高二数学反证法(20200806104323)

中学数学教学中的反证法-精选教育文档

中学数学教学中的反证法 在生活中,我们都有这样的常识,去掉大米中的砂粒,有两种方法.一种是直接从大米中把砂粒一粒一粒地拣出来;一种是用间接的方法――淘洗法,把砂粒残留下来.这两种方法虽然形式不同,但结果却是一样的,都能达到去掉砂粒的目的.有时用直接方法很困难,而用间接方法却容易得多.牛顿曾说:“反证法是数学家最精当的武器之一.”当一些命题不易从正面直接证明时,就可考虑用反证法. 一、反证法的基本概念 1.反证法的定义 法国数学家阿达玛对反证法的实质做了如下概括:“若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法的极好概括.其实反证法也称作归谬法。反证法适合一些正面证明比较困难,但是否定则比较简单的题目,在高中数学中的应用较为广泛,在解决一些较难问题的时候,反证法能体现其优越性. 2.反证法的基本思想 反证法的基本思想就是否定之否定,这种基本思想可以用下面的公式表示: “否定→推理→矛盾→肯定”,即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定. 3.反证法的逻辑依据 通过以上三个步骤,为什么能肯定原命题正确呢?其逻辑根据就在于形成逻辑的两个基本规律:“排中律”和“矛盾律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于

反证法在数学解题中的应用

反证法在数学解题中的应用 我们在解决数学问题时,一般是从正面入手,这就是所谓的正向思维,但往往也会遇到从正面入手困难,或出现一些逻辑上的困境的情形,这时就要从辩证思维的观点出发,运用逆向思维克服思维定势的消极面,从习惯思路的反方向去分析问题,运用反证法解决问题。 一、反证法的逻辑基础 证明命题“A B”时如果用这种方法:假设A∧B为真,在A且B的条件下,合乎逻辑地推出一个矛盾的结果(不论是与A矛盾还是与其他已知正确的结论矛盾或自相矛盾),从而B成立(即A B成立),这种方法就是反证法。 二、反证法的解题步骤 第一步审题,弄清命题的前提和结论; 第二步否定原命题,由假设条件及原命题构成推理的基础; 第三步由假设出发,根据公理、定义、定理、公式及命题的条件,正确逻辑推理,导出逻辑矛盾; 第四步肯定原命题的正确性。 三、什么情况下考虑应用反证法 1待证命题的结论是唯一存在性命题 例1设方程x=p sin x+a有实根(0<p<1,a是实数),求证实根唯一。 证明:假设方程存在两个不同实根x1,x2,则有 x1=p sin x1+a,x2=p sin x2+a x1-x2=p sin x1-sin x2=2p cos x1+x22sin x1-x22 由于cos x1+x22│≤1,从而有│x1-x2│≤2p│sin x1-x22│又sin x1-x22≤x1-x22,故x1-x2≤p x1-x2,但x1≠x2,于是p≥1,与0<p<1矛盾。所以方程若有实根,则根唯一。 2采取直接证法,无适宜的定理作为根据,甚至无法证明。 例2已知A、B、C、D是空间的四点,ABGN CD是导向直线,求证AC和BD、AD和BC也都是异面直线。 分析:证AC和BD是异面直线,即证明AC和BD不在同一平面内,考虑反证法。 证明:假定AC和BD不是异面直线,那么AC和BD在同一平面内,因此A、B、C、D不是异面直线,这与已知条件矛盾。所以AC和BD是异面直线。 3待证命理的结论是以“至少存在”的形式出现的,“至少存在”的反面是“必定不存在”,所以只要证明“必定不存在”不成立即可。 例3设p1p2=2(q1+q2)求证方程x2+p1x+q1=ox2+p2x+q2=0中至少有一个方程有实根。 证明:假设两方程都无实根,则 p12-4q1<0,p22-4q2<0,两式相加,有p21+p22<4(q1+q2)(1) 而p1p2=2(q1+q2)代入(1)得p21+p22<2p1p2,这与p21+p22≥2p1p2矛盾。 故假设不成立,原命题正确。 4待正命题含有涉及各种“无限形式”的结论,由于中学没有直接证明“无限”的手段。而结论的反面却是“有限”,故常常借助于反证法。 例4证明实数lg3是无理数。 证明:假设lg3是有理数。则它可以表示成lg3=mn(m,n是互质的正整数,由对数的定义,得10=3″)。但10是偶数,而3″是奇数,矛盾。因此实数lg3是无理数。

