力矩 有固定转动轴物体的平衡(含答案)

力矩  有固定转动轴物体的平衡(含答案)
力矩  有固定转动轴物体的平衡(含答案)

学案8:力矩有固定转动轴物体的平衡

【学习目标】

1.理解力臂、力矩的概念;

2.能正确找出给定力的力臂,并运用公式M=FL解决实际的力矩问题;

3.知道当力的作用线垂直于“力的作用点与转轴连线”时,其力臂最大;

4.掌握有固定转动轴的物体的平衡条件,会应用力矩平衡条件处理有关问题。

【课堂讲练】

◆思考:生活中,我们常见到使物体发生转动的例子,比如用手推开门、用扳手拧螺帽、用铁棒撬开路面上的障碍物等等,那么在这些转动中,你认为有哪些因素决定了物体的转动效果呢?

◆学生活动:用手推开门时,分别改变力的大小、方向、作用点,比较转动效果。

●小结:物体的转动效果

1、力臂(L):

(1)定义:从到力的的垂直距离。

(2)单位:。

(3)大小特点:①当力沿何方向时,其力臂达最大?

★当力于“与的连线”时,其力臂最大。

②当力沿何方向时,其力臂为零?

★当力的作用线通过时,其力臂为零。

〖例1〗如图所示,O点为杆OB的转轴,请分别作出图中力

F1、F2、F3的力臂。

2、力矩(M):

(1)定义: 力与力臂的乘积叫做力矩。

(2)定义式:M = F·L (M——力矩,F——作用力;L——力臂。)

(3)单位:_______ 。

(4)作用效果:使物体发生。力矩越,物体的转动效果越明显;

当力矩为时,物体不会发生转动。

(5)力矩的方向性:根据使物体转动的方向不同,力矩可分为顺转力矩和逆转力矩两种。

★使物体顺转的力矩,称为顺时针力矩;使物体逆转的力矩,称为逆时针力矩。

〖例2〗下图显示了用板手拧螺帽的几种情况。在这些情景中,力的大小相同,均为30N,力的方向分别与扳手柄垂直(a、b)或成一夹角600(c)。力的作用点与螺帽中心的距离OA分别为12cm(a、c)和20cm(b)。求这些情况下F的力矩各是多少?

3、有固定转动轴物体的平衡:

(1)有固定转轴物体的平衡状态:匀速转动或静止不转。

(2)演示实验研究:

①实验装置:如右图所示,力矩盘是均匀的,其重心在圆盘的中心,

圆盘可以在竖直面内绕过中心的水平轴几乎无摩擦地转动。

②力矩平衡条件的实验研究:

◆思考:

(a)可采取什么办法对力矩盘施加作用力?

(b)为便于研究力矩盘的平衡状态,应使力矩盘匀速转动还是静止不转?

(c)为使力矩盘保持平衡状态,应如何考虑对其施加的几个作用力的力矩方向效果?

◆实验操作:

如右图所示,将钉子固定在力矩盘的几个任意位置上,其中两边钉子上用细线悬挂不同个数的钩码,最后一个钉子上与测力计的钩子相连,测力计另一端则挂在水平杠杆的套环上。

有固定转动轴物体的平衡条件是:顺时针力矩之和逆时针力矩之和。

即:合力矩为。

表达式:________________。

〖例3〗如图所示,一根质量为M的均匀铁棒,长为L,

它与竖直方向的夹角为θ,它可以绕O轴自由转动,现用水平

力F作用于棒的下端,使棒静止在如图所示的位置。求棒受到的

拉力F大小及其力矩大小?

(4)应用力矩平衡条件解题的一般步骤:

(1)确定研究对象(有固定转动轴物体);

(2)分析研究对象的受力情况,找出每一个力的力臂,分析每一个力矩的转动方向;

(3)根据力矩平衡条件建立方程(M合=0 或M顺=M逆);

(4)求解方程,并对结果进行必要的讨论。

【巩固练习】

A组:

1.下面各图均以O为转轴,正确画出各力的力臂:

2.如图所示,轻杆BC的C端铰接于墙,B点用绳子拉紧,在BC中点O

挂重物G。当以C为转轴时,绳子拉力的力臂是:………… ( )

(A) OB (B) BC (C) AC (D) CE

3.关于力矩,下列说法中正确的是:………………… ( )

(A) 力对物体的转动作用决定于力矩的大小和方向;

(B) 力矩等于零时,力对物体不产生转动作用;

(C) 力矩等于零时,力对物体也可以产生转动作用;

(D) 力矩的单位是“牛·米”,也可以写成“焦”。

4.有大小为F1=4N和F2=3N的两个力,其作用点距轴O的距离分别为L1=30cm和L2=40cm,则这两个力对转轴O的力矩M1和M2的大小关系为:……………………………… ( )

(A) 因为F1>F2,所以M1>M2 ;(B) 因为F1

(C) 因为F1L1=F2L2,所以M1=M2 ;(D) 无法判断M1和M2的大小。

5.火车车轮的边缘和制动片之间的摩擦力是5000N,如果车轮的半径是0.45m,则摩擦力的力矩为__________ N·m 。

6.如图所示是一根弯成直角的杆,它可绕O点转动,杆的OA段长30cm,

AB段长40cm。现用F=10N的力作用在杆上,要使力F对轴O逆时针方向的

力矩最大,F应怎样作用在杆上? 画出示意图,并求出力F的最大力矩。

7.如图1所示,ON杆可以在竖直平面内绕O点自由转动,若在N

端分别沿图示方向施加力F1、F2、F3,杆均能静止在图示位置上。则三

力的大小关系是:………………………… ( )

(A) F1=F2=F3;(B) F1>F2>F3;

(C) F2>F1>F3 ;(D) F1>F3>F2。

8、如图所示,一根均匀直杆OA可绕轴O转动。为了测量杆的质量,用

一个F=12N的水平力作用于杆的A端处,此时发现该直杆静止在与竖直方

向成300角的位置。问:杆的重力是多大?

