生学Bionics 研究生物系统的结构和性质以为工程技术提供新的设计思想及工作原理的科学。仿生学一词是1960年由美国JE斯蒂尔根据拉丁字“bios”(“生命方式”的意思)和字尾“nic”(“具有……的性质”的意思)构成的。他认为“仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学”。尽管人类在文明进化中不断从生物界受到新的启示,但仿生学的诞生,一般以1960年全美第一届仿生学讨论会的召开为标志。 仿生学的研究范围主要包括﹕ 1.力学仿生,研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体 各组成部分在体内相对运动和生物体在环境中运动的动力学性质。例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。 2.分子仿生,研究与模拟生物体中脢的催化作用、生物膜的选择性、通透性、生 物大分子或其类似物的分析和合成等。例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫。 3.能量仿生,研究与模仿生物电器官、生物发光、肌肉直接把化学能转换成机械 能等生物体中的能量转换过程。 4.信息与控制仿生,研究与模拟感觉器官、神经元与神经网络、以及高级中枢的 智能活动等方面生物体中的信息处理过程。例如根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的一些装置。此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。 5.某些文献中,把分子仿生与能量仿生的部分内容称为化学仿生,而把信息和控 制仿生的部分内容称为神经仿生。 仿生学的范围很广,信息与控制仿生是一个主要领域。一方面由于自动化向智能控制发展的需要,另一方面是由于生物科学已发展到这样一个阶段,使研究大脑已成为对神经科学最大的挑战。人工智能和智能机器人研究的仿生学方面──生物模式识别的研究,大

水下仿生机器人研究综述

·24· NO.20 2018 ( Cumulativety NO.32 ) 中国高新科技 China High-tech 2018年第20期(总第32期) 1 引言 目前,随着社会的发展,工业和生活中对智能化和精细化的要求越来越高,机器人研究和设计成为研究热点。机器人的应用可以优化日常生活,满足人们日益增长的物质需求,同时在工业生产中也可以完成一些复杂和危险的任务,如机械装配、野外探险等。 近年来,海洋的战略地位越来越重要,水下机器人获得了极大的发展。海洋环境复杂多变,如何设计结构简单灵巧且适应性强的水下机器人成为机器人研究中的重点。科学家通过将仿生学和机器人两大学科相结合,提出了新的想法:水下仿生机器人。水下仿生机器人根据海洋生物的外形结构和运动方式进行设计。由于海洋生物经过了亿万年的进化演绎,其生物体模型对海洋环境的适应性强,所以水下仿生机器人将会更容易完成指定的工作,从而使人们在不破坏海洋生态系统的前提下更好地了解海洋、运用海洋。本文主要针对水下仿生机器人的发展现状进行综述。 2 机械结构设计 美国麻省理工学院(MIT)作为第一个研究机器鱼的科研机构,开启了水下仿生机器人研究的先河。研究人员在1994年研制成功了第一条仿生机械鱼,他们的主要着重点就是通过提高机器鱼在水下运转的高效性和灵活程度以模拟鱼类的运动形式。紧接着,英国塞克斯大学(Essex)就以鱼类结构 为模板,按照鱼类的运动方式来解决和优化机器人在水下活动的直线运动和转向的问题。而美国海洋学中心则是把对生物模仿进行得更加彻底,研制出与龙虾外形极为相似的“机器龙虾”。该“机器龙虾”按照龙虾的每个身体部分来设计相关功能,大大提高了其在水下的稳定性与灵活性。 目前,我国的一些研究机构也开始了针对水下仿生机器人的研究和探索。北京航天航空大学作为最早开始研究此领域的机构,已研制出可在水下连续工作2~3小时的仿生机器鱼。此后,国防科技大学、哈尔滨工程大学、中科院自动化研究所等也开展了不同程度的研究。 3 材料应用 水下环境复杂,因此对水下仿生机器人的材料要求十分严格。目前运用较为广泛的有如下几种材料: (1)高分子聚合物-金属复合材料。其重要特点是结合了高分子聚合物和金属材料的优点。高分子聚合物在大部分环境下都能承受一定程度上的变形,对外部环境的影响能够做出良好的调整,同时质量较轻,而金属材料则硬度较大。采用该复合材料能使机器人更加适应水下环境。 (2)镁合金材料。作为一种价格适中的材料,其主要特点是质量轻,非常适合用做机器人的外部轮廓,同时该材料硬度大,不易损坏。 (3)介电弹性材料。该材料在机器人驱动器上应用很广泛。作为一种柔软度较好的材料,其突 水下仿生机器人研究综述 蒲欣岩 (成都七中高新校区,四川 成都 610041) 摘要:随着海洋探索技术的不断发展,水下仿生机器人日益引起关注。针对水下仿生机器人的研究现状,文章从机械结构设计、材料应用和控制方法3个方面进行综述,并基于对水下仿生机器人的深入了解,对其未来的发展趋势进行分析。 关键词:水下仿生机器人;机械结构;控制方法 文献标识码:A 中图分类号:TP242文章编号:2096-4137(2018)20-024-02 DOI:10.13535/https://www.360docs.net/doc/e211020156.html,ki.10-1507/n.2018.20.08 收稿日期:2018-07-12 作者简介:蒲欣岩(2000-),女,四川成都人,成都七中高新校区学生,研究方向:自动化控制、机器人。