反证法练习题

1、用反证法证明一个命题时,下列说法正确的是 A.将结论与条件同时否定,推出矛盾 B.肯定条件,否定结论,推出矛盾 C.将被否定的结论当条件,经过推理得出的结论只与原题条件矛盾,才是反证法的正确运用 D.将被否定的结论当条件,原题的条件不能当条件 2、否定“自然数a 、b 、c 中恰有一个偶数”时的正确反正假设为 A .a 、b 、c 都是奇数 B .a 、b 、c 或都是奇数或至少有两个偶数 C .a 、b 、c 都是偶数 D .a 、b 、c 中至少有两个偶数 3、用反证法证明命题“三角形的内角中至少有一个不大于60°”时,反证假设正确的是 A .假设三内角都不大于60° B .假设三内角都大于60° C .假设三内角至多有一个大于60° D .假设三内角至多有两个大于60° 4、设a ,b ,c ∈(-∞,0),则三数a +1b ,c +1a ,b +1c 中 A .都不大于-2 B .都不小于-2 C .至少有一个不大于-2 D .至少有一个不小于-2 5、若P 是两条异面直线l 、m 外的任意一点,则 A .过点P 有且仅有一条直线与l 、m 都平行 B .过点P 有且仅有一条直线与l 、m 都垂直 C .过点P 有且仅有一条直线与l 、m 都相交 D .过点P 有且仅有一条直线与l 、m 都异面 6、已知x 1>0,x 1≠1且x n +1=x n (x 2 n +3)3x 2n +1 (n =1,2…),试证“数列{x n }或者对任意正整数n 都满足x n x n +1”,当此题用反证法否定结论时,应为 A .对任意的正整数n ,都有x n =x n +1 B .存在正整数n ,使x n =x n +1 C .存在正整数n ,使x n ≥x n +1且x n ≤x n -1 D .存在正整数n ,使(x n -x n -1)(x n -x n +1)≥0 7、设a ,b ,c ,d 均为正数,求证:下列三个不等式①a +b <c +d ,② ()()a b c da b c d ++<+,③()() a b c d a b c d +<+中至少有一个不正确

反证法在数学中的应用

论文 反证法在数学中的应用 开封县八里湾镇第一初级中学 杨继敏

反证法在数学中的应用 摘要反证法是数学教学中所涉及的基本论证方法,它为一些从正面入手,无法使已知条件和结论找出联系的问题,提供了一条解题途径,它通过给出合理的反设,来增加演绎推理的前提,从而使那种只依靠所给前提而变的山穷水尽的局面,有了柳暗花明又一村的境地,使学生看到增加演绎推理前提的方便功效。在过去的数学学习中,许多人拘泥于传统的推理方法,常常使问题复杂化,尽管最后能达到目的,但往往费时费力,因为数学的研究往往体现一种思维转换,我们可以用一种“换位”思想来处理我们日常遇到的数学问题。 【关键词: 逆向思维;假设;归谬;数学逻辑推理;矛盾;结论。】 1.引言 反证法是数学中一种重要的解题方法,对数学解题有着重要作用。其基本思想是通过求证对立面的不成立从而推出正面的正确。因为这种方法推理严密,说服性强,所以除了在数学中应用反证法,在实际生活中的应用也比较广泛。 在不同的数学情境下,反证法的前提假设不同。因此,在数学中应用反证法,一定要具体问题提出相应具体正确的假设。这就需要熟练掌握反证法的反设词,除此,还应熟记反证法的证题步骤——假设,归谬,结论。有关这个课题的研究,以及涉及到各种文章说明其步骤,适用范围,并附以大量例题。但对反证法在数学中的应用,文字讲解与反证法适宜的数学题型的归纳总结还欠缺。本文就基于这方面的考虑,根据反证法在数学中适宜的命题应用进行了详细的文字讲解及归纳总结。 2. 反证法初探 2.1 反证法的含义及逻辑依据 含义:所谓反证法就是从反面证明命题的正确性,即欲证明“p则q”,则从反面推导出“若p非q”不能成立,从而证明“若p则q”成立。它从否定结论出发,经过正确的严格推理,得到与已知(假设)或已成立的数学命题相矛盾的结果,从而验证产生矛盾的原因,推出原命题的结论不容否定的正确结论。

初中几何反证法专题(75[1]5K).

