失效曲线

失效曲线
失效曲线

失效率和失效率曲线(图)

失效率:失效率是工作到某时刻尚未失效的产品,在该时刻后单位时间内发生失效的概率。一般记为λ,它也是时间t的函数,故也记为λ(t),称为失效率函数,有时也称为故障率函数或风险函数.

按上述定义,失效率是在时刻t尚未失效产品在t+△t的单位时间内发生失效的条件概率.即

它反映t时刻失效的速率,也称为瞬时失效率.

失效率的观测值是在某时刻后单位时间内失效的产品数与工作到该时刻尚未失效的产品数之比,即

失效率曲线:典型的失效率曲线失效率(或故障率)曲线反映产品总体个寿命期失效率的情况。图示为失效率曲线的典型情况,有时形象地称为浴盆曲线。失效率随时间变化可分为三段时期:

(1)早期失效期,失效率曲线为递减型。产品投稿使用的早期,

失效率较高而下降很快。主要由于设计、制造、贮存、运输等形成的缺陷,以及调试、跑合、起动不当等人为因素所造成的。当这些所谓先天不良的失效后且运转也逐渐正常,则失效率就趋于稳定,到t0时失效率曲线已开始变平。t0以前称为早期失效期。针对早期失效期的失效原因,应该尽量设法避免,争取失效率低且t0短。

(2)偶然失效期,失效率曲线为恒定型,即t0到ti间的失效率近似为常数。失效主要由非预期的过载、误操作、意外的天灾以及一些尚不清楚的偶然因素所造成。由于失效原因多属偶然,故称为偶然失效期。偶然失效期是能有效工作的时期,这段时间称为有效寿命。为降低偶然失效期的失效率而增长有效寿命,应注意提高产品的质量,精心使用维护。加大零件截面尺寸可使抗非预期过戴的能力增大,从而使失效率显著下降,然而过份地加大,将使产品笨重,不以济,往往也不允许。

(3)耗损失效期,失效率是递增型。在t1以后失效率上升较快,这是由于产品已经老化、疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对耗损失效的原因,应该注意检查、监控、预测耗损开始的时间,提前维修,使失效率仍不上升,如图中虚线所示,以延长寿命不多。当然,修复若需花很大费用而延长寿命不多,则不如报废更为经济。

灰剂量

石灰土灰剂量若干问题探讨 2008-12-05 11:46 目前在公路工程中,石灰土广泛应用于路基与路面底基层之中,石灰稳定土具有良好的力学性能并有较好的水稳性和一定程度的抗冻性,其初期强度和水稳性较低后期强度较高。但由于干缩冷缩,易产生裂缝,因此一般不宜作高级路面的基层。 石灰稳定土的施工方法主要有路拌法与厂拌法两种,无论何种施工方法,施工过程中控制的主要指标有含水量、灰剂量、压实度、颗粒大小、厚度等,其中灰剂量是至关重要的一个因素,灰剂量的大小影响到石灰土的强度、压实度的真假、最佳含水量等多种指标,对石灰土的最终质量具有十分重要的意义,因此,结合自己的施工经验,谈几点关于灰剂量的看法,供大家一起探讨。 1关于灰剂量的定义的一些争议: 1.1争议之一:内掺与外掺 根据《公路路面基层施工技术规范》(JTJ034-2000)4.1.2条款的规定:“石灰剂量以石灰质量占全部粗细土颗粒干质量的百分率表示,即石灰剂量=石灰质量/干土质量”;但在《公路工程预算定额》石灰土中对石灰用量的计算,则是以混合料重×灰剂量=生石灰质量,即灰剂量=石灰质量/干混合料重量;根据上述则可以看出,施工规范的定义明显是外掺,即10%石灰土=10g灰/100g干土,那么混合料则是110g,而根据预算定额的计算方法则为内掺:10%石灰土=10g 灰/(90g土+10g灰),干土重量为90g而非100g。就外掺法的灰剂量换算为内掺的灰剂量,则为10/110=9.09%,与10%比较,则相差近1个百分点。 1.2争议之二: 施工技术规范中只写是石灰/干土,而对石灰是消石灰还是生石灰的界定却很模糊,而预算定额中则明确提出用量为生石灰用量,根据经验数据,1m3消石灰需要428.4kg生石灰(生石灰中50%块,50%粉末),消石灰的松方干密度为550 kg/ m3,那么可以计算,掺生石灰与掺消石灰的系数:550/428.4=1.28,所以在施工过程中,监理工程师往往会要求按式 m=v×ρ干×i% m—掺灰质量 v—混合料压实体积 ρ干—混合料最大干密度 i%—设计灰剂量

