力矩有固定转动轴物体的平衡

力矩有固定转动轴物体的平衡
力矩有固定转动轴物体的平衡

第二章力矩有固定转动轴物体的平衡

本章学习提要

1.理解力矩概念和定义,会运用力臂和力矩的定义计算力矩。

2.会利用力矩盘进行实验,探究有固定转动轴的物体的平衡条件。

3.理解有固定转动轴的物体的平衡,知道有固定转动轴的物体的“力矩平衡条件”,能运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。

本章内容从基础型物理课程中的质点问题(质点受力、共点力平衡条件)拓展到刚体问题(力矩、力矩平衡条件)。在日常生活和生产中所见到的物体的运动,以及分子、原子这样的微观粒子和宇宙天体的运动都包括转动,因此关于力矩和力矩平衡条件的讨论具有普遍意义。认识怎样根据实际需要引进力矩,以及力矩的定义方法和它的物理意义。通过力矩和力矩平衡条件的学习和应用,体会物理学与技术、社会的联系,了解运用力矩平衡条件设计出各类工具,以及千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。

A 力矩

一、学习要求

理解力臂和力矩概念,会用力臂和力矩的定义计算力矩。

从实际例子的分析中,明白引进力矩的必要性;认识力矩的定义方法以及力矩的物理意义。通过从实际需要中引进力矩概念,了解力矩概念与常用工具和生活、生产的联系,体会物理学与实际的密切关系。

二、要点辨析

1.为什么要引进力矩

力对质点运动的作用效果取决于它的大小和方向。而力对物体转动的作用效果不仅与力的大小和方向有关,还与力的作用点的位置有关,为了描写力的大小、方向和作用点对物体转动的作用效果,需要引进力矩这个物理量。

力臂:力的作用线与转动轴之间的距离称为力臂。

力矩:力(F)和力臂(L)的乘积称为力对转动轴的力矩。

2.关于力的作用线与转动轴的距离

力的作用线是力的方向上的一条假想的直线。力的作用线与转动轴的距离实际上涉及到两条线之间的距离。一般情况下确定空间中任意两条直线间的距离比较麻烦。我们所讨论的仅限于力的作用线都在同一个与转动轴相垂直的平面内,若该平面与转动轴的交点称为O,那么我们需考虑的空间中两条直线(力的作用线与转动轴线)间距离的问题便简化为一个点(O点)与一条直线(力的作用线)间距离的问题。

3.求力矩的两种基本方法

(1)先求力臂的方法:先求力臂,再求力矩的方法计算力臂的要点是,从转动轴作力的作用线的垂线,其垂线长即为该力对于转动轴的力臂。力臂的计算通常要用到三角函数。

(2)力的分解方法:先将力正交分解为两个分力,然后分别计算两个分力对转动轴的力矩,该力的力矩就等于这两个分力力矩的代数和(注意力矩正负的判断)。在一般情况下,可使其中一个分力的作用线过转动轴,其力臂为零,因而力矩为零,这时只要计算另一个分力的力矩即可。

三、例题分析

【示例】如图2-1(a)所示,长度为l=1m的杆OB可绕通过O点垂直于纸面的轴转动,绳AB的拉力为20N,杆OB刚好水平,AB与OB的夹角为30°。求拉力的力矩。

【解答】分别用先求力臂的方法和力的分解方法计算。

(1)先求出拉力F的力臂。如图2-1(b)所示,对于转轴O来说,力F的力臂为L=lsinθ,其中θ=30°,因此拉力F对于转轴O的力矩为

M=FL=Flsinθ=20×1×sin30°N·m=10N·m。

(2)先将拉力F分解为垂直于杆方向的分力F1=Fsinθ,以及沿杆方向的分力F2=Fcosθ,如图2-1(c)所示。其中沿杆方向的分力F1指向转轴,相应的力臂为零,所以相应的力矩也为零。而垂直于杆方向的分力F1的力臂就等于OB的长度l,因此相应的力矩为M=F1l=Fsinθl=20×sin30°×1N·m=10N·m。

两者结果完全相同。

四、基本训练

1.用一把柄的长度为25cm的扳手拧紧一尺汽车轮胎上的螺帽,

如图所示。如果你在扳手的一端沿与扳手柄成60°角的方向上用

200N的力拉扳手,则所施的力矩是多少?

2.图中各物体都受到几个力的作用,并且可以分别绕通过O点且垂直于纸面的轴转动,画出图中各个力以O点为转动轴的力臂;哪些力矩是引起顺时针方向转动的力矩?哪些是引起逆时针方向转动的力矩?哪些力对O点的力矩为零?

3.OA是一根长为l,质量为m的均匀铁棒,可绕O点的轴自

由转动,问:当恒定外力F将它拉到如图所示位置的过程中,该

棒所受的重力是否改变?重力对O点的力臂和力矩是否改变?

怎样改变?F对O点的力臂和力矩是否改变?怎样改变?

4.如图所示,直杆OA可绕通过O点,且垂直于纸面的轴转

动,杆的A端分别受到F1、F2、F3、F4的作用。已知力的作

用线都在纸面内,且这四个力的矢量末端均落在一条与OA

平行的虚线上,设它们对O轴的力矩分别为M1、M2、M3、

M4,则这四个力矩大小的关系是()

(A)M1>M2>M3>M4

(B)M1=M2=M3=M4

(C)M1<M2<M3<M4

(D)以上说法都不对

5.在如图所示的绞盘的把手上,应至少施以多大的力,才能使紧绕在滚筒上的绳子产生2500N的拉力?滚筒和把手的尺寸如图中所示。

6.联系本节课本开头的跷跷板游戏情景,求解

如下问题:

如图所示,杠杆AB可绕通过O点,且垂直于

纸面的轴转动。它受到两个力作用,力F A的大

小为80N,其作用线与AO的夹角为θ=60°;

F B的大小为30N,方向与OB垂直。AO=0.8m,

OB=2.2m。求F A和F B对于转轴O的力矩。

7.一根长为L、重为G的均匀杆,一端搁在光滑水平地面上,

另一端为转轴,如图所示。杆与水平地面的夹角为θ,则杆所受

重力对转轴的力矩为_______。如果地面对杆的支持力为F,则支

持力F对转轴的力矩为__________。

8.如图所示,AB是一根质量为m、长度为L的均匀

金属杆,静止在水平位置,其A端用细绳悬挂,细绳

与水平面的夹角为θ;转轴在C 点,BC 长L /4,问:这根金属杆的AC 段和CB 段的重力对C 点的力矩分别是多少?如果细绳的拉力为T ,那么该拉力对C 点的力矩又是多少?

9.如图所示,小型臂式起重设备的吊杆质量为150kg ,其重心与转

轴O 的距离是吊杆长度的25

。当吊杆与水平方向的夹角为θ=30°时,最大安全负载为3000N 。如果这一最大负载是由O 处的转轴所

能承受的最大力矩所确定的,那么当θ=45°和60°时,这台起重机

的最大安全负载分别是多少?