仿生蜘蛛机器人的设计与研究

毕业设计(论文)仿生蜘蛛机器人的设计与研究 姓名:寇艳虎 学号: 专业:机械工程与自动化 系别:机械与电气工程系 指导教师:孔繁征 2021年4月

摘要 本文总结了背景和目标,仿生蜘蛛机器人的简单介绍。通过研究机器人的六足仿生的运动,这种设计已确定脚结构,使用3自由度的分析实现向前运动,把运动的机器人。想象的组件和装配映射仿生蜘蛛机器人以与相关部件的检查,确保机械设计的可行性都包含在总设计。 关键词:仿生;机器人;机构

ABSTRACT The paper has summarized the background and the goal of its topic and has made the simple introduction of the bionic hexapod robot. Through the research of the motion of the six feet of the robot, This design has determined the foot structure,using the analysis of 3 degrees of freedom realizes the forward motion and turning motion of the robot . Picturing of the component and assembly mapping of the bionic hexapod robot as well as the inspection of related parts which ensures the feasibility of the machinery design are both included in the total design. KEYWORDS:bionics ;hexapod robot ;machinery

仿生机器人学概论

仿生机器人学概论 ——读Direct control of paralysed muscles by cortical neurons有感 机械设计制造及其自动化XXXX班 Wdl U201XXXXXX

关于侵入式脑-机接口的探索 读Direct control of paralysed muscles by cortical neurons有感Direct control of paralysed muscles by cortical neurons(神经运动弥补 术)于2008年发表于nature。并被评为当年的最佳论文。因为其打破先前的常规研究,省去了对神经电信号的采集、解码、再输出的繁琐过程,直接将脑细胞的电信号通过人造电路传输到运动神经元从而实现对目标肌肉的意识控制。这样便省去了复杂的解码过程,也大大降低了技术难度和设备体积。使通过人工设备恢复神经中枢受损而导致的瘫痪病人恢复运动能力变得更加现实。下面便是我读过这篇文章后的一些感想与受到的启发。 文章指出将控制信号从大脑直接通过人工电路连接到执行器是一个潜在的治疗脊髓损伤所造成的瘫痪的方法。然后,这样的信号可以控制肌肉的电刺激,从而恢复瘫痪肢体的运动。以前独立的实验表明,无论是与真实运动或虚拟运动有关的运动皮质神经元的活动,都已经证实可以被用于控制电脑光标或机器人手臂,并且可以用功能性电刺激来激活瘫痪肌肉。在这里,本文中所述实验表明,可以用运动皮质的神经元细胞的活动来直接控制肌肉的刺激信号,从而恢复目标定向运动的暂时瘫痪的手臂。此外,神经细胞可以控制得同样出色,无论之前与运动的联系如何,神经元都可以很好地控制功能性电刺激,这一发现大大扩展了脑-机接口控制信号源。猴子学会使用这些人造肌肉皮层细胞连接,产生双向手腕扭矩,并同时控制多个神经肌肉对。这种直接转换可以实现由独立电子电路实现从皮层活动到肌肉刺激的连接,创造一个相对自然的神经假肢。这些结果首次证明了直接人工皮质细胞和肌肉之间的连接可以弥补中断生理的途径从而恢复瘫痪肢体运动的意志控制。 脊髓受伤损坏了从大脑到肢体的神经通路,但运动皮质和肢体事实上都是正常的,近年的研究显示,瘫痪多年的患者仍然可以有意识地调节手部的运动皮质。其它的脑-机接口研究都使用复杂的算法来解码与任务相关的大量神经活动,并以此来计算所需的对外部设备的控制参数。作者另辟蹊径,直接连接皮质神经元细胞活动控制病人的瘫痪肢体刺激来重新建立肢体功能。这个实验表明了猴子可以学会使用从任意运动皮质神经元细胞的人工联系对传递到多块肌肉上的刺激分级,从而在瘫痪的手臂上恢复有目的的运动。