初中几何反证法专题 学习要求 了解反证法的意义,懂得什么是反证法。 理解反证法的基本思路,并掌握反证法的一般证题步骤。 知识讲解 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反 证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命 题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一 种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探 索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 1.反证法的概念: 不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 2.反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个矛盾的结论来,并据此否定原先的假设,从 而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件 矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中 的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相 互矛盾(即自相矛盾)。 3.反证法的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 简而言之就是“反设-归谬-结论”三步曲。 例1.已知:AB、CD是⊙O内非直径的两弦(如图1),求证AB与CD不能互相平分。 (1) 证明:假设AB与CD互相平分于点M、则由已知条件AB、CD均非⊙O直径,可判定M不是圆心O,连结OA、OB、OM。 ∵OA=OB,M是AB中点 ∴OM⊥AB(等腰三角形底边上的中线垂直于底边) 同理可得: OM⊥CD,从而过点M有两条直线AB、CD都垂直于OM

浅谈中学数学中的反证法

本科生毕业论文 浅谈中学数学中的反证法 院系:数学与计算机科学学院 专业:数学与应用数学 班级: 2008级数学与应用数学(2)班 学号: 200807110211 姓名:黎康乐 指导教师:陈志恩 完成时间: 2012年5月26日

浅谈中学数学中的反证法 摘要: 数学命题的证明分直接证法和间接证法两种.在间接证法中,最常见的是反证法.虽然平时我们接触了相关方面的知识,但比较零散,对其概念、应用步骤、使用范围等没有系统的认识,并且由于数学命题的多样性、复杂性,哪些命题适宜用反证法很难给出确切的回答.本课题通过查阅资料和自己在学习数学过程中的发现就中学数学中反证法的概念、反证法的逻辑依据、种类及步骤,解题过程中怎样由假设出发寻找矛盾、以及哪些类型的问题适宜从反证法出发进行证明的问题进行了归纳.并总结出在学习反证法的过程中应注意的三个方面,通过对以上提出的所有问题进行系统归纳,这有利于帮助学生系统的学习反证法,提高学生利用反证法进行解题的技巧从而达到预期效果. 关键词:反证法假设矛盾结论

Abstract:The mathematical proof points directly proofs proposition and indirect proof two. In indirect proof, the most common is required. Although peacetime we contact with the related knowledge, but is scattered, of the concept, application procedures, the scope of use of not understanding of the system, and the mathematical proposition the diversity and complexity, which is suitable for proposition is very difficult to give the exact with reduction to answer. This subject will be required in the middle school mathematics concept, apagoge is logical basis, types and steps, problem solving process of how a hypothesis of contradictions, and looking for what types of questions appropriate counter-evidence method from the proof of the set out on the induction. And summed up in the process of learning be should be paid attention in the three aspects, through all the questions put to the above system induce, this will help the students to learn the required system, improve the students use to problem solving skills required to achieve the expected effect. Key words:Counter-evidence method hypothesis contradiction conclusion

高中数学方法解之反证法

反证法 从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明的证明方法叫反证法。它是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”。反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假。再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。 反证法的证题模式可以简要的概括我为“否定→推理→否定”。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是“否定之否定”。应用反证法证

明的主要三步是:否定结论 → 推导出矛盾 → 结论成立。实施的具体步骤是: 第一步,反设:作出与求证结论相反的假设; 第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾; 第三步,结论:说明反设不成立,从而肯定原命题成立。 在应用反证法证题时,一定要用到“反设”进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 在数学解题中经常使用反证法,牛顿曾经说过:“反证法是数学家最精当的武器之一”。一般来讲,反证法常用来证明的题型有:命题的结论以“否定形式”、“至少”或“至多”、“唯一”、“无限”形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆。 例1.[05.北京]设()f x 是定义在[0,1]上的函数,若存在'(0,1),x ∈使得()f x 在[0,']x 上单调递增,在[',1]x 上单调递减,则称()f x 为[0,1]上的单峰函数,'x 为峰点,包含峰点的区间为含峰区间。 对任意的[0,1]上单峰函数()f x ,下面研究缩短其含峰区间长度的方法。求证:对任意的1212,(0,1),,x x x x ∈<若12()()f x f x ≥,则2(0,)x 为含

