可控硅参数符号说明

可控硅参数符号说明
可控硅参数符号说明

可控硅参数符号说明

参数符号说明:

IT(AV)--通态平均电流

VRRM--反向重复峰值电压

IDRM--断态重复峰值电流

ITSM--通态一个周波不重复浪涌电流

VTM--通态峰值电压

IGT--门极触发电流

VGT--门极触发电压

IH--维持电流

dv/dt--断态电压临界上升率

di/dt--通态电流临界上升率

Rthjc--结壳热阻

VISO--模块绝缘电压

Tjm--额定结温

VDRM--通态重复峰值电压

IRRM--反向重复峰值电流

IF(AV)--正向平均电流

KP5A—500A 螺栓型普通晶闸管参数

K P200A—500A平板型普通晶闸管参数

KP800A—

1500A 平板型普通晶闸管参数

KK5A—100A 螺栓型快速晶闸管

KP2000A—4500A 平板型普通晶闸管参数

整理符号表_变量符号说明

符号表 整理表 姓名: 职业工种: 申请级别: 受理机构: 填报日期:

变量符号说明

福州大学 2015 年硕士研究生入学考试专业课课程(考试)大纲 1.考试科目名称: 《数据结构与程序设计》 2.招生学院:数学与计算机科学(软件)学院

说明:1、考试基本内容:一般包括基础理论、实际知识、综合分析和论证等几个方面的内容。有些课程还应有基本运算和实验方法等方面的内容。字数一般在300字左右。 2、难易程度:根据大学本科的教学大纲和本学科、专业的基本要求,一般应使大学本科毕业生中优秀学生在规定的三个小时内答完全部考题,略有一些时间进行检查和思考。排序从易到难。

目录 第1章编译器概述 第2章词法分析 2.1 词法记号及属性 2.1.1 词法记号、模式、词法单元 2.1.2 词法记号的属性 2.1.3 词法错误 2.2 词法记号的描述与识别 2.2.1 串和语言 2.2.2 正规式 2.2.3 正规定义 2.2.4 状态转换图 2.3 有限自动机 2.3.1 不确定的有限自动机 2.3.2 确定的有限自动机 2.3.3 NFA到DFA的变换 2.3.4 DFA的化简 2.4 从正规式到有限自动机 2.5 词法分析器的生成器 第3章语法分析 3.1 上下文无关文法 3.1.1上下文无关文法的定义 3.1.2 推导 3.1.3 分析树 3.1.4 二义性 3.2 语言和文法 3.2.1 正规式和上下文无关文法的比较 3.2.2分离词法分析器的理由 3.2.3 验证文法产生的语言 3.2.4 适当的表达式文法 3.2.5 消除二义性 3.2.6 消除左递归 3.2.7 提左因子 3.2.8 非上下文无关的语言结构 3.2.9 形式语言鸟瞰

晶闸管

课堂教学安排 晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP 晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G 加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K

之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。 双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

OGNL中的#、%和$符号用法说明

OGNL中的#、%和$符号用法说明 #、%和$符号在OGNL表达式中经常出现,而这三种符号也是开发者不容易掌握和理解的部分。 1.#符号的用途一般有三种。 1) 用于访问根对象属性,例如示例中的#session.msg表达式,由于Struts 2中值栈被视为根对象,所以访问其它非根对象时,需要加#前缀。实际上, #相当于ActionContext. getContext(); #session.msg表达式相当于ActionContext.getContext().getSession(). getAttribute(”msg”) 。 2) 用于过滤和投影(projecting)集合,如示例中的persons.{?#this.age>20}。 3) 用来构造Map,例如示例中的#{'foo1':'bar1','foo2':'bar2'}。 2.%符号 %符号的用途是在标志的属性为字符串类型时,计算OGNL表达式的值。如下面的代码所示: 构造Map The value of key "foo1" is 不使用%: 使用%:

3.$符号 $符号主要有两个方面的用途。 在国际化资源文件中,引用OGNL表达式,例如国际化资源文件中的代码:reg.agerange=国际化资源信息:年龄必须在${min}同${max}之间。 在Struts 2框架的配置文件中引用OGNL表达式,例如下面的代码片断所示: 10 100 BAction-test校验:数字必须为${min}为${max}之间!