故障的统计分析与典型的故障率分布曲线

题目:故障的统计分析与典型的故障率分布曲线 学号:120606325 姓名:王逢雨 [摘要] 机械故障诊断是一门起源于 20 世纪 60 年代的新兴学科,其突出特点是理论研究与工程实际应用紧密结合。该学科经过半个世纪的发展逐渐成熟,在信号获取与传感技术、故障机理与征兆联系、信号处理与诊断方法、智能决策与诊断系统等方面形成较完善的理论体系,涌现了如全息谱诊断、小波有限元裂纹动态定量诊断等原创性理论成果,在机械、冶金、石化、能源和航空等行业取得了大量卓有成效的工程应用。统计分析工作是机械故障诊断中的核心环节,统计分析工作的质量和水平将会对机械设备的检修工作产生重要影响,关系到机械设备的安全与可靠运行。本文在对机械故障的特性等问题进行阐述的基础上,重点就机械故障统计分析工作中数据的收集和统计分析的方法进行重点探讨,希望对提高机械故障的管理水平能够有所帮助。 [关键词] 机械故障;统计分析;数据收集;方法 一、统计分析工作中机械故障的特性 机械设备在使用过程中,由于会受荷载应力等环境因素的影响,随着机械设备部件之间磨损的不断增加,结构参数与随之变化,进而会对机械功能的输出参数产生影响,甚至使其偏离正常值,直至产生机械故障。概括说来,主要有以下几方面的特性。 (一)耗损性 在机械设备运行过程中,不断发生着质量与能量的变化,导致设备的磨损、疲劳、腐蚀与老化等,这是不可避免的,随着机械设备使用时间延长,故障发生的概率也在不断增加,即使可以采取一定的维修措施,但是由于机械故障的耗损性,不可能恢复到原先的状态,在经过统计分析工作后,必要时需要对设备进行报废。(二)渐损性 机械故障的发生大多是长期运行的老化或疲劳引起的,所以具有渐损性,而且与设备的运行时间有一定的关系,所以做好机械设备的统计分析工作是很有必要的,当掌握了设备故障的渐损规律后,可以通过事前监控或测试等手段,有效预防机械故障的发生。 (三)随机性 虽然有的机械故障具有一定的规律性,但这并不是绝对的,因为机械故障的发生还会受到使用环境、制造技术、设备材料、操作方式等多种因素的影响,因此故障的发生会具有一定的分散性和随机性,这在一定程度上增肌了机械设备预防维修与统计分析工作的难度。 (四)多样性 随着科学技术的发展与应用,机械设备的工作原理日趋复杂,零部件的数量在不多增多,这就使得机械故障机理发生的形式日趋多样化。机械故障的发生不仅存在多种形式,而且分布模型及在各级的影响程度也不同,在统计分析工作中需要引起足够的重视。 二、机械故障管理中统计数据的收集 在对机械故障的统计分析工作中,数据的收集是最基础的环节,因此必须保障数据收集的及时性、准确性和规范性,这样才能为接下来的数据分析工作奠定良好

上出料仓泵说明书

L型系列仓式气力输送泵产品使用说明书 无锡市百汇机械集团电力建材设备厂

一·概述 L型系列仓式气力输送泵是压送式气力输送粉末状物料的理想设备,适用于输送粉煤灰、水泥、水泥生料、碳粉、矿粉、粮食、化工原料等粉状物料。 L型仓式气力输送泵吸取了国内外同类产品的先进结构,在长期的使用中,又多次改进,其质量稳定,性能可靠,是气力输送的理想设备。对于高比重、大颗料物料的输送也显出其独特的优良性能。产品遍及全国各地并远销东南亚。 L型气力输送泵与同类产品及机械输送相比较,具有独特的优点: 1.设备紧凑,占地面积小,维修费用低。 2.设置自动化操作系统,采用PLC可编程控制器或继电器控制,实行手动和自动控制,操作简单灵活,自动化程度高。 3.流态化装置更具有独到之处,具有较大的调控手段,能使输送物料充分流态化,提高输送效率,保证输送质量。 4.每次输送完毕,泵内基本无残存物料。 5.输送管路可灵活布置,方便地实行集中、分散、大高度、长距离、适应各种地形,进行高效的输送。 6.由于在密封管道中输送,可严格保证物料质量不受潮、不污染、不受各种气候条件影响,有利生产和环境保护。 7.设备配套齐全,特殊规格,本厂可代为设计,专门制造。 二、设备组成 L型系列仓式气力输送泵通常有下列部分组成 1.1进料装置也叫进料阀,设置在仓泵上部,用于控制仓泵进料。其结构形式见图1,它是用气缸来控制锥形阀的上下运动,从而来打开及关闭进料口。

1进料斗 2 气缸 3 活塞杆压紧盖 4 活塞杆压紧座 5 接头 6检修孔盖 7 拉杆 8 进料斗下法兰 9 中间法兰 10 压圈 11 密封圈 12 锥阀 13 泵盖法兰 1.2进料装置也叫进料阀,设置在仓泵上部,用于控制仓泵进料。其结构形式见图1,它是用气缸来控制锥形阀的上下运动,从而来打开及关闭进料口。该进料阀吸取了英国CLYDE公司的圆顶阀(DomeValve?)和国内长期使用的钟罩阀优点,并克服了圆顶阀结构复杂,钟罩阀使用维修调整麻烦的缺点。阀体采用整体铸造,在阀腔内嵌有耐高温的硅橡胶密封圈,在仓泵进料时完全不与物料接触。象圆顶阀一样采用锥形阀回转运动来启闭仓泵进料。此阀不仅在火电厂内长期运行,还经过在钢厂多管除尘器下的仓泵长期运行的考验,效果较好。 进料阀设置于仓泵顶部,用于对仓泵的进料进行控制。其工作原理是由外部

三石灰土细则

三、路基石灰土监理实施细则 一)、施工准备阶段 1、路基开工前应做好施工测量工作,其内容包括导线、水准点复核,横断面测量,增设水准点等,测量监理工程师进行复核。 2、应将路基划分成适当的施工段落,以利用施工组织和资料编号,其中96区施工,每层的施工段落长度原则上不应小于200米,同时应根据填土高度划分填筑层次,以利于合理分层,避免过厚或过薄的层次出现。低填土路段路基开挖时,应直接开挖出纵横坡度,分层回填;高填土路段应在清表和原地面处理后,立即进行纵、横坡度调平层次的施工(调平层应放在路基底部),其后再逐层回填至路基顶,坚决杜绝在96区内进行调平。 3、监理工程师应审查承包人已进场人员、施工机械设备型号、数量是否能满足施工需要,包括机械设备的完好程度。 4、路基施工前,完成原地面、取土场的各项标准试验,不符合要求的材料不得用于路基填筑: ①液限、塑限、塑性指数; ②含水量试验; ③土的标准击实试验; ④土的强度试验(CBR)值; ⑤EDTA滴定标准线及灰剂量衰减曲线,试验剂量石灰需采用二级石灰; 料场石灰质量必须满足合格生石灰或消石灰的技术指标,石灰必须在使用前充分消解,已消解的石灰含水量控制在35%左右为宜,尽量缩短存放时间,使用前必须检验石灰的有效钙和氧化镁含量。路基填料最小强度和最大粒径应符合下表规定: 路基填料最小强度和最大粒径标准 二)、施工阶段