10.如图所示,重为G 的L 型匀质杆的一端O 通过铰链与墙体

连接,一个力F 作用在B 端,当F 与水平面成α=45°角时,杆

的OA 边恰好静止在水平方向。已知OA 长为2L ,AB 长为L 。

试分别用先求力臂的方法和力的分解方法计算力对转轴O 的力

矩M 。

11.有一块均匀的直角三角形木板ABC ,可绕通过C 点且垂直于纸面的轴转动,如图(a )所示。现用力使它的BC 边从水平位置转至竖直位置,在此过程中,重力对转轴的力矩大小随α角变化的图线是图(b )中的( )

12.将一个横卧的油桶推上高为h 的台阶。油桶的半径为

R (R >h ),竖直向上的推力F 1作用在桶的最左边的一点,

同时F 2作用在桶的最高点,如图所示。则推力F 1和F 2

对转动轴O 的力矩各是多少?

B 有固定转动轴物体的平衡条件

一、学习要求

理解有固定转动轴的物体的平衡,知道转动平衡状态,理解有固定转动轴的物体的“力矩平衡条件”;会利用力矩盘实验探究有固定转动轴的物体的平衡条件;会运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。

通过力矩盘实验,经历和感受从实验中归纳出力矩平衡条件的探究过程,了解运用力矩平衡条件设计出千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。

二、要点辨析

1.理解力矩平衡条件

有固定转动轴的物体处于平衡状态(即静止或匀速转动状态)时,施加在该物体上所有力的力矩应当满足的条件称为“力矩平衡条件”。

力矩平衡条件可用公式表示为:M 逆=M 顺,其中M 逆和M 顺分别表示从转轴的一个方向上看,能引起物体沿逆时针和顺时针方向转动的所有力矩之和。

2.运用力矩平衡条件解决问题的一般步骤

①明确作为研究对象的物体,以及转动轴;

②分析物体上所受的力的大小、方向、作用点,画出受力图。凡是其作用线通过转轴的力可不考虑(通过转轴的力的力臂为零,因此力矩为零);

③得出每个力对转动轴的力臂和力矩,确定每个力矩究竟是顺时针力矩还是逆时针力矩; ④列出力矩平衡条件方程,解出未知量。

3.关于转动轴的确定

在我们所讨论的问题中,“固定转动轴”比较明显,如杠杆的支点、圆盘的轴心,但是在实际中,有些问题中的转动轴并不十分明显,有些甚至没有明显的转动轴(见A 节基本训练中的第12题、本节基本训练中的第9题),这时常常需要根据“转动趋势”来确定转动轴。

三、例题分析

【示例】如图2-2(a )所示,一根长4m 的

木杆,假定下端用铰链固定在地面上,杆

的顶端有根水平电线向左拉,拉力F T 恒为

500N 。杆的右边用一根长度为4m 的钢绳

将杆垂直固定在地面上。

(1)如果钢绳上端A 离地面的高度为3.5m ,

此时钢绳受到的拉力是多少?

(2)为了使钢绳受到的拉力最小,其上端

A 离地面的高度应是多少?此时钢绳受到的拉力又是多少?

【解析】设杆长为L ;钢绳的拉力为F ;钢绳的长度为l ,其上端A 离地面的高度为x ,下端B 到铰链的距离为y ,钢绳与杆的夹角为α,如图2-2(b )所示。

(1)有三个力作用在杆上:水平电线对杆的拉力F T ,钢绳的拉力F ,在铰链处地面对杆的支持力。其中地面对杆的支持力对转轴的力矩为零;F T 对转动轴的力矩为M 逆=F T L ;F 对转轴的力矩为M 顺=Fx sin α。由力矩平衡条件,得

Fx sin α=F T L

考虑到sin α=y l =l 2-x 2l

,并将已知量F T =500N 、L =4m 、x =4m 、x =3.5m 代入,由上式可得解:

F =F T Ll x l 2-x 2 =500×4×43.5×42-3.52

N =1180.3N 。 (2)由上面的力矩平衡条件,考虑到sin α=y l

,可得

F =F T Ll xy

为了得到最后结果,需应用F 最小的条件。要使F 最小,xy 必需最大。考虑到2xy =x 2+y 2-(x -y )2=l 2-(x -y )2,可见要使xy 最大,应取x =y ,故

x =y =l 2 =42

m =2.83m 。 因此,

F =2F T L l =2×500×44

N =1000N 。 即钢绳应固定在杆上离地面高度为2.83m 处,此时钢绳受到的拉力最小,为1000N 。

四、基本训练

1.如图所示,T 型架ABO 可绕过O 点且垂直于纸面的轴自由转动,

现在其A 端和B 端分别施以力F 1和F 2,它们的方向如图所示。则

关于这两个力的力矩M 1和M 2的下列说法正确的是( )

(A )都会引起物体顺时针方向转动

(B )都会引起物体逆时针方向转动

(C )M 1会引起物体逆时针方向转动,M 2会引起物体顺时针方向转

(D )M 1会引起物体顺时针方向转动,M 2会引起物体逆时针方向转动

2.如图所示,一根均匀直杆OA 可绕过O 点且垂直于纸面的轴

转动。为了测量杆的质量,用一个F =12N 的水平力在A 端将

它拉到与竖直方向成30°角的位置并处于静止状态,杆的质量是

多少?

3.一架简单的起重机结构示意图如图所示。设均匀杆

OB 长为L ,重为G 1,B 端所挂物件的重力为G 2。杆可

绕过O 点且垂直于纸面的轴自由转动。杆的B 端用轻质

钢绳紧拉,系于地面上的A 点。杆与地面成60°角,钢

绳与地面成30°角。此时钢绳AB 的拉力对O 点的力臂

为_______;悬挂物体轻质钢绳的拉力对O 点的力矩为

____,钢绳AB 的拉力为_______。

4.道路上有时使用的交通指示牌及其支架如图所示。若指示牌的

质量为5kg ,它悬挂在长度为3m 的水平杆AB 的一端,杆CD 的

长度为2m ,θ=30°,这些杆的质量都不计,求CD 杆中的拉力。

5.从图(a)起重吊车工作时的情景可抽象出一个如图(b)所示的关于力矩平衡的物理问题。质量为m=500kg,长度OA=6m的均质吊杆OA可绕通过O点且垂直于纸面的轴转动,吊杆与地面的夹角为α=45°。A处吊挂物件的质量为M=2000kg。撑杆BC此时与吊杆间的夹角为β=30°,OC=2.5m。求撑杆的支撑力F T。

6.如图所示,已知O为杆的中点,G=200N,杆的质量忽略不

计。分别沿DA(水平向左)、DB(与杆垂直)、DC(竖直向上)

三个不同方向用力拉住杆,使其静止,问:此时的拉力各是多少?

哪一种情况最省力?为什么?