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

非常实用的流程图符号及说明.doc

标准程序流程图的符号及使用约定 一,引言 程序流程图(Progran flowchart)作为一种算法表达工具,早已为工国计算机工作者和广大计算机用户十分熟悉和普通使用.然而它的一个明显缺点在于缺乏统一的规范化符号表示和严格的使用规则.最近,国家标准局批准的国家标准(GB1525-89)<<信息处理--数据流程图,程序流程图,系统流程图,程序网络图和系统资源图的文件编制符号及约定>>为我们推荐了一套标准化符号和使用约定.由于该标准是与国际标准化组织公布的标准ISO5807--85 Information processing--Documentation symbols and comventions for data,program and system flowcharts,program network charts and system resources charts是一致的,这里将其中程序流程图部分摘录出来,并做了一些解释,供读者参考. 根据这一标准画出的程序流程图我们称为标准流程图. 二,符号 程序流程图表示了程序的操作顺序.它应包括: (1)指明实际处理操作的处理符号,包括根据逻辑条件确定要执行的路径的符号. (2)指明控制流的流线符号. (3)便于读写程序流程图的特殊符号. 以下给出标准流程图所用的符号及其简要说明,请参看图1. 图1 标准程序流程图符号 1.数据---- 平行四边形表示数据,其中可注明数据名,来源,用途或其它的文字说明.此符号并不限定数据的媒体. 2.处理---- 矩形表示各种处理功能.例如,执行一个或一组特定的操作,从而使信息的值,信息形世或所在位置发生变化,或是确定对某一流向的选择.矩形内可注明处理名或其简工功能. 3.特定处理---- 带有双纵边线的矩形表示已命名的特定处理.该处理为在另外地方已得到详细说明的一个操作或一组操作,便如子例行程序,模块.矩形内可注明特定处理名或其简要功能. 4.准备---- 六边形符号表示准备.它表示修改一条指令或一组指令以影响随后的活动.例如,设置开关,修改变址寄存器,初始化例行程序. 5.判断----- 菱形表示判断或开关.菱形内可注明判断的条件.它只有一个入口,但可以有若干个可供选择的出口,在对符号内定义折条件求值后,有一个且仅有一个出口被激活.求值结果可在表示出口路径的流线附近写出. 6.循环界限---- 循环界限为去上角矩形表示年界限和去下角矩形的下界限构成,分别表示循环的开始和循环的结束.

晶闸管的结构以及工作基本知识

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。

图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。

图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。 三、晶闸管的静态特性 晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。如图5所示。

编译原理 第八章符号表

第八章符号表 编译过程中编译程序需要不断汇集和反复查证出现在源程序中各种名字的属性和特征等有关信息。这些信息通常记录在一张或几张符号表中。符号表的每一项包含两部分,一部分是名字(标识符),另一部分是此名字的有关信息。每个名字的有关信息一般指种属(如简单变量、数组、过程等)、类型(如整、实、布尔等)等等。这些信息将使用于语义检查、产生中间代码以及最终生成目标代码等不同阶段。 编译过程中,每当扫描器识别出一个单词后,编译程序就查阅符号表,看它是否已在其中。如果它是一个新名就将它填进表里。它的有关信息将在词法分析和语法-语义分析过程中陆续填入。 符号表中所登记的信息在编译的不同阶段都要用到。在语义分析中,符号表所登记的内容将用于语义检查(如检查一个名字的使用和原先的说明是否相一致)和产生中间代码。在目标代码生成阶段,当对符号名进行地址分配时,符号表是地址分配的依据。对于一个多遍扫描的编译程序,不同遍所用的符号表也往往各有不同。因为每遍所关心的信息各有差异。 本章重点:符号表的一般组织和使用方法。 第一节符号表的组织和使用 信息栏通常包含许多子栏和标志位,用来记录相应名字的种种不同属性。由于查填符号表一般都是通过匹配名字来实现的,因此,名字栏也称主栏。主栏的内容称为关键字(key word)。 虽然原则上说,使用一张统一的符号表也就够了,但是,许多编译程序按名字的不同种属分别使用许多符号表,如常数表、变量名表、过程名表等等。这是因为,不同种属名字的相应信息往往不同,并且信息栏的长度也各有差异的缘故。因而,按不同种属建立不同的符号表在处理上常常是比较方便的。 对于编译程序的符号表来说,它所涉及的基本操作大致可归纳为五类: 1、对给定名字,确定此名是否在有中; 2、填入新名; 3、对给定名字,访问它的有关信息; 4、对给字名字,填写或更新它的某些信息; 5、删除一个或一组无用的项。 不同种类的表格所涉及的操作往往也是不同的。上述五方面只是一些基本的共同操作。 符号表最简单的组织方式是让各项各栏所占的存储单元的长度都是固定的。这种项栏长度固定的表格易于组织、填写和查找。对于这种表格,每一栏的内容可直接填写在有关的区段里。例如,有些语言规定标识符的长度不得超过8个字符,于是,我们就可以用两个机器字作为主栏(假定每个机器字可容四个字符)每个名字直接填写在主栏中。若标识长度不到8个字符,则用空白符补足。这种直接填写式的表格形式如下: 但是,有许多语言对标识符的长度几乎不加限制,或者说,标识符的长度范围甚宽。譬如说,