1、分层摊铺素土 路基填筑不得使用腐殖土、生活垃圾、淤泥、浆块土,也不得含草、树根等杂物,粒径超标的土块应打碎;对土源含水量大的情况可采用取土场适量焖灰、现场翻晒的措施解决。 根据设计断面分层填筑,应根据试验路段的施工总结严格控制填土松铺厚度,每层压实厚度原则上最大不超过18cm,最小不得小于10cm,每侧填土宽度应宽出填层设计宽度50cm超宽碾压。检查松铺厚度挖坑丈量或拉线控制,并经常检查,宽度用尺丈量。 2、掺灰拌和 拌和前应严格控制布灰剂量和均匀性,要求必须采用网格布灰,机械初平后辅以人工整平。布灰完毕后,从铺好的混合料上的一侧边缘,沿边缘线开始拌和,按螺旋形的路线,依次拌和至中心,跟踪检查边部和拌和深度是否达到要求,混合料的最大粒径不大于1cm。如不满足要求,再进行拌和一遍。严禁在底部留有素土夹层,也应防止过多破坏下层表面,以免影响混合料的剂量及底部的压实。 拌和完成的标志是:混合料色泽一致,没有灰条灰团和花面,且水分合适均匀。拌和完成后要抽检灰剂量,必须满足设计规范要求,否则应重新加灰拌和至满足要求为止。 3、整型 混合料拌和完毕后必须对外观、松铺厚度、碾压前含水量、灰剂量进行检查,以做到有效的事前控制。检查频率为每车道每50m1处,不符合要求的必须在规定范围内进行处理。混合料检测合格后,再根据事先确定的找平方法采用平地机整平,仔细检查边线,中线、宽度、标高等,当其达到设计要求时方可进行细平,设臵2%的横坡以利排水。在整平过程中,刮平应“宁高勿低”,严禁“薄层贴补”。检查中线偏位、平整度、横坡度。 4、碾压 整型后,当混合料含水量处于最佳含水量±2%时,进行碾压。 碾压过程中,如表面水蒸发快,出现“生烟”现象,应及时被洒少量的水。雨前应及时进行封压,已碾压成型的路基雨后要进行复压。检查路基压实度应符合规范及图纸设计要求,雨后应进行复检。抽检不合格的路基应加倍进行复

设备故障的发生发展规律

设备故障的发生发展规律 设备故障的发生发展过程都有其客观规律,研究故障规律对制定维修对策,以至建立更加科学的维修体制都是十分有利的。设备在使用过程中,其性能或状态随着使用时间的推移而逐步下降,呈现如图1-1所示之曲线。很多故障发生前会有一些预兆,这就是所谓潜在故障,其可识别的物理参数表明一种功能性故障即将发生,功能性故障表明设备丧失了规定的性能标准。 图1-1中“P”点表示性能已经变化,并发展到可识别潜在故障的程度:这可能是表明金属疲劳的一个裂纹;可能是振动,说明即将会发生轴承故障;可能是一个过热点,表明炉体耐火材料的损坏;可能是一个轮胎的轮面过多的磨损等。“F” 表示潜在故障已变成功能故障,即它已质变到损坏的程度。P-F间隔,就是从潜在故障的显露到转变为功能性故障的时间间隔,各种故障的P-F间隔差别很大,可由几秒到好几年,突发故障的P-F间隔就很短。较长的间隔意味着有更多的时间来预防功能性故障的发生,因而要不断地花费很大的精力去寻找潜在故障的物理参数,为采取新的预防技术,避免功能性故障,争得较长的时间。 设备故障率随时间推移的变化规律称为设备的典型故障率曲线,如图1-2浴盆曲线所示。该曲线表明设备的故障率随时间的变化大致分三个阶段:早期故障期、偶发故障期和耗损故障期。故障的三种基本类型如图1-3所示。 (l)早期故障期 是指设备安装调试过程至移交生产试用阶段。造成早期故障的原因主要是由设计、制造上的缺陷,包装、运输中的损伤,安装不到位、使用工人操作不习惯或尚未全部熟练掌握其性能等原因所造成的。设备处于早期故障期,故障率开始很高,通过跑合运行和故障排除,故障率逐渐降低并趋于稳定。此段时间的长短,随产品、系统的设计与制造质量而异。 早期故障率是影响设备可靠性的一个重要因素,会使设备的平均无故障工作时间减少。从设备的总役龄来看,这段时间不长,但必须认真对待,否则影响新设备效能的正常发挥,对资金回收不利。对于已定型的成批生产的设备和熟练的操作人员来说,早期故障期较短。 对新设备来说,此阶段的故障形态主要由三个参数所决定,即期初故障率,持续时间和期末故障率。这

焦化中子料位计使用说明书

RAMONSHLW-ZZ01型 中子料位计说明书 目录 1、焦化塔中子料位测量 (2) 1.1检测原理 (2) 1.2系统组成 (3) 1.3技术特点 (5) 1.3.2高度预测技术 (6) 1.4技术指标 (7) 1.5输出信号说明 (8) 1.7使用说明 (10) 1.8放射性安全知识 (11) 1.9、远程监控功能 (12)

1.10、权限设置 (12) 1.11、应用软件的功能.......................................................... 错误!未定义书签。