用反证法证明几何问题

65yttrgoi 用反证法证明几何专题 对于一个几何命题,当用直接证法比较困难时,则可采用间接证法,反证法就是一种间接证法,它不是直接去证明命题的结论成立,而是去证明命题结论的反面不能成立。从而推出命题的结论必然成立,它给我们提供了一种可供选择的新的证题途径,掌握这种方法,对于提高推理论证的能力、探索新知识的能力都是非常必要的。下面我们对反证法作一个简单介绍。 一、反证法的概念: (又称归谬法、背理法)是一种论证方式,不直接从题设推出结论,而是从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法。 二、反证法的基本思路: 首先假设所要证明的结论不成立,然后再在这个假定条件下进行一系列的正确逻辑推理,直至得出一个 矛盾的结论来,并据此否定原先的假设,从而确认所要证明的结论成立。这里所说的矛盾是指与题目中所给的已知条件矛盾,或是与数学中已知定理、公理和定义相矛盾,还可以是与日常生活中的事实相矛盾,甚至还可以是从两个不同角度进行推理所得出的结论之间相互矛盾(即自相矛盾)。 三、反证法的一般步骤: (1)假设命题的结论不成立; (2)从这个假设出发,经过推理论证得出矛盾; (3)由矛盾判定假设不正确,从而肯定命题的结论正确。 简而言之就是“反设-归谬-结论”三步曲。 在应用反证法证题时,一定要用到“反设”,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫“归谬法”;如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫“穷举法”。 四、适用范围 “反证法”宜用于证明否定性命题、唯一性命题、“至少”“至多”命题和某些逆命题等,一般地说“正难则反”凡是直接法很难证明的命题都可考虑用反证法。 五、反证法在平面几何中的应用 例1.已知:AB 、CD 是⊙O 内非直径的两弦(如图1),求证AB 与CD 不能互相平分。 (1) 证明:假设AB 与CD 互相平分于点M 、则由已知条件AB 、CD 均非⊙O 直径, 可判定M 不是圆心O ,连结OA 、OB 、OM 。 ∵OA =OB ,M 是AB 中点 ∴OM ⊥AB (等腰三角形底边上的中线垂直于底边) 同理可得:OM ⊥CD ,从而过点M 有两条直线AB 、CD 都垂直于OM 这与已知的定理相矛盾。故AB 与CD 不能互相平分。 归缪法 穷举法

反证法在证明题中的应用-高考数学解题模板

【高考地位】 反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,在高考题中也经常出现。它是数学学习中一种很重要的证题方法. 反证法证题的步骤大致分为三步:(1)反设:作出与求证的结论相反的假设;(2)归谬:由反设出发,导出矛盾结果;(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等. 【方法点评】 类型一 证明“至多”或“至少”问题 使用情景:证明“至多”或“至少”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例1. 若,x y ∈{正整数},且2x y +>。求证:12x y +<或12y x +<中至少有一个成立。 【变式演练1】若下列方程:x 2+4ax -4a +3=0, x 2+(a -1)x +a 2=0, x 2 +2ax -2a =0至少有一个方程有实根。则实数a 的取值范围为________。 类型二 证明“不可能”问题 使用情景:证明“不可能”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论.