9.如图所示,一块质量M=6kg的招牌,悬挂在一质量m=1kg的均

质横杆OA上,横杆可绕通过O点且垂直于纸面的固定轴自由转动,它

的另一端用细钢丝BA拉住,使它保持在水平位置,细钢丝与横杆的夹

角θ=300。求钢丝对横杆的拉力F?

B组:

10.如图所示,一根质量为M的均匀铁棒,它可以绕O点自由转动,现用力F沿水平方向将OA

棒缓慢地从位置a拉到图示b位置的过程中,以下说法正确的是:()

A、重力不变,重力力臂不变,重力力矩变小;

B、重力不变,重力力臂变长,重力力矩变大;

C、F不变,F的力臂变长,F的力矩变大;

D、F变大,F的力臂变短,F的力矩变大。

11.如图所示,要使重球翻上台阶,作用力应该作用在球面上的什么地方、

沿什么方向才最省力?请在图上画出。(铅笔作图)

12.一根木料长3m,提起它的右端要用600N的力;提起它的左端要用800N

的力。问:这根要料有多重?这根木料重心在何处?

13.一个简单的起重机结构示意图如图所示。设均匀杆OB长为

L,重为G1,B端所挂物件的重力为G2。杆可绕过O点且垂直于纸面

的轴自由转动。杆的B端用轻质钢绳紧拉,系于地面上的A点。杆

与地面成600角,钢绳与地面成300角。此时钢绳AB的拉力对O点

的力臂为_________;悬挂物体轻质钢绳的拉力对O点的力矩为

_____________,钢绳AB的拉力为____________。

14.单臂斜拉桥如图所示,均匀桥板重为G。可绕通过O点的且

垂直于纸面的轴转动。三根平行钢索与桥面成θ= 30°角,间距

AB=BC=CD=DO,如果每根钢索所受的拉力大小相等,求拉力的大小?

15.道路上有时使用的交通指示牌及其支架如图所示,若指示牌的质量为5Kg,它悬挂在长度为

3m的水平杆AB的一端。杆CD的长度为2m,θ=30°,这些杆的质量都

不计。求CD杆中的拉力大小?

16.如图所示,均匀木板AB长12m,重200N。在距A端3m处有一固定转动轴O。B端用绳拴住,绳与AB的夹角为300,板AB呈水平位置。已知绳能随的最大拉力为200N。试确定600N的人

在该板上行走的安全范围。

[参考答案]

【课堂讲练】

[例1] 图略; [例2] Ma = 3.6 N·m ; Mb = 6 N·m ; Mc ≈ 3.1 N·m 。[例3] F = Mgtgθ/2L ; M

F

= MgLsinθ/2 。

【巩固练习】

A组:

1、图略;

2、D ;

3、A、B ;

4、D ;

5、2250 N ;

6、M F = 5 N·m ;

7、D ; 8、G = 243≈ 41.6 N ; 9、F = 82 N 。

B组:

10、B、D ; 11、图略; 12、G = 1400 N,重心距左端(9/7)米;

13、L/2 , G

2L/2 , G

2

+ G

1

/2 ; 14、T = 2G/3 ; 15、F = 1003 N ;

16、人在板上安全行走的范围为:轴O左侧1米至轴O右侧0.5米的区间。

2014竞赛第二讲 一般物体的平衡答案

2014第二讲 一般物体的平衡 一、相关概念 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零,即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法: ++++= g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。 二、常用方法 ①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多; ②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解; ③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 三、巩固练习 1.如右图所示,匀质球质量为M 、半径为R ;匀质棒B 质量为m 、长度为l 。求它的重心。 【解】第一种方法是:将它分隔成球和棒两部分,然后用同向平行力合成的方 法找出重心C 。C 在AB 连线上,且AC ·M=BC ·m ; 第二种方法是:将棒锤看成一个对称的“哑铃”和一个质量为-M 的球A '的合成,用反向平行力合成的方法找出重心C ,C 在AB 连线上,且BC ·(2M+m )=C A '·M 。不难看出两种方法的结果都是 m M l R M BC +? ? ? ?? +=2。 2.将重为30N 的均匀球放在斜面上,球用绳子拉住,如图所示.绳AC 与水平面平行,C 点为球的最高点斜面 倾角为370 .求: (1)绳子的张力. (2)斜面对球的摩擦力和弹力. [答案:(1)10N ;(2)10N ,30N] 解:(1)取球与斜面的接触点为转轴:0)37cos (37sin 20=+-R R T mgR ,得T =10N; (2)取球心为转轴得,f =T =10N; 取C 点为转轴:037sin )37cos (00=-+NR R R f ,得N =30N. (M+m )g (2M+m )g