7.单臂斜拉桥示意图如图所示。均匀桥板重为G,可绕通

过O点且垂直于纸面的轴转动,三根平行钢索与桥面成30°

角,间距AB=BC=CD=DO。如果每根钢索所受拉力大

小相等,求拉力的大小。

8.如图所示,均质杆每米重30N,现有一重量为W=300N

的物件挂在离转轴O的距离为2m处,问:选用多长的杆才

能使需要在另一端施加的平衡力F最小?此最小值为多少?

9.图(a)是杂技芭蕾天鹅舞中的一个动作,为了估算扮演王

子的男演员右手需用拉力的大小,如图(b)所示,可将被托举

的白天鹅女演员简单地抽象为一个可绕通过O点且垂直于纸面

的轴转动的物体AOB,其中OB与水平方向之间的夹角为θ=

45°。设AO段的质量为m1=36kg,其重心C与O点的距离为

CO=0.4m;女演员的腿部长OB=0.7m,质量为m2=8kg,且均匀分布,试计算水平拉力F 的大小。

10.如图所示,均匀木板AB长12m,重200N。

在距A端3m处有一固定转动轴O。B端用绳拴

住,绳与AB的夹角为30°,板AB呈水平位置。

已知绳能承受的最大拉力为200N。试确定重

600N的人在该板上行走的安全范围。

11.如图所示,力矩盘的重心在转轴O处,半径OA恰水平,OB⊥

OA。在A、B处各挂一个相同的砝码,则力矩盘转过的角度为____

时平衡。若A处挂两个相同的砝码,B处挂一个相同的砝码,则力

矩盘转过的角度为____时平衡。

12.一根木料长3m,提起它的右端要用600N的力;提起它的左端要用800N的力。问:这根木料有多重?这根木料的重心在何处?

13.如图(a)所示,长度为L、重为G的均匀横杆,A端通过铰链固定在墙面上,另一端用钢丝绳拉成水平状态,钢绳与横杆的夹角为θ。从开始时刻起,一个质量为m,可视为质点的物体沿杆以速度v从A端匀速滑向B端。问:在小物体滑动过程中钢丝绳的拉力F T随时间有怎样的变化关系?在图(b)上作出F T-t图。

14.STS——关于人体某些部位的力矩平衡问题

(1)如图(a )所示。手臂水平伸直,手中握有一个重100N 的重物,此时手臂主要由三角肌支承,根据图中所示尺寸计算三角肌中的总张力F 。(受力图中,G 1代表手臂自身重量,它作用于手臂的重心处;F h ,F V 代表肩部的作用力)

(2)图(b )中画出了一个人正在弯腰提取G =250N 重物的情景,在受力图上,A 点处附加的G 1=20N 代表手和臂部分所受的重力;B 点处的G 2=200N 代表身体躯干部分所受的重力,它作用于躯干的重心处,试根据这一简化模型示意图,计算提起重物时勃起脊柱肌中的张力F 。(受力图中F h ,F V 表示骨盆对脊柱底部的作用力。这个问题使人联想起为什么医生建议应保持脊柱竖直,尽量用腿部肌肉的力量提起重物)

*(3)图(c )中画出了一位体重640N 、体态匀称的人体及一位体重900N 、过度肥胖的人体示意图,图中还给出了人体臀部以上部分的受力情况。W 是臀部以上部分所受的重

力,假定它等于总体重的23

,其作用点在人体这部分的重心处。该重心对于这两种类型的人体来说,分别在第五脊椎前大约8cm 和15cm 处。为了使身体不因臀部以上所受重力W 的作用而弯曲,人体的背部肌肉需产生拉力F ,该拉力的作用点大约分别在第五脊椎后的5cm 和6cm 处。试计算拉力F 。

五、学生实验

【实验一】研究有固定转动轴的物体的平衡条件

1.实验目的

研究有固定转动轴的物体的平衡条件。

2.实验器材

铁架台、力矩盘、弹簧秤、一组钩码、带套环的横杆、钉子、细线、刻度尺等。

3.探究思路

__________________________________________________________

4.实验步骤

上,把力矩盘套在轴上并使盘面保持竖直。同时在铁架上固定

一根横杆,力矩盘上画上若干同心圆,供确定力臂时参考。

(2)将钉子固定在力矩盘的四个任意位置上,其中三枚

钉子上用细线悬挂不同个数的钩码,第四个钉子用细线与测力

计的钩子相连,测力计的另一端则挂在水平横杆的套环上。

(3)当力矩盘在这四个力的作用下处于平衡状态时,测

出各个力(包括测力计所施的力)的力臂,将力和力臂的数据

记录在下面的数据表中。

(4)改变钉子的位置,重复实验一次。

5.记录数据

6.分析数据,得出结论

计算上表中各个力对转轴O的力矩,确认该力矩究竟是逆时针方向力矩还是顺时针方

向力矩,并将结果填写在上表中。然后分别算出能引起物体沿逆时针方向转动和沿顺时针方

向转动的力矩之和,并填写在下表中。

由此可得出如下结果:

___________________________________________________________________________。

7.讨论

实验中哪些因素可能引起误差?为此你采取了哪些措施?

2014竞赛第二讲 一般物体的平衡答案

2014第二讲 一般物体的平衡 一、相关概念 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零,即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法: ++++= g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。 二、常用方法 ①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多; ②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解; ③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 三、巩固练习 1.如右图所示,匀质球质量为M 、半径为R ;匀质棒B 质量为m 、长度为l 。求它的重心。 【解】第一种方法是:将它分隔成球和棒两部分,然后用同向平行力合成的方 法找出重心C 。C 在AB 连线上,且AC ·M=BC ·m ; 第二种方法是:将棒锤看成一个对称的“哑铃”和一个质量为-M 的球A '的合成,用反向平行力合成的方法找出重心C ,C 在AB 连线上,且BC ·(2M+m )=C A '·M 。不难看出两种方法的结果都是 m M l R M BC +? ? ? ?? +=2。 2.将重为30N 的均匀球放在斜面上,球用绳子拉住,如图所示.绳AC 与水平面平行,C 点为球的最高点斜面 倾角为370 .求: (1)绳子的张力. (2)斜面对球的摩擦力和弹力. [答案:(1)10N ;(2)10N ,30N] 解:(1)取球与斜面的接触点为转轴:0)37cos (37sin 20=+-R R T mgR ,得T =10N; (2)取球心为转轴得,f =T =10N; 取C 点为转轴:037sin )37cos (00=-+NR R R f ,得N =30N. (M+m )g (2M+m )g