机器人研究现状及发展趋势剖析

学校代码: 10904 学年论文 机器人研究现状及发展趋势 姓 名: 学 号:

指导教 师: 院系(部所):机电工程学院 机械设计制造及其自动化专 业: 完成日 2015年9月2日期:

机器人研究现状及发展趋势 摘要 随着计算机技术不断向智能化方向发展,机器人应用领域的不断扩展和深化,机器人已成为一种高新技术产业,为工业自动化发挥了巨大作用,将对未来生产和社会发展起越来越重要的作用。文章介绍了机器人的国内国外的发展状况并对机器人的发展趋势作了预测。 关键词:机器人; 发展历程; 现状; 发展趋势 1.机器人的发展历程 自1954 年美国戴沃尔最早提出了机器人的概念以来,机器人就得以不断地发展。概括起来,机器人的发展历程为 3 代: 第 1 代:示教再现型机器人,但不具备反馈能力。如郭勇等人[1]研制的挖掘机手柄自动操作机构,该机构结构简单,能够实现动作示教再现。 第 2 代:有感觉的机器人,不仅具有内部传感器,而且具有外部传感器,能获得外部环境信息。如P.lLiljeb.ck 等人研制的蛇形机器人就装有内部测转速的传感器,以及外部测力的传感器,该机器人能够在不规则环境中具有一定的运动能力。 第 3 代:智能机器人。定义为“可自动控制的装置,能理解指示命令,感知环境,识别对象,规划自身操作程序来完成任务”。如John Vannoy 等人采用实时可适应性的运动规划(RAMP)算法的PUMA560 机械臂,它能在复杂动态环境中自动识别来自不同方向的移动或静止的障碍物,主动规划路径,进而完成预定任务。