第五讲 有固定转动轴的物体的平衡

第五讲 有固定转动轴的物体的平衡 一、知识要点: 1.力臂:从转动轴到力的作用线的垂直距离。用L 来表示。 2.力矩:力和力臂的乘积。用M 表示。公式;M=F×L 。单位;牛顿·米。计算力矩,关键是正确找到力臂。 3.有固定轴的物体的平衡状态:静止或匀速转动。 有固定轴的物体平衡的条件:顺时针力矩的总和等于逆时针力矩的总和。 公式;ΣM 顺=ΣM 逆 二、典型例题: (一)力臂、力矩的运算: 1.均匀杆OA 可绕过O 点的水平轴自由转动,在其A 端用竖直向上的力F 拉,使杆缓慢的转动,杆与天花板的夹角θ逐渐减小,如图所示。在此过程中,拉力F 大小的变化情况是 ,F 力的力矩大小的变化情况是 。 2.如图,直杆OA 可绕O 点转动,图中虚线与杆平行,杆端A 点受四个力F 1、F 2、F 3、F 4的作用,力的作用线跟OA 杆在同一竖直平面内,四个力对轴O 的力矩分别是M 1、M 2、M 3、M 4。则力矩的大小关系是:( ) A .M 3=M 4

大学物理-刚体的定轴转动-习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化? 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系? 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大? 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒? 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

(完整版)物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 2α β A B O

高二物理有固定转轴的物体的平衡

第9单元:有固定转动轴的物体的平衡 教学目标: 一、知识目标 1:知道什么是转动轴和有固定转动轴的物体的平衡状态。 2:掌握力臂的概念,会计算力矩。 3:理解有固定转动轴的物体的平衡条件。 二、能力目标: 通过有固定转动轴的物体的平衡条件的得到过程,培养学生的概括能力和分析推理能力。 三、德育目标: 使学生了解物理学的研究方法 教学重点: 1:什么是转动平衡; 2:有固定转动轴的物体的平衡条件。 教学难点: 力矩的概念及物体的转动方向的确定。 教学方法: 实验法、归纳法、讲授法 教学用具: 力矩盘、钩码、弹簧秤、投影仪、投影片 教学步骤: 一、导入新课: 1:复习:前边我们共同学习了物体在共点力作用下的平衡条件及其应用,请同志们回答以下问题: (1)什么是共点力作用下物体的平衡状态? (2)在共点力作用下物体的平衡条件是什么? 2:引入:本节课我们来学习另外一种平衡——转动平衡 二、新课教学 (一)用投影片出示本节课的学习目标: 1:了解转动平衡的概念 2:理解力臂和力矩的概念 3:理解有固定转动轴的物体的平衡条件 (二)学习目标完成过程: 1:转动平衡 (1)举例:生活中,我们常见到有许多物体在力的作用下转动;例如:门、砂轮、电唱机的唱盘,电动机的转子等; (2)引导学生分析上述转动物体的共同特点,即上述物体转动之后,物体上的各点都沿圆周运动,但所有各点做圆周运动的中心在同一直线上,这条直线就叫转动轴。 (3)介绍什么是转动平衡。 一个有固定转动轴的物体,在力的作用下,如果保持静止,我们就说这个物体处于转动平衡状态。 (4)课堂讨论:举几个物体处于转动平衡状态的实例。 2:力矩: (1)引言:通过上面例子的分析,我们知道,力可以使物体转动,那么力对物体的转动作用跟什么有关系呢? (2)举例: a:推门时,如果在离转轴不远的地方推,用比较大的力才能把门推开;在离转动轴较远的地方推门,用比较小的力就能把门推开。 b:用手直接拧螺帽,不能把它拧紧;用扳手来拧,就容易拧紧了。 (3)总结得到:力越大,力和转动轴之间的距离越大,力的转动作用就越大。

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动 一 选择题 1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动 加快的依据是:( ) A. > 0 B. > 0,> 0 C. < 0,> 0 D. > 0,< 0 解:答案是B 。 2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则 它们对过盘心且垂直盘面的轴的转动惯量。 ( ) A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小 解:答案是C 。 简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。 3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( ) A. a 1 = a 2 B. a 1 > a 2 C. a 1< a 2 D. 无法确定 解:答案是B 。 简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:?? ???===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。 得:)/(222mr J Fr a +=,所以a 1 > a 2。 4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线

- 作定轴转动,则在2秒F 对柱体所作功为: ( ) A. 4 F 2/ m B. 2 F 2 / m C. F 2 / m D. F 2 / 2 m 解:答案是A 。 简要提示:由定轴转动定律: α221MR FR = ,得:mR F t 4212==?αθ 所以:m F M W /42=?=θ 5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动 惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( ) A .0211ωJ J J + B .0121ωJ J J + C .021ωJ J D .01 2ωJ J 解:答案是A 。 简要提示:角动量守恒 6. 已知银河系中一均匀球形天体,现时半径为R ,绕对称轴自转周期为T ,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r ,则那时该天体的:( ) A. 自转周期增加,转动动能增加; B. 自转周期减小,转动动能减小; C. 自转周期减小,转动动能增加; D. 自转周期增加,转动动能减小。 解:答案是C 。 简要提示: 由角动量守恒,ωω2025 252Mr MR =,得转动角频率增大,所以转动周期减小。转动动能为22k 2020k 5 221,5221ωωMr E MR E ==可得E k > E k0。 7. 绳子通过高处一固定的、质量不能忽略的滑轮,两端爬着两只质量相等 的猴子,开始时它们离地高度相同,若它们同时攀绳往上爬,且甲猴攀绳速度为乙猴的两倍,则 ( ) A. 两猴同时爬到顶点 B. 甲猴先到达顶点 C. 乙猴先到达顶点