例2.给定实数0a a ≠,,且1a ≠,设函数11()1x y x x ax a -= ∈≠-R ,且,求证:经过这个函数图象上任意两个不同的点的直线不平行于x 轴. 【变式演练2】如图,设SA 、SB 是圆锥SO 的两条母线,O 是底面圆心,C 是SB 上一点。求证:AC 与平面SOB 不垂直。 类型三 证明“存在性”或“唯一性”问题 使用情景:证明“存在性”或“唯一性”问题. 解题模板:第一步 首先假设命题不成立; 第二步 然后根据已知或者规律推导出矛盾; 第三步 最后得出结论. 例3.求证:方程512x =的解是唯一的. 【变式演练3】用反证法证明数学命题时,首先应该做出与命题结论相反的假设.否定“自然数c b a ,,中恰有一个偶数”时正确的假设为() A .自然数c b a ,,都是奇数 B .自然数c b a ,,都是偶数 C .自然数c b a ,,中至少有两个偶数 D .自然数c b a ,,中至少有两个偶数或都是奇数

浅谈中学数学中的反证法

浅谈中学数学中的反证法 摘要:反证法在数学中是一种非常重要的间接证明方法,它被称为“数学家最精良的武器之一”,又称为归谬法、背理法。反证法不仅是一种论证方法,还是一种思维方式,对培养和提高学生的逻辑思维能力和创造性思维能力也有极其重要的作用,还能拓展学生的解题思路,从而使学生形成良好的数学思维。反证法在中学数学中有着广泛的应用,如今学生在运用反证法解题中,基础一般的学生会受到思维能力的限制,如果能恰当的使用反证法,在一些有难度的题目上也许能够得到解决。所以本文首先会叙述反证法的产生,具体阐述反证法的定义,即反证法的概念、分类、科学性,介绍反证法在中学数学中的应用并举例分析以及说明应用反证法要注意的问题。 关键词:反证法;中学数学;应用; On the Proof by Contradiction in Middle School Mathematics Abstract:Proof by contradiction is a very important indirect proof method in mathematics, it is called "one of the most sophisticated weapons of mathematicians", also known as reduction to absurdity, unreasonable method. Proof by contradiction is not only an argumentation method, but also a way of thinking. It plays an extremely important role in cultivating and improving students' logical thinking ability and creative thinking ability. It can also expand students' thinking of solving problems, so that students can form good mathematical thinking. Anyway, the method has been widely used in middle school mathematics. Nowadays, when students solve problems with the method of proof by contradiction, the students with general foundation are limited by their thinking ability. If the method of proof by contradiction can be used properly, they may be able to solve some difficult problems. Therefore, this paper will first describe the source of proof by contradiction, specifically elaborate the definition of proof by contradiction, that is, the concept, classification and logical basis of proof by contradiction, introduce the application of proof by contradiction in middle school mathematics and explain the problems to be noticed in the application of proof by contradiction. Keywords:proof by contradiction; Middle school mathematics; Application;

例谈反证法在数学证明中的应用

例谈反证法在数学证明中的应用 【摘要】反证法是解决数学问题时常用的数学方法之一,它在数学解题中广泛使用,特别是有些问题,用反证法更简捷明了。文章阐明反证法的定义、逻辑依据、证明的一般步骤,重点论述了反证法在中学数学证明中的应用。 【关键词】反证法证明假设矛盾结论 有个很著名的“道旁苦李”的故事:从前有个名叫王戎的小孩,一天,他和小朋友发现路边的一棵树上结满了李子,小朋友一哄而上,去摘,尝了之后才知是苦的,独有王戎没动,王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”这个故事中王戎用了一种特殊的方法,从反面论述了李子为什么不甜,不好吃。这种间接的证法就是我们下面所要讨论的反证法。 一、对“反证法”的概述 (一)反证法的概念及其逻辑依据 1.反证法的概念 假设命题判断的反面成立,在已知条件和“否定命题判断”这个新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论或自相矛盾,从而断定命题判断的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法。 2.反证法的逻辑依据 反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”。