可控硅参数列表

March 2008 Rev. 21/9 AN2703 Application note Parameter list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each datasheet, two classes of parameters are available:■ Absolute ratings, corresponding to critical parameters, not to be exceeded for safe operation. If the absolute rating is exceeded, the component may be damaged.■Electrical, thermal and static characteristics, defining limits on product https://www.360docs.net/doc/ee18872258.html,

Parameters AN2703 1 Parameters 2/9

AN2703Parameters 3/9I GM Peak gate current This is the maximum peak current allowed through gate and cathode, defined for a 20 μs pulse duration. If the absolute rating is exceeded, the component may be damaged. P G(AV)Average gate power dissipation This is the maximum average power that can be dissipated by the gate junction. If the absolute rating is exceeded, the component may be damaged. V RGM Peak reverse gate voltage This parameter is only defined for SCRs. It is the maximum reverse voltage than can be applied across gate and cathode terminals, without risk of destruction of the gate to cathode junction. V GM Peak positive gate voltage (with respect to the pin "COM") This parameter is only defined for ACSs. It is the maximum voltage than can be applied across gate and COM terminals without risk of destruction of the gate to COM junction.Table 2.Electrical characteristics parameters Parameter Name and description P Average power dissipation This is the average power dissipated by current conduction through the device for one full cycle operation. I GT Triggering gate current This is the current to apply between gate and cathode (or gate and electrode A1 for TRIAC) to turn-on the device. This parameter defines the sensitivity of the component. For a SCR, the gate current has always to be sunk by the gate. For a TRIAC, I GT is define for 3 or 4 quadrants corresponding to the different polarities of A2, A1 and gate: - Q1: I g sunk by the gate, V A2-A1 > 0 - Q2: I g sourced by the gate, V A2-A1 > 0 - Q3: I g sourced by the gate, V A2-A1 < 0 - Q4: I g sunk by the gate, V A2-A1 < 0 The I GT value is higher in Q4 quadrant. For ACS types, I GT is defined in two quadrants (Q2 and Q3). V GT Triggering gate voltage This is the voltage to apply across gate and cathode (or gate and electrode A1 for TRIAC) to reach the IGT current and then to trigger the device. V GD Non-triggering gate voltage V GD is the maximum voltage which can be applied across gate and cathode (or gate and electrode A1 for TRIAC) without causing undesired turn-on. This parameter is specified, for the worst case scenario, at the maximum junction temperature.Table 1.Absolute ratings parameters (continued) Parameter Name and description