五、 刚体绕定轴的转动(一)

五、刚体绕定轴的转动 (一)

一,学时安排6学时(习题课1学时) 二,教学要求:(重点难点) 1,理解角位移角速度等概念 2,理解力矩和转动惯量概念以及刚体定轴转动时的动力学规律-转动定律并熟练地应用 3,理解角动量和冲量距概念以及角动量原理和角动量守恒定律,并会具体应用。 4,掌握刚体定轴转动的动能原理,并会具体应用。 三,教学参考书 1杨中耆著《大学物理》力学部分 2Berkeley Physics couse V ol 1 3University Physics part 1

说明:授课中将第四节质点的角动量与角动量守恒放在第五节刚体绕定轴的转动中,以便与刚体的角动量相比较,突出它们的共性。 前言 本章前四个问题讨论的是物体平动的情况,力学中,在一般情况下,一个物体的运动包含平动、转动、振动等是很复杂的,一物体在平动时,若把物体看成是一刚体(无形变)物体上每一点的运动情况都是一样的,无需考虑物体的形状,大小如何。故物体可抽象为一质点,其运动情况如前面所述。但在转动中,例飞轮高速旋转时,其上的各点运动情况各不相同,因而不能简化为质点。与前面内容相比,发生了几点变化:一是主要研究对象变了,由质点变为刚体。二是主要研究的问题也变了,由平动变为转动。从物体来说,必须考虑它的形状,大小。但忽略形状大小的改变;从运动来说突出了转动,暂时忽略振动或其他运动。 若将刚体分成许多细微部分,并把每一细微部分看成一个质点,那么刚体可以看成是有无数质点构成的质点组,这个质点组与前面我们所讨论的质点组是有区别的,刚体视为质点组其特征是:构成刚体的任意二质点间的距离,在运动中恒定不变,这种看法使我们有可能在质点动力学的基础上来研究刚体情况。 1、刚体绕定轴转动的运动特征: 刚体中某一直线上的点保持不动(对固定参考系而言),其它各点都以该点直线上的相应点为圆心,在垂直于该点的平面内作大

物体的平衡-力矩 有固定转轴的物体平衡(word无答案)

物体的平衡-力矩有固定转轴的物体平衡(word无答案) 一、解答题 (★★) 1 . 两块木板和用铰链连接于点,两板之间放均质圆柱,两板之间夹角为。圆柱的轴线平行铰链的轴线(如图甲所示),两轴线呈水平且位于同一竖直平面内。圆柱 的质量为,半径为,圆柱与木板之间的静摩擦系数均为,且。现在相距的两点各施加一水平力和,且,以维持圆柱在这一位置的平衡。 求力的大小范围。(两板质量及其厚度均不计) (★★) 2 . 如图所示,一个半径为的均质金属球上固定着一根长为的轻质细杆,细杆的左 端用铰链与墙壁相连,球下边垫上一块木板后,细杆恰好水平,而木板下面是光滑的水平面。 由于金属球和木板之间有摩擦(已知摩擦因素为),所以要将木板从球下面向右抽出时,至 少需要大小为的水平拉力。试问:现要将木板继续向左插进一些,至少需要多大的水平推力? (★★) 3 . 如图甲所示,一根细棒上端处用铰链与天花板相连,下端用铰链与另一细棒相连,两棒的长度相等,两棒限在图示的竖直平面内运动,且不计铰链处的摩擦,当在端加一个适当的外力(在纸面内),可使两棒平衡在图示的位置处,即两棒间的夹角为,且端正处 于端的正下方. (1).不管两棒质量如何,此外力只可能在哪个方向范围内?试说明道理(不要求推算). (2).如果AB棒的质量,BC棒的质量,求此外力的方向和大小.

(★) 4 . 有6个完全相同的刚性长条薄片,其两端下方各有一个小突起,薄片及突起的重量均可以不计。现将此6个薄片架在一只水平的碗口上,使每个薄片一端的小突起恰在碗口上,另一端小突起位于其下方薄片的正中,由正上方俯视如图甲所示。若将一质量为的质点放在薄片上一点,这一点与此薄片中点的距离等于它与小突起 的距离,求薄片中点所受的(由另一薄片的小突起所施的)压力.

05刚体的定轴转动习题解答.

第五章刚体的定轴转动 一选择题 1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:() A. α > 0 B. ω > 0,α > 0 C. ω < 0,α > 0 D. ω > 0,α < 0 解:答案是B。 2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。() A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小 解:答案是C。

简要提示:铅的密度大,所以其半径小, 圆盘的转动惯量为:2/2Mr J =。 3. 一圆盘绕过盘心且与盘面垂直的光滑 固定轴O 以角速度ω 按图示方向转动。若将 两个大小相等、方向相反但不在同一条直线的 力F 1和F 2沿盘面同时作用到圆盘上,则圆盘 的角速度ω的大小在刚作用后不久 ( ) A. 必然增大 B. 必然减少 C. 不会改变 D. 如何变化,不能确 定 解:答案是B 。 简要提示:力F 1和F 2的对转轴力矩之和 垂直于纸面向里,根据刚体定轴转动定律,角 加速度的方向也是垂直于纸面向里,与角速度 的方向(垂直于纸面向外)相反,故开始时一 选择题3图