矛盾律: 在同一论证过程中, 对同一对象的两个互相矛盾(对立)的判断, 其中至少 有一个是伪的。 排中律: 在同一论证过程中, 对同一对象的两个互相矛盾的判断, 不能为伪, 其中 必有一个是真的。 (二)反证法的证明步骤 设待证的命题为“若A 则B ”,其中A 是题设,B 是结论,A 、B 本身也都是数学判断,那 么用反证法证明命题一般有三个步骤: 1. 反设:假设所要证明的结论不成立,而设结论的反面成立; 2. 归谬:由“反设”出发,以通过正确的推理,导出矛盾——与已知条件﹑已知的公理 定理﹑定义﹑反设及明显的事实矛盾或自相矛盾; 3. 结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立, 从而肯定了结论成立。 二、反证法在数学证明中的应用 反证法在数学证明中的应用非常广泛,反证法虽然是在平面几何教材中出现的,但对数 学的其它各部分内容,如代数、三角、立体几何、解析几何中都可应用。那么,究竟什么样 的命题可以用反证法来证呢?当然没有绝对的标准,但证题的实践告诉我们:下面几种命题 一般用反证法来证比较方便。 1.否定性命题 结论以“没有……”“不是……”“不能……”等形式出现的命题,直接证法一般不易入 手,而用反证法就容易多了。 例1 求证:当 n 为自然数时 ,2(2 n + 1) 形式的数不能表示为两个整数的平方差。 证明:假设有整数 a , b ,使)(1n 22b a 22+=-, 即 (a + b)(a - b)=2(2n + 1) ① 当 a ,b 同奇、 同偶时 , a + b 、 a - b 皆为偶数 , (a + b)(a - b) 应是4的倍数 ,但2(2n+ 1) 除以4余2 ,矛盾。 ② 当a ,b 一奇一偶时 ,a + b 、a - b 皆为奇数 , (a + b)(a - b) 应是奇数 ,但2(2n + 1)为偶数 ,矛盾。 所以假设错误 ,即2(2n + 1) 形式的数不能表示为两个整数的平方差。

浙教版八年级数学下册反证法作业练习

4.6 反证法 ◆基础练习 1.“ab C.a=b D.a=b或a>b 2.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设() A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 3.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等” 时,应假设___________. 4.用反证法证明“若│a│<2,则a<4”时,应假设__________. 5.请说出下列结论的反面:(1)d是正数; (2)a≥0; (3)a<5. 6.如下左图,直线AB,CD相交,求证:AB,CD只有一个交点. 证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点_______”矛盾,所以假设不成立,则________. 7.完成下列证明. 如上右图,在△ABC中,若∠C是直角,那么∠B一定是锐角. 证明:假设结论不成立,则∠B是______或______. 当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角.

8.如图,已知AB∥CD,求证:∠B+∠D+∠E=360°. 9.请举一个在日常生活中应用反证法的实际例子. ◆综合提高 10.用反证法证明“三角形中至少有一个内角不小于60°”,?应先假设这个三角形中( ) A .有一个内角小于60° B.每一个内角都小于60° C .有一个内角大于60° D.每一个内角都大于60° 11.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45 °”时,应假设______________. 12.用反证法证明:两直线平行,同旁内角互补. 132是一个无理数.(说明:任何一个有理数均可表示成 b a 的形式,且a ,b 互质) 14、试写出下列命题的反面: (1)a 大于2 _____________;(2)a⊥b _______________. 15、用反证法证明“若22a b ≠,则a b ≠”的第一步是______________. 16、填空:在△ABC 中,若∠C 是直角,那么∠B 一定是锐角. 证明:假设结论不成立的,则∠B 是__________或_________. ①当∠B 是_______时,则__________,这与____________________矛盾; ②当∠B 是_______时,则__________,这与____________________矛盾.

浅谈反证法在数学中的应用

浅谈反证法在数学中的应用 摘要 反证法在数学中是一种极其重要的证明方法,被称为“数学家最精良的武器之一”。它与一般证明方法不同,反证法可分为归谬反证法和穷举反证法两种。只要抓住要领,反证法就能使一些不易直接证明的问题变得简单,易证,它在数学证题中确有独到之处。本文主要介绍了反证法的基本概念、步骤、依据及分类。对于反证法的应用需注意事项和解题步骤做一些论述。 关键词:反证法;归谬;矛盾;假设;结论 Abstract Contradiction in mathematics is an extremely important method of proof, known as "mathematician one of the most sophisticated weapons." It is different with the general method of proof, proof by contradiction can be classified into two kinds of absurd contradiction and exhaustive reductio ad absurdum. Simply grab the essentials, reductio ad absurdum can make a number of difficult problems becomes simple direct proof, easy to prove, it is proof in mathematics problem in that there are unique. This paper describes the concept of reductio ad absurdum, steps, basis and classifications.The reductio ad absurdum of the application notes and problem-solving steps required to do some exposition.