力矩与力矩平衡

力矩和力矩平衡 一.内容黄金组. 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 二.要点大揭秘 1.转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。 明确转轴很重要: 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB,现给B端加一个竖直向上的外力使杆刚好离开 地面,求力F的大小。在这一问题中,过A点垂直于杆的水平直线是杆的转轴。象这样,在解决问 题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩 平衡条件。 2.力矩: 力臂:转动轴到力的作用线的垂直距离。 力矩:力和力臂的乘积。 计算公式:M=FL 单位:Nm 效果:可以使物体转动 (1)力对物体的转动效果 力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 (2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 (3)力矩的计算: ①先求出力的力臂,再由定义求力矩M=FL 如图中,力F的力臂为L F=Lsinθ 力矩M=F?L sinθ ②先把力沿平行于杆和垂直于杆的两个方向分解,平 行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的 力矩为该分力的大小与杆长的乘积。 如图中,力F的力矩就等于其分力F1产生的力矩,M =F sinθ?L 两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。 3.力矩平衡条件: 力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。 ∑M=0或∑M 顺=∑M 逆 F F2

第五讲 有固定转动轴的物体的平衡

第五讲 有固定转动轴的物体的平衡 一、知识要点: 1.力臂:从转动轴到力的作用线的垂直距离。用L 来表示。 2.力矩:力和力臂的乘积。用M 表示。公式;M=F×L 。单位;牛顿·米。计算力矩,关键是正确找到力臂。 3.有固定轴的物体的平衡状态:静止或匀速转动。 有固定轴的物体平衡的条件:顺时针力矩的总和等于逆时针力矩的总和。 公式;ΣM 顺=ΣM 逆 二、典型例题: (一)力臂、力矩的运算: 1.均匀杆OA 可绕过O 点的水平轴自由转动,在其A 端用竖直向上的力F 拉,使杆缓慢的转动,杆与天花板的夹角θ逐渐减小,如图所示。在此过程中,拉力F 大小的变化情况是 ,F 力的力矩大小的变化情况是 。 2.如图,直杆OA 可绕O 点转动,图中虚线与杆平行,杆端A 点受四个力F 1、F 2、F 3、F 4的作用,力的作用线跟OA 杆在同一竖直平面内,四个力对轴O 的力矩分别是M 1、M 2、M 3、M 4。则力矩的大小关系是:( ) A .M 3=M 4

(完整版)物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 2α β A B O

高二物理有固定转轴的物体的平衡

第9单元:有固定转动轴的物体的平衡 教学目标: 一、知识目标 1:知道什么是转动轴和有固定转动轴的物体的平衡状态。 2:掌握力臂的概念,会计算力矩。 3:理解有固定转动轴的物体的平衡条件。 二、能力目标: 通过有固定转动轴的物体的平衡条件的得到过程,培养学生的概括能力和分析推理能力。 三、德育目标: 使学生了解物理学的研究方法 教学重点: 1:什么是转动平衡; 2:有固定转动轴的物体的平衡条件。 教学难点: 力矩的概念及物体的转动方向的确定。 教学方法: 实验法、归纳法、讲授法 教学用具: 力矩盘、钩码、弹簧秤、投影仪、投影片 教学步骤: 一、导入新课: 1:复习:前边我们共同学习了物体在共点力作用下的平衡条件及其应用,请同志们回答以下问题: (1)什么是共点力作用下物体的平衡状态? (2)在共点力作用下物体的平衡条件是什么? 2:引入:本节课我们来学习另外一种平衡——转动平衡 二、新课教学 (一)用投影片出示本节课的学习目标: 1:了解转动平衡的概念 2:理解力臂和力矩的概念 3:理解有固定转动轴的物体的平衡条件 (二)学习目标完成过程: 1:转动平衡 (1)举例:生活中,我们常见到有许多物体在力的作用下转动;例如:门、砂轮、电唱机的唱盘,电动机的转子等; (2)引导学生分析上述转动物体的共同特点,即上述物体转动之后,物体上的各点都沿圆周运动,但所有各点做圆周运动的中心在同一直线上,这条直线就叫转动轴。 (3)介绍什么是转动平衡。 一个有固定转动轴的物体,在力的作用下,如果保持静止,我们就说这个物体处于转动平衡状态。 (4)课堂讨论:举几个物体处于转动平衡状态的实例。 2:力矩: (1)引言:通过上面例子的分析,我们知道,力可以使物体转动,那么力对物体的转动作用跟什么有关系呢? (2)举例: a:推门时,如果在离转轴不远的地方推,用比较大的力才能把门推开;在离转动轴较远的地方推门,用比较小的力就能把门推开。 b:用手直接拧螺帽,不能把它拧紧;用扳手来拧,就容易拧紧了。 (3)总结得到:力越大,力和转动轴之间的距离越大,力的转动作用就越大。

力矩平衡

1.力矩 力的三要素是大小、方向和作用点。由作用点和力的方向所确定的射线称为力的作用线。力作用于物体,常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于外力作用线与轴的距离——力臂(d )。 力与力臂的乘积称为力矩,记为M ,则M Fd =,如图1,O 为垂直于纸面的固定轴,力F 在纸面内。 力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴转动没有作用。若力F 不在与轴垂直的平面内,可先将力分解为垂直于轴的分 量F ⊥和平行于轴的分量F ∥,F ∥对转动不起作用,这时力F 的力矩为M F d ⊥=。通常规定 绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。 某个力的力矩定义为力臂与力的叉乘,即M r F =? 力矩M 是矢量,其方向通常按右手螺旋定则确定:力矩M 同时垂直于力臂r 与力F ,当右手螺旋从r 的方向转到F 的方向时大拇指的方向即为M 的方向. 叉乘a ×b =c c 称“矢量的叉积”,它是一个新的矢量。叉积的大小:c =absinα,其中α为a 和b 的夹角。意义:c 的大小对应由a 和b 作成的平行四边形的面积。叉积的方向:垂直a 和b 确定的平面,并由右手螺旋定则确定方向,如图所示。显然,a ×b ≠b ×a ,但有:a ×b =-b ×a 【注意】转轴可以随意选取,力矩计算的核心技巧是巧选转轴,总的原则是 未知力作用线不能通过转轴,其次是其他未知力作用线尽量过轴。 通常不考虑形变的物体都称作刚体, 刚体平衡必须满足两个条件其 一:力的矢量和等于零,即0Fi ∑= 这就保证了刚体没有平动. 其二:作用于刚体的力对于矩心O 的合力矩也为零,即0Mi ∑= 知识点睛 10.1力矩平衡 第10讲 力矩平衡

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动 一 选择题 1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动 加快的依据是:( ) A. > 0 B. > 0,> 0 C. < 0,> 0 D. > 0,< 0 解:答案是B 。 2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则 它们对过盘心且垂直盘面的轴的转动惯量。 ( ) A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小 解:答案是C 。 简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。 3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( ) A. a 1 = a 2 B. a 1 > a 2 C. a 1< a 2 D. 无法确定 解:答案是B 。 简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:?? ???===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。 得:)/(222mr J Fr a +=,所以a 1 > a 2。 4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线