定减速。 4. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( ) A. a 1 = a 2 B. a 1 > a 2 C. a 1< a 2 D. 无法确定 解:答案是B 。 简要提示:(1) 由刚体定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /2 1= (2) 受力分析得:?? ???===-222 2ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。得:

第七讲 定轴转动物体的平衡(教案)

第七讲定轴转动物体的平衡(教案) 第七讲定轴转动物体的平衡一.教学目标: 1.进一步理解力矩、力偶与力偶矩的概念。 2.能够准确把握平衡状态与平衡条件,并能够灵活的解决定轴转动物体的平衡和确定重心的位置。二.教学重难点:1.灵活运用力平衡与力矩平衡的知识解决定轴转动物体的平衡问题。 2.正确确定物体重心位置。三.教学工具:多媒体白板、录播教室四.教学过程设计:1力矩力的三要素是大小、方向和作用点。作用点和力的方向所确定的射线称为力的作用线。力作用于物体,经常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于力臂。从转动轴到力作用线的垂直距离叫力臂。力和力臂的乘积叫力对转动轴的力矩。记为M?F?L,单位为“牛·米”。如图1所示,

O为垂直于纸面的固定轴,力F在纸面内。力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴的转动没有起到作用。若力F 不在与轴垂直的平面内,可先将力分解为垂直于轴的分量F?和平行于轴的分量O F L 图1 F,F对转动不起作用,这时力F的力矩为M?F??L。通常规定,绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。2力偶和力偶矩一对大小相等、方向相反但不共线的力称为力偶。如图2中F1、F2即为力偶,力偶不能合成为一个力,是一个基本力学量。对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力偶矩,注意到F1?F2?F,不难得到M?F?L,式中L为两力间的距离;力偶矩与所相对的轴无关。F2 F1 r2 r1 O 图2 3有固定转轴物体的平衡条件有固定转轴的物体,若处于平衡状态,

竞赛之第三节、力矩、定轴转动物体的平衡条件、重心

力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。(见上一讲) 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【例题1】如图所示,c 为杆秤秤杆系统的重心,a 为杆称的定盘星,证明:无论称杆的粗细如何变化,杆秤的刻度沿杆轴线的方向总是均匀分布的。 【例题2】(第十届全国预赛)半径为R ,质量为m 1的均匀圆球与一质量为m 2的重物分别用细绳AD 和ACE 悬挂于同一点 A ,并处于平衡。如图所示,已知悬点A 到球心O 的距离为L ,若不考 虑绳的质量和绳与球的摩擦,试求悬挂圆球的绳AD 和竖直方向的夹角 θ。 y y y 2

有固定转动轴物体的平衡

标准教案 第二章物体平衡 §2.3有固定转动轴物体的平衡 高考对应考点: 1.力矩(学习水平B级) 2. 有固定转动轴的物体的平衡(学习水平B级) 课时目标: 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 重点难点: 1.力矩平衡计算 2.动态平衡问题的分析方法 知识精要: 一.转动平衡: 有转动轴的物体在力的作用下,处于静止或,叫平衡状态。 二.力矩: 1.力臂:转动轴到力的作用线的。 2.力矩:的乘积。 (1)计算公式:; (2)单位:; (3)矢量:在中学里,只研究固定转动轴物体的平衡,所以只有顺时针和逆时针转动两种方向 三.力矩平衡条件: 力矩的代数和为零或所有使物体向方向转动的力矩之和等于所有使物体向方向转动的力矩之和。 或 = ∑=∑∑ M0M M 顺逆 热身练习: 1.如图所示,要使圆柱体绕A点滚上台阶,试通过作图来判 断在圆柱体上的最高点所施加的最小力的方向 _____________。 2.匀质杆AO可绕O轴转动,今用水平力使它缓缓抬起的过程中,如图所示,重力对 O轴的力臂变化是_____________,重力对O轴的力矩变化情况是_____________,已 知抬起过程中水平拉力力矩的大小应等于重力的力矩,则水平拉力F的变化情况是

_____________。 3. 如图,把物体A 放在水平板OB 的正中央,用始终垂直于杆的力F 将板的B 端缓慢抬高(O 端不动),设A 相对平板静止,则力 F 的将 ,F 的力矩F M 将 ;若F 始终 竖直向上,则力F 的大小将 , F 的力矩 F M 将 。 4.如图所示,ON 杆可以在竖直平面内绕O 点自由转动,若 在N 端分别沿图示方向施力123F F F 、、,杆均能静止在图示 位置上.则三力的大小关系是( ) A . 123F F F == B . 123F F F >> C .2 13F F F >> D .132F F F >> 5.如图所示,直杆OA 可绕O 点转动,图中虚线与杆平行,杆 端A 点受四个力1234F F F F 、、、的作用,力的作用线与OA 杆 在同一竖直平面内,它们对转轴O 的力矩分别为 1234M M M M 、、、,则它们力矩间的大小关系是( ) A .1234 M M M M ===; B .2134M M M M >=>; C .4231 M M M M >>>; D . 2134 M M M M >>>; 6.如图所示,一杆均匀,每米长的重为P=30N ,支于杆的左端,在离杆的左端a 0.2m =处挂一质量为W 300N =的物体,在杆的右端加一竖直向上的力F 杆多长时使杆平衡时所加竖直向上的拉力F 最小,此最小值为多大? 精解名题: 例1.一块均匀木板MN 长L 15m =,重 1G 400N =,搁在相距D 8m = 的两个支架A B 、上, O ’ F 2 F 3 F 4 O F 1 A ’ A