中考数学解题方法反证法专题

中考数学解题方法反证法专题 在初中数学题目的求解过程中,当直接证明一个命题比较复杂麻烦,甚至不能证明时,我们可以采用反证法.反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法.反证法可以分为归谬 反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种). 用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论.反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大于/不大于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n-1)个;至多有一个/至少有两个;唯一/至少有两个. 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水.推理必须严谨.导出的矛盾有如下几种类型:与已知

条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾. 至于什么问题宜用反证法?这是很难确切回答的问题.下面我们就结合实例归纳几种常使用反证法的 情况. 一、基本定理或初始命题的证明 在数学中,许多基本定理是使用反证法来证明的,例如“过直线外一点只有该直线的一条平行线”,“过平面外一点只有平面的一条垂线”.因为在证明这种基本定理时,由于除已经学过的公理及其推论外,在此之前所导出的定理不多或者与此命题相关的定理不多. 例1在同一平面内,两条直线a,b都和直线c垂直.求证:a与b平行. 证明假设命题的结论不成立,即“直线a与b相交”. 不妨设直线a,b的交点为M,a,b与c的交点分别为P,Q,如图1所示,则∠PMQ>0°. 这样,△MPQ的内角和=∠PMQ+∠MPQ+∠PQM=∠PMQ+90°+90°>180°. 这与定理“三角形的内角和等于180°”相矛盾.说明假设不成立.

论反证法在中学数学中的应用

昆明学院2016届毕业论文(设计) 设计(论文)题目论反证法在中学数学中的应用 子课题题目 姓名郑粒红 学号 201215010158 所属系数学系 专业年级数学与应用数学2012级数学1班 指导教师雷晓强 2016 年 3 月

摘要 本文主要从五大板块对反证法在中学数学中的应用进行论述,第一板块通过对反证法的由来、定义、逻辑依据、种类、模式的说明对反证法进行概解。第二板块例举反证法的适用范围,并通过大量实例阐明在各个命题中反证法的证明的步骤。第三板块分析应用反证法应注意的问题。第四板块浅析反证法的教学价值及建议。最后第五板块进行分析总结。 关键词:反证法;证明;矛盾

Abstract This article mainly from the five plate on the reduction to absurdity in the middle school mathematics application is discussed, and the first plate by means of reduction to absurdity and types of the origin, definition and logical basis, the model of generalized solution of reduction to absurdity. Second plate presented the applicable scope of reduction to absurdity, and through a lot of examples to elucidate the reduction to absurdity in the proposition proof steps. Some problems that should be paid attention to the third sector analysis application of reduction to absurdity. The fourth section teaching value of reduction to absurdity is analysed and the suggestion. Finally the fifth plate were analyzed. Keywords:Reduction to absurdity; prove ;contradiction

人教版数学高二A版选修4-4反证法教案

2.2.2 反证法 教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 教学重点:会用反证法证明问题;了解反证法的思考过程. 教学难点:根据问题的特点,选择适当的证明方法. 教学过程: 一、复习准备: 1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次) 2. 提出问题:平面几何中,我们知道这样一个命题:“过在同一直线上的三点A、B、C 不能作圆”. 讨论如何证明这个命题? 则O在AB的中垂线l上,O又在B C的中垂线m上, 即O是l与m的交点。 但∵A、B、C共线,∴l∥m(矛盾) ∴过在同一直线上的三点A、B、C不能作圆. 二、讲授新课: 1. 教学反证法概念及步骤: ①练习:仿照以上方法,证明:如果a>b>0,那么b a> ②提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立. 证明基本步骤:假设原命题的结论不成立→从假设出发,经推理论证得到矛盾→矛盾的原因是假设不成立,从而原命题的结论成立 应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等). 方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实. 注:结合准备题分析以上知识. 2. 教学例题: ①出示例1:求证圆的两条不是直径的相交弦不能互相平分. 分析:如何否定结论?→如何从假设出发进行推理?→得到怎样的矛盾? 与教材不同的证法:反设AB、CD被P平分,∵P不是圆心,连结O P, 则由垂径定理:O P⊥AB,O P⊥CD,则过P有两条直线与OP垂直(矛盾),∴不被P 平分.