1、焦化塔中子料位测量 1.1检测原理 本系统是利用20~50mCi的241Am-9Be(或Pu238-Be)中子源,1Ci 的241Am-9Be(或Pu238-Be)中子源的中子产额为2.2×106中子/秒,沿4π方向均布; 241Am-9Be(或Pu238-Be)中子源产生的中子平均能量为5.49MeV,这种快中子与原子序数较小的原子,特别是氢原子极易发生弹性碰撞,将能量转移给氢原子,经多次碰撞后被“慢化”为低能量的“慢中子”; 中子源辐射的快中子穿过焦化塔壁,与塔内介质中的氢原子核发生弹性碰撞。快中子因其能量通过弹性碰撞传递给了氢原子核,而变成慢中子,慢中子反射到塔壁外的慢中子探测器中。 接受器采用了进口高效慢中子探测器(3He正比计数管),慢中子与探测器内的氦原子碰撞,产生带电的α粒子,带电粒子在电场运动产生电脉冲,形成脉冲计数; 接受器检测到的脉冲计数与接受器处的慢中子通量(单位时间内通过单位面积的数量)成正比关系,塔内物质所含氢原子的密度与慢中子通量成一定比例关系。 由于注入塔内的渣油主要由碳、氢元素组成,因此可由慢中子通量得到塔内物质的密度。 塔上的下、中、上各料位检测点的接受器将测得的信号放大成形后通过单芯双屏蔽电缆传给二次仪表进行处理,二次仪表根据测得脉冲计数转

标准化管理-结构物台背回填(改)

江苏省宿扬高速公路工程项目 结构物台背回填 标准化施工管理实施细则编制单位:宿迁市高速公路建设指挥部

结构物台背回填标准化施工管理实施细则 路基台背回填的质量关系着路基的强度、不均匀沉陷和稳定性,并直接影响路面的质量,为确保路基施工质量达到设计要求,特制定本细则,供监理、施工人员参照执行。 一、总体要求 1、结构物经验收合格且混凝土回弹检测强度达到设计的100%时,方可进行台背回填施工。 2、结构物回填的范围应满足以下要求: 时压实整修成型;结构物两侧台背应分层对称填筑施工,避免产生较大侧应力。 4、台背回填基底处理后应平整密实,压实度不低于设计值; 5、台背回填采用2%水泥+4%石灰稳定土或7%灰土作为填料,应在取土场或者其他路基段面上拌制并集中回填,填料粒径中大于15mm的颗粒不得超过总重的5%。 二、施工前准备工作 1、台背施工的机械设备类型、数量及性能需满足现场要求。对于回填空间不适宜大型压路机作业的部位,应配备小型压实机械施工,如手扶式振动压路机,重型蛙式打夯机,小型气锤等。 2、熟悉路基台背回填设计填料及压实标准,做好施工前的技术及安全交底。 3、取不同土质的土做标准击实试验,以确定台背填料的最佳含水量、最大干密度、水泥用量及相应的CBR值,(宿扬高速台背回填采用的是7%石灰处治土进行回填)。 4、根据设计数据敷设台背回填宽度及填筑长度,计算台背填筑高度,并按

照15cm/层在结构物左右侧、中部醒目的标注层厚及层次,标注应采用红色不褪色油漆,当层层次标注在红线上方。 5、对原材进行检测,测定石灰、水泥的各项指标是否符合规范、设计要求。 6、绘制灰剂量衰减曲线,根据施工能力确定掺灰时间及碾压方式。 7、检查基坑回填至原地面后的压实度,平整度。 8、如在进行台背区填筑前,台背区以外的路基尚未填筑,台背填筑长度一般应大于50m,如台背区以外的路基已经填筑压实,则应将已填筑压实的路基端部开挖成台阶状,台阶宽度不小于2m,厚度按1m控制,台阶底设2%~4%的内倾坡度,以保证新、老压实区沉降变形的均匀性;台背回填宜与相邻路基一起填筑,当台背回填至路堤顶面时,应与同层次路床同时施工。 三、施工过程控制 1、台背回填施工前,应先清除构造物基础底面未压实土,同等填料找平后用压路机横向压实,检验合格后在进行台背的分层填筑。 2、在填筑过程中,应重点控制含水量、灰剂量、粒径、松铺厚度、碾压范围、压实程度等指标。 3、台背回填应与锥坡填土同时进行,两侧回填应同时对称进行;碾压时,应由外向内,由底向高处碾压,并适时对结构物的裂缝发育情况进行观察,必要时应采取措施并优化碾压方式。 4、台背填筑应分层进行,每层压实厚度不大于15cm。当用小型夯具、机具压实时,每层夯实厚度不大于10cm;台背回填分层对称填筑,采用以静压为主弱震为辅的碾压方式,且禁止强震碾压,同时应保证机械与结构物的安全距离不小于1米,局部压路机压不到的地方,应使用小型机动夯、机具进行压实。构造物顶部50cm内路基施工不宜采用重型压路机压实,以防止结构物局部损坏。 5、在回填、压实施工中应保持结构物完好无损,不得碰撞结构物。当涵顶面填土压实厚度大于50cm时,方可通过重型机械和汽车。 6、台背回填作业面较窄,碾压时应安排专人指挥作业;使用小型压实机具作业时,应对机械性能做必要检查,熟悉其性能,按操作要求作业。 7、施工过程中及工后预压期内,注意台背回填位置的变形观测,施工期间,每填筑一层填料进行一次观测。若两次填筑间隔时间较长,3天观测一次,路堤

标准曲线常见问题分析

标准曲线常见问题分析 分析检测中绘制标准曲线目的是可以根据标准曲线查出待测物质的含量,所以标曲的制定是实验室工作中必不可少的工作。在真实的实验过程中,制作标注曲线会遇到各式各样的问题,比如标注曲线弯曲、线性不够好等问题,造成不同情况的原因是什么呢本文将详细介绍。 1、仪器校验好。 2、移取液体体积要精确,保证迅速准确,尽可能用一根移液管;为减小人为误差,同一种液体要一个人操作。 3、保证标准品的纯度,所用标准品最好是新打开的,纯度较高的固体或溶液,防止污染。 4、容器要保证洁净。 5、根据标准品理化性质注意加样的先后顺序。 6、如果要测OD值,应保证测前各管液体充分混匀。 7、若还是有某个点误差较大,应舍弃。 8、样品的浓度等指标是根据标准曲线计算出来的,所以首先要把做标准曲线看作是比做正式实验还要重要的一件事,否则后面的实验结果无从谈起。 9、设置标准曲线样品的标准浓度范围要有一个比较大的跨度,并且要能涵盖你所要检测实验样品的浓度,即样品的浓度要在标准曲线浓度范围之