2.3有固定转动轴物体的平衡

有固定转动轴物体的平衡 直击高考 (上海2012高考14)如图所示,竖直轻质悬线上端固定,下端与均质硬棒AB 中点连接,棒长为线长的二倍。棒的A 端用铰链墙上,棒处于水平状态。改变悬线的长度,使线与棒的连接点逐渐右移,并保持棒仍处于水平状态。则悬线拉力( ) A .逐渐减小 B .逐渐增大 C .先减小后增大 D .先增大后减小 (上海2010高考27)(6分)卡文迪许利用如图所示的扭秤实验装置测量了引力常量G 。 (1)(多选题)为了测量石英丝极微小的扭转角,该实验装置中采取使“微小量放大”的主要措施是 A .减小石英丝的直径 B .增大T 型架横梁的长度 C .利用平面镜对光线的反射 D .增大刻度尺与平面镜的距离 (2)已知T 型架水平横梁长度为l ,质量分别为m 和m ’的球,位于同一水平面内,当横梁处于力矩平衡状态时,测得m 、m ’连线长度为r ,且与水平横梁垂直,同时测得石英丝的扭转角度为θ,由此得到扭转力矩k θ(k 为扭转系数且已知),则引力常量的表达式G =_______________。 (2013?上海)如图,倾角为37°,质量不计的支架ABCD 的D 端有一大小与质量均可忽略的光滑定滑轮,A 点处有一固定转轴,CA ⊥AB ,DC =CA =0.3m 。质量m =lkg 的物体置于支架的B 端,并与跨过定滑轮的轻绳相连,绳另一端作用一竖直向下的拉力F ,物体在拉力作用下沿BD 做匀速直线运动,己知物体与BD 间的动摩擦因数μ=0.3。为保证支架不绕A 点转动,物体向上滑行的最大距离s =____m 。若增大F 后,支架仍不绕A 点转动,物体能向上滑行的最大距离s ′____s (填:“大于”、“等于”或“小于”。)(取sin37°=0.6,cos37°=0.8) 【解题方法】 1.分析清楚共点力平衡条件与力矩平衡条件的关系。 A

05刚体的定轴转动习题解答

05刚体的定轴转动习题解答

第五章刚体的定轴转动 一选择题 1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:() A. α > 0 B. ω > 0,α > 0 C. ω < 0,α > 0 D. ω > 0,α < 0 解:答案是B。 2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。() A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小

解:答案是C 。 简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2 Mr J =。 3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( ) A. a 1 = a 2 B. a 1 > a 2 C. a 1< a 2 D. 无法确定 解:答案是B 。 简要提示:(1) 由定轴转动定律, 1 αJ Fr =和1 1 αr a =,得:J Fr a /2 1 = (2) 受力分析得: ?? ? ??===-2222 α αr a J Tr ma T mg ,其中m 为

重物的质量,T 为绳子的张力。得: ) /(222mr J Fr a +=,所以a 1 > a 2。 4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( ) A. 4 F 2/ m B. 2 F 2 / m C. F 2 / m D. F 2 / 2 m 解:答案是A 。 简要提示:由定轴转动定律: α2 21MR FR =,得:mR F t 4212 = =?αθ 所以:m F M W /42 =?=θ 5. 一电唱机的转盘正以ω 0的角速度转动,其转动惯量为J 1,现将一转动惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( )

高中物理:第二章力矩有固定转动轴物体的平衡

第二章力矩有固定转动轴物体的平衡 本章学习提要 1.理解力矩概念和定义,会运用力臂和力矩的定义计算力矩。 2.会利用力矩盘进行实验,探究有固定转动轴的物体的平衡条件。 3.理解有固定转动轴的物体的平衡,知道有固定转动轴的物体的“力矩平衡条件”,能运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。 本章内容从基础型物理课程中的质点问题(质点受力、共点力平衡条件)拓展到刚体问题(力矩、力矩平衡条件)。在日常生活和生产中所见到的物体的运动,以及分子、原子这样的微观粒子和宇宙天体的运动都包括转动,因此关于力矩和力矩平衡条件的讨论具有普遍意义。认识怎样根据实际需要引进力矩,以及力矩的定义方法和它的物理意义。通过力矩和力矩平衡条件的学习和应用,体会物理学与技术、社会的联系,了解运用力矩平衡条件设计出各类工具,以及千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。 A 力矩 一、学习要求 理解力臂和力矩概念,会用力臂和力矩的定义计算力矩。 从实际例子的分析中,明白引进力矩的必要性;认识力矩的定义方法以及力矩的物理意义。通过从实际需要中引进力矩概念,了解力矩概念与常用工具和生活、生产的联系,体会物理学与实际的密切关系。 二、要点辨析 1.为什么要引进力矩 力对质点运动的作用效果取决于它的大小和方向。而力对物体转动的作用效果不仅与力的大小和方向有关,还与力的作用点的位置有关,为了描写力的大小、方向和作用点对物体转动的作用效果,需要引进力矩这个物理量。 力臂:力的作用线与转动轴之间的距离称为力臂。 力矩:力(F)和力臂(L)的乘积称为力对转动轴的力矩。 2.关于力的作用线与转动轴的距离 力的作用线是力的方向上的一条假想的直线。力的作用线与转动轴的距离实际上涉及到两条线之间的距离。一般情况下确定空间中任意两条直线间的距离比较麻烦。我们所讨论的仅限于力的作用线都在同一个与转动轴相垂直的平面内,若该平面与转动轴的交点称为O,那么我们需考虑的空间中两条直线(力的作用线与转动轴线)间距离的问题便简化为一个点(O点)与一条直线(力的作用线)间距离的问题。 3.求力矩的两种基本方法 (1)先求力臂的方法:先求力臂,再求力矩的方法计算力臂的要点是,从转动轴作力的作用线的垂线,其垂线长即为该力对于转动轴的力臂。力臂的计算通常要用到三角函数。 (2)力的分解方法:先将力正交分解为两个分力,然后分别计算两个分力对转动轴的力矩,该力的力矩就等于这两个分力力矩的代数和(注意力矩正负的判断)。在一般情况下,可使其中一个分力的作用线过转动轴,其力臂为零,因而力矩为零,这时只要计算另一个分力的力矩即可。