- 作定轴转动,则在2秒F 对柱体所作功为: ( ) A. 4 F 2/ m B. 2 F 2 / m C. F 2 / m D. F 2 / 2 m 解:答案是A 。 简要提示:由定轴转动定律: α221MR FR = ,得:mR F t 4212==?αθ 所以:m F M W /42=?=θ 5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动 惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( ) A .0211ωJ J J + B .0121ωJ J J + C .021ωJ J D .01 2ωJ J 解:答案是A 。 简要提示:角动量守恒 6. 已知银河系中一均匀球形天体,现时半径为R ,绕对称轴自转周期为T ,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r ,则那时该天体的:( ) A. 自转周期增加,转动动能增加; B. 自转周期减小,转动动能减小; C. 自转周期减小,转动动能增加; D. 自转周期增加,转动动能减小。 解:答案是C 。 简要提示: 由角动量守恒,ωω2025 252Mr MR =,得转动角频率增大,所以转动周期减小。转动动能为22k 2020k 5 221,5221ωωMr E MR E ==可得E k > E k0。 7. 绳子通过高处一固定的、质量不能忽略的滑轮,两端爬着两只质量相等 的猴子,开始时它们离地高度相同,若它们同时攀绳往上爬,且甲猴攀绳速度为乙猴的两倍,则 ( ) A. 两猴同时爬到顶点 B. 甲猴先到达顶点 C. 乙猴先到达顶点

2013高考物理 常见难题大盘点 力矩 有固定转动轴物体的平衡

2013高考物理常见难题大盘点:力矩 有固定转动轴物体的平衡 1.如图1-50所示是单臂斜拉桥的示意图,均匀桥板ao 重为G ,三根平行钢索与桥面成30°,间距ab =bc =cd =do ,若每根钢索受力相同,左侧桥墩对桥板无作用力,则每根钢索的拉力大小是( )。 (A)G (B)3G ∕6 (C)G ∕3 (D)2G ∕3 解答 设aO 长为4L ,每根钢索受力为T ,以O 点为转轴,由力矩平衡条件得 23sin 302sin 30sin 30G L T L T L T L ????=?+?+?, 解得 23T G = 。 本题的正确选项为(D )。 2.图1-51为人手臂骨骼与肌肉的生理结构示意图,手上托着重量为G 的物体,(1)在方框中画出前臂受力示意图(手、手腕、尺骨和挠骨看成一个整体,所受重力不计,图中O 点看作固定转动轴,O 点受力可以不画).(2)根据图中标尺估算出二头肌此时的收缩力约为 . 解答 前臂的受力如图1-52所示,以O 点为转轴,由力矩平衡条件得 18F N ?=?, 其中N =G ,可得 F =8G 。 本题的正确答案为“8G ”。 3.如图1-53所示,直杆OA 可绕O 轴转动,图中虚线与杆平行.杆的A 端分别受到F 1、F 2、F 3、F 4四个力作用,它们与OA 杆在同一竖直平面内,则它们对O 点的力矩M 1、M 2、M 3、M 4的大小关系是( )。 (A)M 1=M 2>M 3=M 4 (B)M 1>M 2>M 3>M 4 图 1-50 图1-51 1 图1-53 图1-52

(C)M 2>M 1=M 3>M 4 (D)M 1<M 2<M 3<M 4 解答 把四个力都分解为垂直于OA 方向和沿OA 方向的两个分力,其中沿OA 方向的力对O 点的力矩都为零,而垂直于OA 方向的力臂都相等,所以四个力的力矩比较等效为垂直方向的力的比较。从图中不难看出力大小关系为F 2⊥>F 1⊥=F 3⊥>F 4⊥,所以力矩大小关系为M 2>M 1=M 3>M 4。 本题的正确选项为(C )。 4.如图1-54所示的杆秤,O 为提扭,A 为刻度的起点,B 为秤钩,P 为秤砣,关于杆秤的性能,下述说法中正确的是( )。 (A)不称物时,秤砣移至A 处,杆秤平衡 (B)不称物时,秤砣移至B 处,杆秤平衡 (C)称物时,OP 的距离与被测物的质量成正比 (D)称物时,AP 的距离与被测物的质量成正比 解答 当不称物体时,秤砣应在零刻度线,即在A 点,此时对O 点的力矩平衡,设杆秤本身的重为G 0,重心离开O 点距离为OC ,根据力矩平衡条件得 0P AO G OC ?=?, ① 当称物体为G 时,设秤砣在D 点时杆秤平衡,如图1- 55所示,根据力矩平衡条件有 0G OB G OC P OD ?=?+?, ② 由①②式得 ()G OB P AO OD P AD ?=?+=?。 本题的正确选项为(A )(D )。 5..如图1-56所示,A 、B 是两个完全相同的长方形木块,长为l ,叠放在一起,放在水平桌面上,端面与桌边平行.A 木块放在B 上,右端有 4 l 伸出,为保证两块不翻倒,木块B 伸出桌边的长度不能超过 ( )。 (A)l /2 (B)3l /8 (C)l /4 (D)l /8 解答 把A 、B 当作一个整体,其重心位置在两个木块的中点,根据几何关系可知在距 B 右边38 l 处。为了不翻倒,它们的重心不能超过桌边,即B 伸出桌边长度不超过3 8 l 。本题 图1-54 图 1-56

平衡力距力矩与杠杆原理

平衡、力距 「力學」是一門研究物體的運動規律及其應用的學科,有的將其獨立成科,有的將其歸類為物理學的一個分支。查實,古人通過對天文、自然現象的觀察及機械的製作早已對力學有研究,天文、數學及力學基本上不可分割,眾多的「數學大師」如阿基米德(Archimedes)、拉普拉斯(Laplace)、拉格朗日(Lagrange)、牛頓(Newton)、帕斯卡(Pascal)與及較近代的龐加萊(Poincar′e ),介紹他們的時候,除了稱他們為數學家外,亦有稱他們為天文學家、物理學家或力學家。 以牛頓運動定律為基礎的力學稱為「牛頓力學」或「經典力學」,而通常說的「力學」,一般就是指「牛頓力學」或「經典力學」。 「力學」亦有很多分支,按研究問題的性質,可分為:靜力學(statics)、運動學(kinematics)和動力學(dynamics)1。 本欄的主要討論對象為靜力學,討論物體在外界的作用下,機械運動狀態保持不變(平衡)的條件。一件物件能夠保持平衡(equilibrium)的條件: 1.它所受外力的矢量和(vector sum)為零; 2.這些外力對任何軸所產生的力矩(moment of force)互相抵 消。 力矩與槓杆原理 力矩是量度「力」使物體產生轉動作用的量,亦是引致物體轉動狀態改變的原因。如圖,在B 點的力F 作用到A 點的力距M 為F 的大小與力臂d 的乘積,即 M =F d  其中「力臂」是指從轉軸到力的垂直距離。 力矩愈大,使物體轉動的作用愈明顯,如使用扳手擰螺絲 帽,愈長手柄的扳手,因力臂可以更長,用相同的力,會產 生更大的力距,會更易扭動螺絲帽。如圖,槓杆的「支點」為P , 左右懸掛了物件A 與B ,槓杆 平行的條件為 F 1d 1=F 2d 2 這條件亦稱為「槓 杆原理」。 F 12d d P 1礙于筆者對物理學的認知非常少,未能道出Dynamics 和Kinetics 的分別 1