内,包括上限和下限。而对于呈s型的标准曲线,尽量要使实验样品的浓度在中间坡度最陡段,即曲线几乎成直线的范围内。 10、最好采用倍比稀释法配制标准曲线中的标准样品浓度,这样就能够保证标准样品的浓度不会出现较大的偏离。 11、检测标准样品时,应按浓度递增顺序进行,以减少高浓度对低浓度的影响,提高准确性。 12、标准曲线的样品数一般为7个点,但至少要保证有5个点。 13、做出的标准曲线相关系数因实验要求不同而有所变动,但一般来说,相关系数r至少要大于,对于有些实验,至少要甚至是。 1、单色光纯度不够 问题:标准曲线上端向下弯曲。 措施:光度法中要求在最大吸收峰处测定吸光度,光度计的有效谱带宽度越窄越好,有利于获得纯度高的单色光。 2.比色皿的厚度或光学性能不一致 如果装试剂空白液的比色皿较其它比色皿薄或对光的吸收和反射少一些,则曲线的延线与纵坐标相交;反之,与横坐标相交。 3.显色反应和反应条件的问题 当显色反应的灵敏度不高时,被测物低于某一浓度就不能显色,当浓度不同时,溶液对光的吸收、散射的程度不同,低浓度段往往弯曲,

灰土路基灰剂量衰减与压实度的关系

灰土路基灰剂量衰减对压实度的影响 中铁十二局集团 张金龙 内容提要:本文以宁常高速公路灰土路基工程实践为例,在分析土工试验数据的基础上,探讨灰土路基施工中灰剂量衰减对压实度的影响程度。 关 键 词: 灰土施工 灰剂量衰减 影响压实度 一、前言 我们施工的江苏省南京至太仓高速公路常州市段工程,由于土源严重缺乏,取土坑设在滆湖,路基中部填土全部采用掺石灰处理。 在灰土施工中,常会发现灰土的灰剂量和压实度在检测时低于设计和规范要求,而实际施工中的用灰量却远大于设计用量。遇到这种情况,为了保证工程质量,经常是返工处理,不但影响了施工进度,也挫伤了施工人员的积极性。为此,我们通过大量的试验发现,灰土的灰剂量滴定随时间的增长有所衰减,即灰剂量衰减。在压实度检测过程中,由于取样的时间不同,灰剂量滴定就不一样,因而确定的最大干密度也就不一样。时间越长,滴定出的灰剂量越低,取用的最大干密度越大,从而反映出的路基压实度越小。因此,我们在灰土的检测中有必要考虑灰剂量衰减对路基压实度的影响。 二、灰土试验 在灰土路基施工前,首先要绘制不同掺灰量与最大干密度的曲线、EDTA 消耗量与石灰剂量的曲线、灰剂量随时间变化的曲线。我们以滆湖1# 取土坑的土质进行试验,绘制三种不同曲线。 1、绘制掺灰量与最大干密度的关系曲线 ②、通过对上述试验数据处理分析,绘制掺灰剂量与最大干密度的曲线图,如图一所示。 1.60 1 2 3 4 5 6 7 8 9 10 1.65 1.70 1.75 1.80 图一

③、从图一可以得到不同灰剂量对应的最大干密度。 2、绘制EDTA 的消耗量与石灰剂量的标准曲线 ①、通过下列公式进行混合料组成的计算 1)干混合料质量=300g /(1+最佳含水量) 2)干土质量=干混合料质量/(1+石灰剂量) 3)干石灰质量=干混合料质量-干土质量 4)湿土质量=干土质量×(1+土的风干含水量) 5)湿石灰质量=干石灰×(1+石灰的风干含水量) ②、按①计算的结果配制灰土的混合料,通过EDTA 滴定法,得到不同灰剂量滴定消耗EDTA ③、通过对上述试验数据处理分析,绘制EDTA 消耗量与石灰剂量的标准曲线,如图二所示。 滴定消耗EDTA 1 2 3 4 5 6 7 8 9 10 图二 510152025303540 ④、由图二可以得到不同石灰剂量与EDTA 消耗量的对应关系。 3、绘制石灰剂量衰减曲线 ①、根据已经确定的最大干密度和最佳含水量选取5%石灰剂量的稳定土,通过无机结合料稳定土的无侧限抗压强度试验方法中的制件方法配制试件,模拟现场施工条件对已配制的试件进

常用液位计常见故障分析方法

常用液位计常见故障分析方法 一、现场液位计系统故障的基本分析步骤现场液位计液位测量参数一般分为温度、压力、流量、液位四大参数。 现根据液位测量参数的不同,来分析不同的现场液位计故障所在。 1.首先,在分析现场液位计故障前,要比较透彻地了解相关液位计系统的生产过程、生产工艺情况及条件,了解液位计系统的设计方案、设计意图,液位计系统的结构、特点、性能及参数要求等。 2.在分析检查现场液位计系统故障之前,要向现场操作工人了解生产的负荷及原料的参数变化情况,查看故障液位计的记录曲线,进行综合分析,以确定液位计故障原因所在。 3.如果液位计记录曲线为一条死线(一点变化也没有的线称死线),或记录曲线原来为波动,现在突然变成一条直线;故障很可能在液位计系统。因为目前记录液位计大多是DCS计算机系统,灵敏度非常高,参数的变化能非常灵敏的反应出来。此时可人为地改变一下工艺参数,看曲线变化情况。如不变化,基本断定是液位计系统出了问题;如有正常变化,基本断定液位计系统没有大的问题。 4.变化工艺参数时,发现记录曲线发生突变或跳到最大或最小,此时的故障也常在液位计系统。 5.故障出现以前液位计记录曲线一直表现正常,出现波动后记录曲线变得毫无规律或使系统难以控制,甚至连手动操作也不能控制,此