第二章刚体的定轴转动

第二章 刚体的定轴转动 教学要求: 一、理解刚体定轴转动的角速度和角加速度的概念,理解角量与线量的关系。 二、理解刚体定轴转动定律,能解简单的定轴转动问题。 三、了解力矩的功和转动动能的概念。 四、了解刚体对定轴的角动量定理及角动量守恒定律。 五、理解转动惯量的概念,能用平行轴定理和转动惯量的可加性计算刚体对定轴的转动惯量。 教学重点:刚体定轴转动的力矩、转动惯量、角动量等物理量的概念和转动定律。 教学难点:难点是刚体绕定轴转动的角动量守恒定律及其应用。 物理学研究方法、思维方法:理想化模型-----刚体、研究刚体转动的物理量——角量的确定。 类比方法是本章学习和研究的主要方法。 教学方法:启发、类比、讨论 教学内容: 准备知识: 一、刚体:假定无论在多大的外力作用下,物体的形状和大小都保持不变,也就是物体内任何两质点之间的距离保持不变。这样的理想物体称为刚体。 刚体也是常用的力学理想模型。 二、平动与转动:当刚体运动时,如果刚体内任何一条给定的直线,在运动中始终保持它的方向不变,这种运动称为平动; 刚体运动时,如果刚体的各个质点在运动中都绕同一直线做圆周运动,这种运动称为转动。 如果刚体围绕的转轴的位置是固定不动的,这种转动称为刚体的定轴转动 §2-1 角速度和角加速度 一、 角位移、角速度和角加速度 1、角坐标:如图2-1所示,O 为转轴与转动平面的交点, A 为刚体上的一个质点, A 在这一转动平面内绕O 点 做圆周运动, A 与转轴的距离为r 。t 时刻质点A 与转 轴O 距离的连线与基准方向ox 的夹角为θ,称θ为角 坐标或角位置。 2、定轴转动的运动学方程:刚体转动时,θ随时间变 化,它是时间t 的函数: )(t θθ= (2-1) 上式称为刚体定轴转动的运动学方程. 图2—1角坐标和角速度

第二章力矩有固定转动轴物体的平衡

第二章力矩有固定转动轴物体的平衡本章学习提要 1.理解力矩概念和定义,会运用力臂和力矩的定义计算力矩。 2.会利用力矩盘进行实验,探究有固定转动轴的物体的平衡条件。 3.理解有固定转动轴的物体的平衡,知道有固定转动轴的物体的“力矩平衡条件”,能运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。 本章内容从基础型物理课程中的质点问题(质点受力、共点力平衡条件)拓展到刚体问题(力矩、力矩平衡条件)。在日常生活和生产中所见到的物体的运动,以及分子、原子这样的微观粒子和宇宙天体的运动都包括转动,因此关于力矩和力矩平衡条件的讨论具有普遍意义。认识怎样根据实际需要引进力矩,以及力矩的定义方法和它的物理意义。通过力矩和力矩平衡条件的学习和应用,体会物理学与技术、社会的联系,了解运用力矩平衡条件设计出各类工具,以及千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。 A 力矩 一、学习要求 理解力臂和力矩概念,会用力臂和力矩的定义计算力矩。 从实际例子的分析中,明白引进力矩的必要性;认识力矩的定义方法以及力矩的物理意义。通过从实际需要中引进力矩概念,了解力矩概念与常用工具和生活、生产的联系,体会物理学与实际的密切关系。 二、要点辨析 1.为什么要引进力矩 力对质点运动的作用效果取决于它的大小和方向。而力对物体转动的作用效果不仅与力的大小和方向有关,还与力的作用点的位置有关,为了描写力的大小、方向和作用点对物体转动的作用效果,需要引进力矩这个物理量。 力臂:力的作用线与转动轴之间的距离称为力臂。 力矩:力(F)和力臂(L)的乘积称为力对转动轴的力矩。