高中数学反证法综合测试题(含答案)

高中数学反证法综合测试题(含答案) 选修2-2 2.2.2 反证法 一、选择题 1.否定结论“至多有两个解”的说法中,正确的是() A.有一个解 B.有两个解 C.至少有三个解 D.至少有两个解 [答案] C [解析] 在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”,故应选C. 2.否定“自然数a、b、c中恰有一个偶数”时的正确反设为() A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 [答案] B [解析] a,b,c三个数的奇、偶性有以下几种情况:①全是奇数;②有两个奇数,一个偶数;③有一个奇数,两个偶数;

④三个偶数.因为要否定②,所以假设应为“全是奇数页 1 第 或至少有两个偶数”.故应选B. 3.用反证法证明命题“三角形的内角中至少有一个不大于60”时,反设正确的是() A.假设三内角都不大于60 B.假设三内角都大于60 C.假设三内角至多有一个大于60 D.假设三内角至多有两个大于60 [答案] B [解析] “至少有一个不大于”的否定是“都大于60”.故应选B. 4.用反证法证明命题:“若整系数一元二次方程ax2+bx+c =0(a0)有有理根,那么a,b,c中至少有一个是偶数”时,下列假设正确的是() A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 [答案] B [解析] “至少有一个”反设词应为“没有一个”,也就是说本题应假设为a,b,c都不是偶数.

浅谈中学数学中的反证法

浅谈中学数学中的反证法 数学与计算机科学学院数学与应用数学 105012011138 黄义瑜 【摘要】反证法一种间接的数学证明方法,也是一种重要的数学思想.他首先假设某命题不成立,然后推理出明显矛盾的结果,从而下结论说原假设不成立,原命题得证.证明的一般步骤为反设、归谬、结论.虽然在中学数学的课本中所占篇目较少,但应用广泛,能锻炼学生的逆向思维.论文中将阐述反证法的概念、证明步骤、思维方式以及适用题型.深刻理解反证法的实质,切实掌握它的解题要领,能提高逻辑思维能力和解决实际问题的能力. 【关键词】反证法命题中学数学高考高等数学 有个著名的“道旁苦李”的故事:传说,王戎从小就非常聪明.有一天,他和小伙伴们出去游玩,发现路边有几株李树,树上结满了李子,而且看上去一个个都熟透了.小伙伴们一哄而上,摘了尝了之后才发现李子是苦的.只有王戎没动,王戎说:“如果李子不苦的话,早就被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这个故事中王戎从反面论述了李子为什么不甜,不好吃.这种间接的证法就是我们下面所要讨论的反证法. 1 反证法的由来 反证法是数学中的一种证明方法,它是与直接证法相对的间接证法的一种.法国数学家J·阿达玛在其所著《初等数学教程》(平面几何卷)中作了最准确、最简明扼要的描述:“反证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾”.反证法作为一种最重要的数学证明方法,在数学命题的证明中被广泛应用.欧几里得证明“素数有无穷多”的结论,欧多克斯证明“两个正多边形的面积比等于其对应线段比的平方”的结论,“最优化原理”的证明,伽利略推翻“不同重量的物体从高空下落的速度与其重量成正比”的断言,“上帝并非全能”的证明,都用了反证法. 2 反证法的概念 反证法是一种反面的角度思考问题的证明方法,是数学中常用的间接证明方法之一,属于“间接证明”的一类.即肯定题设而否定结论,从而导出矛盾,推理而得. 法国数学家阿达玛对反证法的实质作过概括:“若肯定定理的假设而否定其结论,就会导致矛盾”.具体来说就是,假设命题的结论不成立,在已知条件和“否定命题结论”的新条件下,通过逻辑推理,得出与公理﹑定理、题设、临时假定相矛盾的结论矛盾或自相矛盾,从而断定命题结论的反面不成立,即证明了命题的结论一定是正确的,当命题由已知不易直接证明时,改证它的逆命题的证明方法叫反证法.

相关文档
最新文档