物体的平衡-力矩 有固定转轴的物体平衡(word无答案)

物体的平衡-力矩有固定转轴的物体平衡(word无答案) 一、解答题 (★★) 1 . 两块木板和用铰链连接于点,两板之间放均质圆柱,两板之间夹角为。圆柱的轴线平行铰链的轴线(如图甲所示),两轴线呈水平且位于同一竖直平面内。圆柱 的质量为,半径为,圆柱与木板之间的静摩擦系数均为,且。现在相距的两点各施加一水平力和,且,以维持圆柱在这一位置的平衡。 求力的大小范围。(两板质量及其厚度均不计) (★★) 2 . 如图所示,一个半径为的均质金属球上固定着一根长为的轻质细杆,细杆的左 端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。 由于金属球和木板之间有摩擦(已知摩擦因素为),所以要将木板从球下面向右抽出时,至 少需要大小为的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力? (★★) 3 . 如图甲所示,一根细棒上端处用铰链与天花板相连,下端用铰链与另一细棒相连,两棒的长度相等,两棒限在图示的竖直平面内运动,且不计铰链处的摩擦,当在端加一个适当的外力(在纸面内),可使两棒平衡在图示的位置处,即两棒间的夹角为,且端正处 于端的正下方. (1).不管两棒质量如何,此外力只可能在哪个方向范围内?试说明道理(不要求推算). (2).如果AB棒的质量,BC棒的质量,求此外力的方向和大小.

(★) 4 . 有6个完全相同的刚性长条薄片,其两端下方各有一个小突起,薄片及突起的重量均可以不计。现将此6个薄片架在一只水平的碗口上,使每个薄片一端的小突起恰在碗口上,另一端小突起位于其下方薄片的正中,由正上方俯视如图甲所示。若将一质量为的质点放在薄片上一点,这一点与此薄片中点的距离等于它与小突起 的距离,求薄片中点所受的(由另一薄片的小突起所施的)压力.

高考物理力矩和力矩平衡专题训练

力矩和力矩平衡 一. 内容黄金组. 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 二. 要点大揭秘 1. 转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。 明确转轴很重要: 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。 2. 力矩: 力臂:转动轴到力的作用线的垂直距离。 力矩:力和力臂的乘积。 计算公式:M =FL 单位: Nm 效果:可以使物体转动 (1)力对物体的转动效果 力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力 矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 (2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 (3)力矩的计算: ①先求出力的力臂,再由定义求力矩M =FL 如图中,力F 的力臂为L F =Lsin θ 力矩M =F ?L sin θ ②先把力沿平行于杆和垂直于杆的两个方向分解,平 行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。 如图中,力F 的力矩就等于其分力F 1产生的力矩,M =F sin θ?L 两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。 3. 力矩平衡条件: 力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转动的力矩之和。 F F 2

第七讲 定轴转动物体的平衡(教案)

第七讲定轴转动物体的平衡(教案) 第七讲定轴转动物体的平衡一.教学目标: 1.进一步理解力矩、力偶与力偶矩的概念。 2.能够准确把握平衡状态与平衡条件,并能够灵活的解决定轴转动物体的平衡和确定重心的位置。二.教学重难点:1.灵活运用力平衡与力矩平衡的知识解决定轴转动物体的平衡问题。 2.正确确定物体重心位置。三.教学工具:多媒体白板、录播教室四.教学过程设计:1力矩力的三要素是大小、方向和作用点。作用点和力的方向所确定的射线称为力的作用线。力作用于物体,经常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于力臂。从转动轴到力作用线的垂直距离叫力臂。力和力臂的乘积叫力对转动轴的力矩。记为M?F?L,单位为“牛·米”。如图1所示,

O为垂直于纸面的固定轴,力F在纸面内。力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴的转动没有起到作用。若力F 不在与轴垂直的平面内,可先将力分解为垂直于轴的分量F?和平行于轴的分量O F L 图1 F,F对转动不起作用,这时力F的力矩为M?F??L。通常规定,绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。2力偶和力偶矩一对大小相等、方向相反但不共线的力称为力偶。如图2中F1、F2即为力偶,力偶不能合成为一个力,是一个基本力学量。对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力偶矩,注意到F1?F2?F,不难得到M?F?L,式中L为两力间的距离;力偶矩与所相对的轴无关。F2 F1 r2 r1 O 图2 3有固定转轴物体的平衡条件有固定转轴的物体,若处于平衡状态,

物理:力矩的平衡问题

力矩的平衡问题 I高考最新热门题 1 (典型例题)有人设计了一种新型伸缩拉杆秤.结构如图2-3-l,秤杆的一端固定一配重物并悬一挂钩,秤杆外面套有内外两个套筒,套筒左端开槽使其可以不受秤纽阻碍而移动到挂钩所在位置(设开槽后套筒的重心仍在其长度中点位置),秤杆与内层套筒上刻有质量刻度.空载(挂钩上不挂物体,且套筒未拉出)时,用手提起秤纽,杆秤恰好平衡.当物体挂在挂钩上时,往外移动内外套筒可使杆秤平衡,从内外套筒左端的位置可以读得两个读数,将这两个读数相加,即可得到待测物体的质量.已知秤杆和两个套筒的长度均为16cm,套筒可移出的最大距离为15cm,秤纽到挂钩的距离为2cm,两个套筒的质量均为0.1 Lg.取重力加速度g=10m/s2.求: (1)当杆秤空载平衡时,秤杆、配重物及挂钩所受重力相对秤纽的合力矩; (2)当在秤钩上挂一物体时,将内套筒向右移动5cm,外套筒相对内套筒向右移动8cm,杆秤达到平衡,物体的质量多大? (3)若外层套筒不慎丢失,在称某一物体时,内层套筒的左端在读数为1千克处杆秤恰好平衡,则该物体实际质量多大? 命题目的与解题技巧:本题是一道联系实际的问题,考查了力矩平衡条件、分析综合能力以及运用已学知识处理新情景中所提出的问题的迁移能力和创新意识。此题解题方法是,注意分析物体的受力,和力矩情