2.关于力的作用线与转动轴的距离 力的作用线是力的方向上的一条假想的直线。力的作用线与转动轴的距离实际上涉及到两条线之间的距离。一般情况下确定空间中任意两条直线间的距离比较麻烦。我们所讨论的仅限于力的作用线都在同一个与转动轴相垂直的平面内,若该平面与转动轴的交点称为O,那么我们需考虑的空间中两条直线(力的作用线与转动轴线)间距离的问题便简化为一个点(O点)与一条直线(力的作用线)间距离的问题。 3.求力矩的两种基本方法 (1)先求力臂的方法:先求力臂,再求力矩的方法计算力臂的要点是,从转动轴作力的作用线的垂线,其垂线长即为该力对于转动轴的力臂。力臂的计算通常要用到三角函数。 (2)力的分解方法:先将力正交分解为两个分力,然后分别计算两个分力对转动轴的力矩,该力的力矩就等于这两个分力力矩的代数和(注意力矩正负的判断)。在一般情况下,可使其中一个分力的作用线过转动轴,其力臂为零,因而力矩为零,这时只要计算另一个分力的力矩即可。 三、例题分析 【示例】如图2-1(a)所示,长度为l=1m的杆OB可绕通过O点垂直于纸面的轴转动,绳AB的拉力为20N,杆OB刚好水平,AB与OB的夹角为30°。求拉力的力矩。 【解答】分别用先求力臂的方法和力的分解方法计算。 (1)先求出拉力F的力臂。如图2-1(b)所示,对于转轴O来说,力F的力臂为L=lsinθ,其中θ=30°,因此拉力F对于转轴O的力矩为 M=FL=Flsinθ=20×1×sin30°N·m=10N·m。 (2)先将拉力F分解为垂直于杆方向的分力F1=Fsinθ,以及沿杆方向的分力F2=Fcosθ,如图2-1(c)所示。其中沿杆方向的分力F1指向转轴,相应的力臂为零,所以相应的力矩也为零。而垂直于杆方向的分力F1的力臂就等于OB的长度l,因此相应的力矩为M=F1l=Fsinθl=20×sin30°×1N·m=10N·m。 两者结果完全相同。

高考物理练习题库4(力矩有固定转动轴物体的平衡)

高考物理练习题库4(力矩 有固定转动轴物体的平衡) 1.如图所示,轻杆BC 的C 端铰接于墙,B 点用绳子拉紧,在BC 中点O 挂重物G .当以C 为转轴时,绳子拉力的力臂是( ).【0.5】 (A )OB (B )BC (C )AC (D )CE 答案:D 2.关于力矩,下列说法中正确的是( ).【1】 (A )力对物体的转动作用决定于力矩的大小和方向 (B )力矩等于零时,力对物体不产生转动作用 (C )力矩等于零时,力对物体也可以产生转动作用 (D )力矩的单位是“牛·米”,也可以写成“焦” 答案:AB 3.有固定转动轴物体的平衡条件是______.【0.5】 答案:力矩的代数和为零 4.有大小为F 1=4N 和F 2=3N 的两个力,其作用点距轴O 的距离分别为L 1=30cm 和L 2=40cm ,则这两个力对转轴O 的力矩M 1和M 2的大小关系为( ).【1.5】 (A )因为F 1>F 2,所以M 1>M 2 (B )因为F 1

大学物理03章试题库刚体的定轴转动

《大学物理》试题库管理系统内容 第三章 刚体的定轴转动 1 题号:03001 第03章 题型:选择题 难易程度:较难 试题: 某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元的法向加速度 n a 和切向加速度τa 来说正确的是( ). A.n a 的大小变化,τa 的大小保持恒定 B.n a 的大小保持恒定,τa 的大小变化 C.n a 、τa 的大小均随时间变化 D.n a 、τa 的大小均保持不变 答案: A 2 题号:03002 第03章 题型:选择题 难易程度:适中 试题: 有A 、B 两个半径相同、质量也相同的细环,其中A 环的质量分布均匀,而B 环的质量分布不均匀.若两环对过环心且与环面垂直轴的转动惯量分别为B A J J 和,则( ). A. B A J J = B. B A J J > C. B A J J < D. 无法确定B A J J 和的相对大小 答案: A 3 题号:03003 第03章 题型:选择题 难易程度:适中 试题: 一轻绳绕在具有水平转轴的定滑轮上,绳下端挂一物体,物体的质量为m ,此时滑轮的角加速度为β,若将物体取下,而用大小等于mg 、方向向下的力拉绳子,则滑轮的角加速度将( ). A.变大 B.不变 C.变小 D.无法确定 答案: A

试题: 一人张开双臂手握哑铃坐在转椅上,让转椅转动起来,若此后无外力矩作用,则当此人收回双臂时,人和转椅这一系统的( ). A.系统的角动量保持不变 B.角动量加大 C.转速和转动动能变化不清楚 D.转速加大,转动动能不变 答案: A 5 题号:03005 第03章 题型:选择题 难易程度:较难 试题: 某力学系统由两个质点组成,它们之间仅有引力作用.若两质点所受外力的矢量和为零,则此力学系统( ). A.动量守恒,但机械能和角动量是否守恒不能确定 B.动量和角动量守恒,但机械能是否守恒不能确定 C.动量、机械能守恒,但角动量是否守恒不能确定 D.动量、机械能以及对某一转轴的角动量一定守恒 答案: A 6 题号:03006 第03章 题型:选择题 难易程度:较难 试题: 如图所示,两个质量均为m 、半径均为R 的匀质圆盘形滑轮的两端,用轻绳分别系着质量为m 和2m 的小物块.若系统从静止释放,则释放后两滑轮之间绳内的张力为( ). A. mg 811 B.mg 2 3 C.mg 2 1 D.mg 答案: A

相关文档
最新文档