2. 国外机器人的研究现状 2.1 仿生机器人与新型机构 对人的研究,国外侧重于对人行走时的步态分析,通过对人脚形状的分析,得出具有圆形截面的脚趾和脚后跟以及具有扁平截面的连接脚趾和脚后跟的中间部分具有最佳的动力学性能。对人形机器人步态规划问题,Xia Zeyang 等人提出了一种基于样品的决定性的脚步规划方法,该方法综合考虑了自身独特的运动能力和稳定性。对于在不同类型障碍的复杂环境中脚步规划,Yasar Ayaz 采用与人走近障碍物时绕过的方法,通过脚步实时的生成成功避开障碍物。此外,对于双足步行机器人的复杂地面运动的研究也有新的进展,研究出一种新型的双足机构,能实现不平区域稳定地行走,该足由4 个分别带光学传感器的鞋钉组成,总重 1.5 kg。对动物的研究则表现为对诸如蛇、鱼的结构以及运动性能的研究。仿蛇机器人不仅可以作为管道检测装置,也可以作为地震或矿难探索装置,更可以当作极地探测器来进行科研活动。Shigeo 和HiroyaYamada 就将仿蛇机器人的机械结构分为 5 种类型:活动的弯曲关节式;活动的弯曲和拉伸关节式;活动的弯曲关节和活动的车轮式;被动弯曲关节和活动车轮式;活动的弯曲关节和履带式。Aksel Andreas Transeth 等采用摩擦力模型方法建立了一蛇形机器人模型,该机器人能与包括地面的障碍物以外的物体接触,对地震或矿区救援很有帮助。Kristin Y.Pettersen 等人对蛇形机器人在存在障碍物环境中运动进行了复合建模,仿真结构证明该模型能实现不规则环境中的一般运动。但蛇形机器人目前要真正达到在复杂环境中畅通无阻地运动,还有待进一步研究。对海洋的开发,相对于其它的水下自动化装置,仿生鱼具有更好的推进力和流体适应性。其研究主要体现在结构和运动特性上。JunGao 和K.H.Low 等人对胸鳍驱动和尾鳍驱动鱼形机器人进行了分析,讨论了鱼结构和运动各参数的关系。Yu Zhong 等人对由阀体与尾鳍构成的机器人鱼的运动性能进行了研究,采用量纲分析方法,建立了一种能预测运动的机器鱼模型。Giuseppe Tortora 等人设计了类水母微型机器人,它由磁体驱动自身的运动,具有较好的运动性能。但机器鱼在结构仿生度、性能如直线游泳与拐弯半径等方面还有待进一步的研究。此外,Kazuya Kobayashi 等人对用于抓掐、旋转细小物体的手指尖进行了设计和分析,并进行了抓取USB 插头的实验,验证了该设计的可行性,但其抓取策略还有待进一步的优化。Jian S.Dai 等人第一次提出了可变构手掌,并设计了多指可变构手Metahand,该手可折叠也可展开,具有相当高的灵活性。

仿生机器人的发展应用

1.仿生机器人的发展应用 2. 蚯蚓的运动机制 仿蚯蚓蠕动式机器人运动的模型和力学分析 A.仿蚯蚓蠕动式机器人的直线运动机制 仿蚯蚓蠕动式机器人的转弯运动理论分析 B. 。本文设计的仿蚯蚓蠕动式机器人系统由多个模块组成,每个 模块具有相同的结构和参数,中心处安装一根有一定弹性的软芯起到一

定的 支撑作用。机器人由三根并联的SMA 弹簧驱动器进行驱动 微型管道机器人的驱动方式大致有以下几种8?:微型电机驱动、 压电驱动、形状记忆合金(SMA)驱动、气动驱动、磁致伸缩驱动、电磁驱动、橡胶驱动、电流变液驱动、热力驱动、光驱动、静电驱动、微波驱动、超声波驱动、超导驱动、金属氢化物驱。3.1蠕动式机器人常用驱动方式的比较 驱动类型优点缺点 SMA驱动功率/重量比大;结构简单;散热较慢:

易于控制;低压驱动工作频率较低 压电驱动可完成精确控制(亚微米级);应变量较小 刚性高;频率高:驱动电压较高 可轻易获得较大推动力 电机驱动原理简单需要减速装置 不易于小型化 电磁驱动结构原理简单:控制方便体积较大 性能稳定;输出力大能量消耗较大 气动驱动驱动力较大体积较大 结构复杂 SMA驱动器 电磁驱动 放在磁场中的载流导体要受到洛仑

兹力:,=侣£sin口。其中,J为电 流强度,B为磁场强度,三为导体长度,口为磁场方向与电流方向的夹角,安培力F的方向垂直于B与,所决定的平面。利用这一原理可以制造电磁驱 动器。 日本香川大学和名古屋大学研制出采用电磁驱动的管道水下机器人B扪,如图1.4所示。电磁驱动的工作原理为:线圈产生平行于前进方向的交变的 电磁场,永久磁铁产生的旋转振动作为推进驱动力。永久磁铁驱动弹性鳍摆

相关文档
最新文档