时故障可能是工艺操作系统造成的。 6.当发现DCS显示液位计不正常时,可以到现场检查同一直观液位计的指示值,如果它们差别很大,则很可能是液位计系统出现故障。总之,分析现场液位计故障原因时,要特别注意被测控制对象和控制阀的特性变化,这些都可能是造成现场液位计系统故障的原因。所以,我们要从现场液位计系统和工艺操作系统两个方面综合考虑、仔细分析,检查原因所在。 二、四大液位测量参数液位计控制系统故障分析步骤 1.温度控制液位计系统故障分析步骤 分析温度控制液位计系统故障时,首先要注意两点:该系统液位计多采用电动液位计液位测量、指示、控制;该系统液位计的液位测量往往滞后较大。 (1)温度液位计系统的指示值突然变到最大或最小,一般为液位计系统故障。因为温度液位计系统液位测量滞后较大,不会发生突然变化。此时的故障原因多是热电偶、热电阻、补偿导线断线或变送器放大器失灵造成。 (2)温度控制液位计系统指示出现快速振荡现象,多为控制参数PID 调整不当造成。 (3)温度控制液位计系统指示出现大幅缓慢的波动,很可能是由于工艺操作变化引起的,如当时工艺操作没有变化,则很可能是液位计控制系统本身的故障。

灰剂量计算方法

目前在公路工程中,石灰土广泛应用于路基与路面底基层之中,石灰稳定土具有良好的力学性能并有较好的水稳性和一定程度的抗冻性,其初期强度和水稳性较低后期强度较高。但由于干缩冷缩,易产生裂缝,因此一般不宜作高级路面的基层。 石灰稳定土的施工方法主要有路拌法与厂拌法两种,无论何种施工方法,施工过程中控制的主要指标有含水量、灰剂量、压实度、颗粒大小、厚度等,其中灰剂量是至关重要的一个因素,灰剂量的大小影响到石灰土的强度、压实度的真假、最佳含水量等多种指标,对石灰土的最终质量具有十分重要的意义,因此,结合自己的施工经验,谈几点关于灰剂量的看法,供大家一起探讨。 1关于灰剂量的定义的一些争议: 1.1争议之一:内掺与外掺 根据《公路路面基层施工技术规范》(JTJ034-2000)4.1.2条款的规定:“石灰剂量以石灰质量占全部粗细土颗粒干质量的百分率表示,即石灰剂量=石灰质量/干土质量”;但在《公路工程预算定额》石灰土中对石灰用量的计算,则是以混合料重×灰剂量=生石灰质量,即灰剂量=石灰质量/干混合料重量;根据上述则可以看出,施工规范的定义明显是外掺,即10%石灰土=10g灰/100g干土,那么混合料则是110g,而根据预算定额的计算方法则为内掺:10%石灰土=10g灰/(90g土+10g灰),干土重量为90g而非100g。就外掺法的灰剂量换算为内掺的灰剂量,则为10/110=9.09%,与10%比较,则相差近1个百分点。 1.2争议之二: 施工技术规范中只写是石灰/干土,而对石灰是消石灰还是生石灰的界定却很模糊,而预算定额中则明确提出用量为生石灰用量,根据经验数据,1m3消石灰需要428.4kg生石灰(生石灰中50%块,50%粉末),消石灰的松方干密度为550 kg/ m3,那么可以计算,掺生石灰与掺消石灰的系数:550/428.4=1.28,所以在施工过程中,监理工程师往往会要求按式 m=v×ρ干×i% m—掺灰质量 v—混合料压实体积 ρ干—混合料最大干密度 i%—设计灰剂量 计算的石灰数量后,再乘以1.2左右的一个系数后作为应掺加的消石灰用量,而施工单位则不能接受,这也是争议之一。 2建立客观、真实的验收曲线: 测定石灰剂量的方法,根据现行的《公路工程无机结合料稳定材料试验规程》(JTJ057-94)主要有两种测定

故障率及计算方法

故障率的计算方法 系统发生故障的频率和时间的关系可以用浴盆曲线来表达,如图1-1所示。。 1浴盆曲线原理 图 1-1浴盆曲线 从该曲线可以看出,系统故障率在系统早期投用和晚期老化后的故障率较高,而在使用中间段时随机故障率相对恒定。 2故障率计算公式 C=在考虑的时间范围Δt 内,发生故障的部件数 N=整个使用的部件数 Δt=考虑的时间范围 3平均无故障时间MTBF MTBF=1/λ 4可靠性计算公式 A S =MTBF/(MTBF+MDT) MDT=平均故障时间(或 MTTR=平均修复时间) 举例: ● MTBF=100h ,MDT=0.5h-A=99.5%! ● MTBF=1year ,MDT=24h-A=99.7% λ ≈ c N . ? t 早期故障 磨损故障 随机故障 λ 常数 t 故障频率 λ

因此,考虑系统的可靠性需同时考虑MTBF和MDT。

5如何增加系统的可靠性 从可靠性公式中可以看出,增加系统的可靠性可以从提高MTBF和MDT降低两个方面进行。 5.1增加系统的稳定性 增加稳定性,可从如下环节考虑: ●设备生产商 ●使用高质量部件 ●使用具有更高标准的部件 ●预烧 ●抗过载保护 ●质量控制 ●冗余 ●工厂设计人员 ●网络结构 ●冗余安装 ●符合安装条件需要 ●在合适的环境条件下使用 ●工厂操作人员 ●维护 ●快速故障诊断 ●自动故障诊断和定位(自测试) ●具有诊断功能 ●诊断工具的稳定性 ●训练有素的维护人员 ●快速修复 ●系统不停机情况下修复(在线修复) ●修复工程容易 ●快速备件发送 ●训练有素的专业人员 5.2整个系统的MTBF 对于串行系统而言,系统故障发生率是各部件故障发生率之和,如图1-2所示。举例: MTBF1 MTBF2 MTBF3