况,利用力矩平衡的条件即可求解. 【解析1 】 (1)套筒不拉出时杆秤恰好于衡,此时两套筒的重力相对秤纽的力矩与所求的合力矩相等,设套筒长度为L,合力矩 M=2mg =2×O.1 ×10×(0.08-0.02) N·m=0.12 N·m (2)力矩平衡 m1gd=mgx1+mg(x1+x2) 所以m1= (3)正常称1 kg重物时,左边的重物使得逆时针转动的力矩增加了m2gd.为了平衡,内外两个套筒可一起向外拉出x′由于套筒向外拉出 使得顺时针转动的力矩增大了2mgx′ 由力矩的平衡得:m2gd=2mgx′ 外层套筒丢失后称物,此时内套筒左端离秤纽距离为x′— d=0.08 m 力矩平衡 m2gd+M=mg(x′-d+) 所以 m2 2 (典型例题)下图2-3-2是正在治疗的骨折病人腿 部示意图.假定腿和石膏的总质量为15ke,其重心A距支点O的距离为 35cm,悬挂处B距支点O的距离为阻5cm,则悬挂物的质量为 ____________kg.(保留两位小数) **6.5 kg 指导:O点为固定转动轴,F A=M A g,L A=0.35m,F B=mg定滑轮的性质:L B=0.805 m. 据平衡条件: FA·LA=FB·LB=mgL B, 代入数据得m=6.5kg 3 (典型例题)如图2-3-3所示,一自行车上连接踏脚板的连杆长R1,

竞赛之第三节、力矩、定轴转动物体的平衡条件、重心

力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。(见上一讲) 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【例题1】如图所示,c 为杆秤秤杆系统的重心,a 为杆称的定盘星,证明:无论称杆的粗细如何变化,杆秤的刻度沿杆轴线的方向总是均匀分布的。 【例题2】(第十届全国预赛)半径为R ,质量为m 1的均匀圆球与一质量为m 2的重物分别用细绳AD 和ACE 悬挂于同一点 A ,并处于平衡。如图所示,已知悬点A 到球心O 的距离为L ,若不考 虑绳的质量和绳与球的摩擦,试求悬挂圆球的绳AD 和竖直方向的夹角 θ。 y y y 2

有固定转动轴物体的平衡

标准教案 第二章物体平衡 §2.3有固定转动轴物体的平衡 高考对应考点: 1.力矩(学习水平B级) 2. 有固定转动轴的物体的平衡(学习水平B级) 课时目标: 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 重点难点: 1.力矩平衡计算 2.动态平衡问题的分析方法 知识精要: 一.转动平衡: 有转动轴的物体在力的作用下,处于静止或,叫平衡状态。 二.力矩: 1.力臂:转动轴到力的作用线的。 2.力矩:的乘积。 (1)计算公式:; (2)单位:; (3)矢量:在中学里,只研究固定转动轴物体的平衡,所以只有顺时针和逆时针转动两种方向 三.力矩平衡条件: 力矩的代数和为零或所有使物体向方向转动的力矩之和等于所有使物体向方向转动的力矩之和。 或 = ∑=∑∑ M0M M 顺逆 热身练习: 1.如图所示,要使圆柱体绕A点滚上台阶,试通过作图来判 断在圆柱体上的最高点所施加的最小力的方向 _____________。 2.匀质杆AO可绕O轴转动,今用水平力使它缓缓抬起的过程中,如图所示,重力对 O轴的力臂变化是_____________,重力对O轴的力矩变化情况是_____________,已 知抬起过程中水平拉力力矩的大小应等于重力的力矩,则水平拉力F的变化情况是

_____________。 3. 如图,把物体A 放在水平板OB 的正中央,用始终垂直于杆的力F 将板的B 端缓慢抬高(O 端不动),设A 相对平板静止,则力 F 的将 ,F 的力矩F M 将 ;若F 始终 竖直向上,则力F 的大小将 , F 的力矩 F M 将 。 4.如图所示,ON 杆可以在竖直平面内绕O 点自由转动,若 在N 端分别沿图示方向施力123F F F 、、,杆均能静止在图示 位置上.则三力的大小关系是( ) A . 123F F F == B . 123F F F >> C .2 13F F F >> D .132F F F >> 5.如图所示,直杆OA 可绕O 点转动,图中虚线与杆平行,杆 端A 点受四个力1234F F F F 、、、的作用,力的作用线与OA 杆 在同一竖直平面内,它们对转轴O 的力矩分别为 1234M M M M 、、、,则它们力矩间的大小关系是( ) A .1234 M M M M ===; B .2134M M M M >=>; C .4231 M M M M >>>; D . 2134 M M M M >>>; 6.如图所示,一杆均匀,每米长的重为P=30N ,支于杆的左端,在离杆的左端a 0.2m =处挂一质量为W 300N =的物体,在杆的右端加一竖直向上的力F 杆多长时使杆平衡时所加竖直向上的拉力F 最小,此最小值为多大? 精解名题: 例1.一块均匀木板MN 长L 15m =,重 1G 400N =,搁在相距D 8m = 的两个支架A B 、上, O ’ F 2 F 3 F 4 O F 1 A ’ A

高中物理:第二章力矩有固定转动轴物体的平衡

第二章力矩有固定转动轴物体的平衡 本章学习提要 1.理解力矩概念和定义,会运用力臂和力矩的定义计算力矩。 2.会利用力矩盘进行实验,探究有固定转动轴的物体的平衡条件。 3.理解有固定转动轴的物体的平衡,知道有固定转动轴的物体的“力矩平衡条件”,能运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。 本章内容从基础型物理课程中的质点问题(质点受力、共点力平衡条件)拓展到刚体问题(力矩、力矩平衡条件)。在日常生活和生产中所见到的物体的运动,以及分子、原子这样的微观粒子和宇宙天体的运动都包括转动,因此关于力矩和力矩平衡条件的讨论具有普遍意义。认识怎样根据实际需要引进力矩,以及力矩的定义方法和它的物理意义。通过力矩和力矩平衡条件的学习和应用,体会物理学与技术、社会的联系,了解运用力矩平衡条件设计出各类工具,以及千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。 A 力矩 一、学习要求 理解力臂和力矩概念,会用力臂和力矩的定义计算力矩。 从实际例子的分析中,明白引进力矩的必要性;认识力矩的定义方法以及力矩的物理意义。通过从实际需要中引进力矩概念,了解力矩概念与常用工具和生活、生产的联系,体会物理学与实际的密切关系。 二、要点辨析 1.为什么要引进力矩 力对质点运动的作用效果取决于它的大小和方向。而力对物体转动的作用效果不仅与力的大小和方向有关,还与力的作用点的位置有关,为了描写力的大小、方向和作用点对物体转动的作用效果,需要引进力矩这个物理量。 力臂:力的作用线与转动轴之间的距离称为力臂。 力矩:力(F)和力臂(L)的乘积称为力对转动轴的力矩。 2.关于力的作用线与转动轴的距离 力的作用线是力的方向上的一条假想的直线。力的作用线与转动轴的距离实际上涉及到两条线之间的距离。一般情况下确定空间中任意两条直线间的距离比较麻烦。我们所讨论的仅限于力的作用线都在同一个与转动轴相垂直的平面内,若该平面与转动轴的交点称为O,那么我们需考虑的空间中两条直线(力的作用线与转动轴线)间距离的问题便简化为一个点(O点)与一条直线(力的作用线)间距离的问题。 3.求力矩的两种基本方法 (1)先求力臂的方法:先求力臂,再求力矩的方法计算力臂的要点是,从转动轴作力的作用线的垂线,其垂线长即为该力对于转动轴的力臂。力臂的计算通常要用到三角函数。 (2)力的分解方法:先将力正交分解为两个分力,然后分别计算两个分力对转动轴的力矩,该力的力矩就等于这两个分力力矩的代数和(注意力矩正负的判断)。在一般情况下,可使其中一个分力的作用线过转动轴,其力臂为零,因而力矩为零,这时只要计算另一个分力的力矩即可。

全国中学生物理竞赛——力矩平衡专题

力矩和力矩平衡 一. 内容黄金组. 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 二. 要点大揭秘 1. 转动平衡:有转动轴的物体在力的作用下,处于静止或匀速转动状态。 明确转轴很重要: 大多数情况下物体的转轴是容易明确的,但在有的情况下则需要自己来确定转轴的位置。如:一根长木棒置于水平地面上,它的两个端点为AB ,现给B 端加一个竖直向上的外力使杆刚好离开地面,求力F 的大小。在这一问题中,过A 点垂直于杆的水平直线是杆的转轴。象这样,在解决问题之前,首先要通过分析来确定转轴的问题很多,只有明确转轴,才能计算力矩,进而利用力矩平衡条件。 2. 力矩: 力臂:转动轴到力的作用线的垂直距离。 力矩:力和力臂的乘积。 计算公式:M =FL 单位: Nm 效果:可以使物体转动 (1)力对物体的转动效果 力使物体转动的效果不仅跟力的大小有关,还跟力臂有关,即力对物体的转动效果决定于力 矩。①当臂等于零时,不论作用力多么大,对物体都不会产生转动作用。②当作用力与转动轴平行时,不会对物体产生转动作用,计算力矩,关键是找力臂。需注意力臂是转动轴到力的作用线的距离,而不是转动轴到力的作用点的距离。 (2)大小一定的力有最大力矩的条件: ①力作用在离转动轴最远的点上; ②力的方向垂直于力作用点与转轴的连线。 (3)力矩的计算: ①先求出力的力臂,再由定义求力矩M =FL 如图中,力F 的力臂为L F =Lsin θ 力矩M =F ?L sin θ ②先把力沿平行于杆和垂直于杆的两个方向分解,平 行于杆的分力对杆无转动效果,力矩为零;平行于杆的分力的力矩为该分力的大小与杆长的乘积。 如图中,力F 的力矩就等于其分力F 1产生的力矩,M =F sin θ?L 两种方法不同,但求出的结果是一样的,对具体的问题选择恰当的方法会简化解题过程。 3. 力矩平衡条件: 力矩的代数和为零或所有使物体向顺时针方向转动的力矩之和等于所有使物体向逆时针方向转 F F 2

第二章力矩有固定转动轴物体的平衡

第二章力矩有固定转动轴物体的平衡本章学习提要 1.理解力矩概念和定义,会运用力臂和力矩的定义计算力矩。 2.会利用力矩盘进行实验,探究有固定转动轴的物体的平衡条件。 3.理解有固定转动轴的物体的平衡,知道有固定转动轴的物体的“力矩平衡条件”,能运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。 本章内容从基础型物理课程中的质点问题(质点受力、共点力平衡条件)拓展到刚体问题(力矩、力矩平衡条件)。在日常生活和生产中所见到的物体的运动,以及分子、原子这样的微观粒子和宇宙天体的运动都包括转动,因此关于力矩和力矩平衡条件的讨论具有普遍意义。认识怎样根据实际需要引进力矩,以及力矩的定义方法和它的物理意义。通过力矩和力矩平衡条件的学习和应用,体会物理学与技术、社会的联系,了解运用力矩平衡条件设计出各类工具,以及千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。 A 力矩 一、学习要求 理解力臂和力矩概念,会用力臂和力矩的定义计算力矩。 从实际例子的分析中,明白引进力矩的必要性;认识力矩的定义方法以及力矩的物理意义。通过从实际需要中引进力矩概念,了解力矩概念与常用工具和生活、生产的联系,体会物理学与实际的密切关系。 二、要点辨析 1.为什么要引进力矩 力对质点运动的作用效果取决于它的大小和方向。而力对物体转动的作用效果不仅与力的大小和方向有关,还与力的作用点的位置有关,为了描写力的大小、方向和作用点对物体转动的作用效果,需要引进力矩这个物理量。 力臂:力的作用线与转动轴之间的距离称为力臂。 力矩:力(F)和力臂(L)的乘积称为力对转动轴的力矩。

2.关于力的作用线与转动轴的距离 力的作用线是力的方向上的一条假想的直线。力的作用线与转动轴的距离实际上涉及到两条线之间的距离。一般情况下确定空间中任意两条直线间的距离比较麻烦。我们所讨论的仅限于力的作用线都在同一个与转动轴相垂直的平面内,若该平面与转动轴的交点称为O,那么我们需考虑的空间中两条直线(力的作用线与转动轴线)间距离的问题便简化为一个点(O点)与一条直线(力的作用线)间距离的问题。 3.求力矩的两种基本方法 (1)先求力臂的方法:先求力臂,再求力矩的方法计算力臂的要点是,从转动轴作力的作用线的垂线,其垂线长即为该力对于转动轴的力臂。力臂的计算通常要用到三角函数。 (2)力的分解方法:先将力正交分解为两个分力,然后分别计算两个分力对转动轴的力矩,该力的力矩就等于这两个分力力矩的代数和(注意力矩正负的判断)。在一般情况下,可使其中一个分力的作用线过转动轴,其力臂为零,因而力矩为零,这时只要计算另一个分力的力矩即可。 三、例题分析 【示例】如图2-1(a)所示,长度为l=1m的杆OB可绕通过O点垂直于纸面的轴转动,绳AB的拉力为20N,杆OB刚好水平,AB与OB的夹角为30°。求拉力的力矩。 【解答】分别用先求力臂的方法和力的分解方法计算。 (1)先求出拉力F的力臂。如图2-1(b)所示,对于转轴O来说,力F的力臂为L=lsinθ,其中θ=30°,因此拉力F对于转轴O的力矩为 M=FL=Flsinθ=20×1×sin30°N·m=10N·m。 (2)先将拉力F分解为垂直于杆方向的分力F1=Fsinθ,以及沿杆方向的分力F2=Fcosθ,如图2-1(c)所示。其中沿杆方向的分力F1指向转轴,相应的力臂为零,所以相应的力矩也为零。而垂直于杆方向的分力F1的力臂就等于OB的长度l,因此相应的力矩为M=F1l=Fsinθl=20×sin30°×1N·m=10N·m。 两者结果完全相同。

相关文档
最新文档