石灰土施工要点

石灰土基层的质量控制要点、质量通病及防护措施 石灰土是昆山地区路基及道路底基层应用最广泛的的材料,它具有良好的板体性。石灰土的强度随龄期增长,并与养护湿度密切相关,温度低于5˙C时强度几乎不增长,因此宜在在第一次重冰冻(-3℃~-5℃)到来之前的一个月到一个半月完成。 石灰土施工质量控制要点: 一、原材料的选择: 1、土(规范中规定1、宜采用塑性指数10-15的粉质黏土、黏土; 2、土中的有机物含量宜小于10%) 土的选择争议主要在塑性指数的大小上,一般认为塑性指数在10-20以内都是可接受的范围。但实际施工过程中往往出现送样的土样和施工的土样存在差异导致试验结果出现误差的情况,这就需要我们正确认识和严格控制土样送样和施工土样的统一性,对外进土方土质需每次都送样进行检测,不合格施工用土坚决退场。 2、石灰(规范中规定1、宜用1-3级的新灰;2、对储存较久或经过雨期的消解石灰应先经过试验,根据活性氧化物的含量决定能否使用和使用方法)

石灰的重点在于确定石灰的有效钙和氧化镁含量:I等>=75%;II 等>=70%;三等>=60%。在试验时我们不能为了确保石灰质量过关而有选择的取样。应随机取样,用试验确认石灰的真实等级,来指导我们施工时拌合石灰的数量。 3、水(规范中规定应1、符合国家现行标准《混凝土用水标准》JGJ63的规定。宜使用饮用水及不含油类等杂质的清洁中性水,PH值宜为6-8)。 二、灰土拌合, (规范中要求:1、厂拌石灰土,采用强制式搅拌机进行搅拌。配比应准确,搅拌均匀;2、含水量略大于最佳值;3、石灰土应经过过筛;4、拌成的灰土应及时运送到铺筑现场,并在运输过程中采取防止水分蒸发和防扬尘措施) 实际过程中由于天气的影响、工期的要求,本地区主要采用挖掘机拌合石灰土及依靠生石灰吸水消解并去除土中水份的施工工艺。这种工艺的优点是:造价低、施工速度快、缺点是:拌合无法完全均匀、石灰有效含量流失大。 三、灰土摊铺及碾压

灰剂量检测的方法

目的和适用范围 (1)本实验方法适用于在工地快速测定水泥和石灰稳定土中水泥和石灰的剂量,并可用以检查拌和的均匀性。用于稳定土可以是细粒土,也可以是中粒土和粗粒土。工地水泥和石灰稳定土含水量的少量变化(±2%),实际上不影响测定结果。用本方法进行一次剂量测定,只需10min左右。 (2)本方法也可以用来测定水泥和石灰稳定土中结合料的剂量。 2、仪器设备 (1)滴定管(酸式):50mL,1支。 (2)滴定台:1个 (3)滴定管夹:1个 (4)大肚移液管:10mL,10支 (5)锥形瓶(三角瓶):200mL,20个 (6)烧杯:2000mL,一只,300mL,10只 (7)容量瓶:1000mL,1个 (8)搪瓷杯:容量大于1200mL,10只 (9)不锈钢棒(或粗玻璃棒):10根 (10)量筒:100和5mL,各1只,50mL,2只 (11)棕色广口瓶:60mL,1只(装钙红) (12)托盘天平:称量500g、感量和称量100g、感量,各一台 (13)秒表:一只

(14)表面皿:Φ9cm,1个 (15)研钵Φ12~Φ13cm,1个 (16)土样筛:筛孔或,1个 (17)洗耳球(1两或2两):1个 (18)精密试纸:PH12~14 (19)聚乙烯桶:20L,1个(装蒸馏水);10L,2个(装氯化铵及EDTA二钠标准液);5L,1个(装氢氧化钠)。 (20)毛刷、去污粉、吸水管、塑料勺、特种铅笔、厘米纸 (21)洗瓶(塑料):500mL,1只 3. 试剂 (1)L乙二胺四乙酸二钠(简称EDTA二钠)标准液;准确称取EDTA二钠(分析纯),用微热的无二氧化碳蒸馏水溶解,待全部溶解并冷却至室温,定容至1000mL。 (2)10%氯化铵溶液:将500g氯化铵(分析纯或化学纯)放在10L聚乙烯桶内,加蒸馏水4500mL,充分振荡,使氯化铵完全溶解。也可以分批在1000mL的烧杯内配制,然后倒入塑料桶内摇匀。 (3)%氢氧化钠(内含三乙醇胺)溶液:用100g托盘天平称取18g氢氧化钠(分析纯),放入洁净干燥的1000mL烧杯中,加入1000mL蒸馏水使其全部溶解,待溶解冷却至室温后,置入2mL三乙醇胺(分析纯),搅拌均匀后储于塑料桶中。 (4)钙红指示剂:将钙试剂羟(qiang)酸钠(分子式C21H13O7N2SNa ).与20g预先在105℃烘箱中烘1h的硫酸钾混合,一起放入瓷研钵中,研成极细粉末,储于棕色广口瓶中,以防吸水变潮。 4.准备标准曲线

FMR250雷达料位计使用说明书

FMR250雷达料位计使用说明书 天线接收物料表面反射回的微波脉冲信号, 并将其传输给电子部件。微处理器对 信号进行处理,识别微波脉冲在物料表面所产生的回波信号。 参考点至物料表面间的距离与脉冲信号的运行时间成正比: D=c ? t/2 其中为光速 空罐高度E 已知,则物位为L : L=E-D+A 请参考上图,确定参考点的位置。 L : level (料位高度),显示在 OA6中 E : empty calibr. (空罐标定,=zero ,零点),在菜单 005中设置 F : full calibr.( 满罐标定,=span ,量程),在006设定 D : distanee (空仓高度),显示在 0A5中 A :在057菜单中设置 —、显示 2.1显示符号的意义 符号 意义 || 1 报警符号 当仪表处于报警状态时,改符号出现,若此符号闪烁,则表示 报警 占 锁定符号 当系统被锁定,即不能进行输入时,改符号出现 缘我址誉― 17/ESPTIR17/) 或 J TbimT : 20mA 100% 、测量原理 4 mA □% I '■ I I

在一般的料位测量的使用中,主要设置以下参数: 介质类型(media type 001),罐体形状(Vessel/silo 00A)空罐标定(Empty Calibr. 005),满罐标定(Full Calibr. 006),线性化(linearisation 041),客户单位(Customer unit 042),最大量程(max scale 046此处的数值需与满罐高度一致)零点调整(offset 057这一数值将会加到测量值上) 在调试过程中需要用到的其他菜单: 电流输出模式(Curr. Output mode 063 一般选择“标准” -“Standarc”)查看波络线(在菜单envelope curve 0日查看信号距离。 (基本设置00)--(介质类型001: solid固体;liquid液体)----(罐体形状 00A: unknow 未知;metal silo 金属仓;…..)---(介质特性00B: unknow 未知;DC1.6..1.9…..)---(过程条件00C: standard 标准;f ast change快速变化;…..)---(空罐标定005:输入数值)---(满罐标定006:输入满量程值)---(距离/ 测量值008:显示D和L)--(检查距离051 : distance= OK距离OK ;dist. too small 距离太小;manual 手动;...)---(抑制图范围052:手动输入,在此范围内

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

路基各种类型毕业设计论文.doc

目录 1 前言......................................................................... 错误!未定义书签。 2 施工准备 (3) 2.1施工机械准备 (3) 2.2施工测量准备 (4) 2.2.1导线复测 (4) 2.2.2中线复测 (4) 2.2.3 校对及增设水准基点 (4) 2.2.4 路基放样 (4) 3 路基清理施工方案,方法 (5) 4挖方段施工及边坡 (5) 5路基填筑方案施工方案,方法 (6) 5.1路基压实标准与调料要求 (6) 5.2路基调料处理 (7) 5.3 路基填筑施工方法 (8) 5.4石灰土施工方案,方法 (8) 6 路基施工要求及注意事项 (13) 7 结束语 (14) 参考文献 (14) 路基的施工过程与注意事项

路基的施工过程与注意事项 摘要:路基的施工质量直接影响到道路路面的质量,影响到整个路面的使用寿命,进而进一步影响到公共交通与人身的安全,所以对路基施工过程要予以充分重视。完善的施工准备与施工方法是道路路基施工的工程质量保证,因此要在施工中加强施工管理,采取科学的施工方法和切实可行的实用方案。 关键字:压实度、灰剂量、施工方法、质量控制。 1.前言 近年来,交通运输在国民经济中的地位日显重要,部分地区的市区道路已不能满足社会需求。需要新建许多市区道路,能较好地缓解当前地方干线公路因交通量迅猛增长而带来的通行压力。而本文结合无锡东胜一路施工过程中谈谈沥青路面路基施工中的技术问题和的注意事项。 东盛一路为园区内主要通道,北起北中路,南至厚桥路,全长6856.68米,按城市主干道设计,设计行车速度为60Km/h,全线交叉口11个,所有交叉口均为平面交叉。道路横坡为单折线形双向坡,车道坡度为2.0%,坡向路边;人行道坡度为2.0%,坡向路中。一般路段总宽度为45m:2×12m机动车道+2×4.5m 非机动车道+2×3.0m人行道。 2. 施工准备 2.1 施工机械准备 必须配备齐全的施工机械和配件,作好开工前的保养、试机工作,并保证在施工期间一般不发生有碍施工进度和质量的故障。路基施工,要求采用运输、压实、整平机械。因而必须配备以下主要机械: (1)压路机配备21T振动压路机一台、25三轮压路机一台 (2)自卸汽车5T的自卸汽车4辆 (3)装载机5T装载机1辆 (4)洒水车1辆

仓泵使用说明书G样本

使用说明书 天洁集团 浙江天洁环保工程有限公司

目录 目录................................................ 错误!未定义书签。 一.仓泵结构......................................... 错误!未定义书签。 1.仓泵本体结构 .................................. 错误!未定义书签。 2.仓泵外形尺寸与接口 ............................ 错误!未定义书签。 二. 仓泵的完整配置.................................. 错误!未定义书签。 三.仓泵运行原理与流程............................... 错误!未定义书签。 1.仓泵输送过程原理 .............................. 错误!未定义书签。 2.仓泵输送工艺流程 .............................. 错误!未定义书签。 四.调试............................................. 错误!未定义书签。 1.冷态调试 ...................................... 错误!未定义书签。 2.热态调试 ...................................... 错误!未定义书签。 五. 设备维护和故障处理.............................. 错误!未定义书签。 1.设备维护〖定期维护〗 .......................... 错误!未定义书签。 (1).仓泵本体的维护........................... 错误!未定义书签。 (2).流化盘的维护............................. 错误!未定义书签。 (3).出料阀的维护............................. 错误!未定义书签。 (4).进料阀的维护............................. 错误!未定义书签。 (5).进气管路的维护........................... 错误!未定义书签。 ※(6).其它................................... 错误!未定义书签。 2.零部件故障及处理 .............................. 错误!未定义书签。 (1).进料阀的故障处理......................... 错误!未定义书签。

相关文档
最新文档