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

工艺流程图识图基础知识

工艺流程图识图基础知识 工艺流程图是工艺设计的关键文件,同时也是生产过程中的指导工具。而在这里我们要讲的只是其在运用于生产实际中大家应了解的基础知识(涉及化工工艺流程设计的内容有兴趣的师傅可以找些资料来看)。它以形象的图形、符号、代号,表示出工艺过程选用的化工设备、管路、附件和仪表等的排列及连接,借以表达在一个化工生产中物量和能量的变化过程。流程图是管道、仪表、设备设计和装置布置专业的设计基础,也是操作运行及检修的指南。 在生产实际中我们经常能见到的表述流程的工艺图纸一般只有两种,也就是大家所知道的PFD和P&ID。PFD实际上是英文单词的词头缩写,全称为Process Flow Diagram,翻译议成中文就是“工艺流程图”的意思。而P&ID也是英文单词的词头缩写,全称为Piping and Instrumentation Diagram,“&”在英语中表示and。整句翻译过来就是“工艺管道及仪表流程图”。二者的主要区别就是图中所表达内容多少的不同,PFD较P&ID内容简单。更明了的解释就是P&ID图纸里面基本上包括了现场中所有的管件、阀门、仪表控制点等,非常全面,而PFD图将整个生产过程表述明白就可以了,不必将所有的阀门、管件、仪表都画出来。 另外,还有一种图纸虽不是表述流程的,但也很重要即设备布置图。但相对以上两类图而言,读起来要容易得多,所以在后面只做简要介绍。 下面就介绍一下大家在图纸中经常看到的一些内容及表示方法。 1 流程图主要内容 不管是哪一种,那一类流程图,概括起来里面的内容大体上包括图形、标注、图例、标题栏等四部分,我们在拿到一张图纸后,首先就是整体的认识一下它的主要内容。具体内容分别如下: a 图形将全部工艺设备按简单形式展开在同一平面上,再配以连接的主、辅管线及管件,阀门、仪表控制点等符号。 b 标注主要注写设备位号及名称、管段编号、控制点代号、必要的尺寸数据等。 c 图例为代号、符号及其他标注说明。 d 标题栏注写图名、图号、设计阶段等。

部分花卉的符号属性表

附表2部分花卉的符号属性 作者:岩山老林 说明: 1.本表为《建筑景观的符号属性》一文的附表2。附表1为《部分树木的符号属性》,另发。 2.本表的资料来源为有关书刊和网络资料,仅供网友研究参考,因非正规著作,未能能逐一注明出处,请相关同仁见谅。也请网友切勿作正规著作引用发表;违者自行负责。 3.本表所列“部分花卉的符号属性”,旨在解释花卉所表达的、隐含的寓意。虽然将它们作为建筑景观的附录,不一定都适合与建筑景观关联起来品读。例如白百合象征“百年好合”,是礼仪界对“百合花”的赋义。在建筑景观范畴内是否如此解读,需结合具体状况商榷,不能勉强。 4.如发现差错或有补充意见,欢迎发邮件:43h1010@https://www.360docs.net/doc/ee18872258.html,,不胜感激。 品种寓意用途 芭蕉又名甘蕉、板蕉。叶大且宽,喜暖不耐寒。寓意多种:文人多以芭蕉寓意“怅惘忧愁”。但因 芭蕉直立高大、体态粗犷潇洒、蕉叶碧翠似绢, 故也见寓意“粗豪”和“精细”,《红楼梦》中 贾探春自喻“蕉下客”。因芭蕉果实结于同一 圆茎,又见寓意“团结”与“友谊”。《涅槃经》 将众生身譬如芭蕉,寓意生实则枯、人生“空” 和“无常”。有的画家则以画寄托“平静”、“闲 适”、“隐逸”的生活愿景。常见在庭园、墙隅、假山旁点缀配景。 杜鹃花别名映山红、山石榴、山丹丹、山踯躅、清明花、金达莱。花繁叶茂,绮丽多姿。又称花中 西施,与龙胆花、报春花合称“中国三大名花”。 全世界有杜鹃花属植物约800种,我国就有650 种。有多重寓意:因花开满山红而寓意“热闹 欢庆”;因初春盛开而寓意“春天使者”;因与 红军关联而寓意“红色革命”和“期盼胜利”; 因花的色彩而寓意“吉祥”、“幸福”,“乐观”、常见野生或种植于山坡以营造大面积花海,宜在林缘、溪边、池畔及岩石相配成丛成片种植。可于疏林下与阔叶乔木结合配植,也宜作花篱矮墙或屏障。

晶闸管参数说明

IEC标准中用来表征晶闸管、二极管性能、特点的参数有数十项,但用户经常用到的有十项左右,本文就晶闸管、二极管的主要参数做一简单介绍。 1.正向平均电流I F(A V)( 整流管) 通态平均电流I T(A V)( 晶闸管) 是指在规定的散热器温度THS或管壳温度T C时,允许流过器件的最大正弦半波电流平均值。此时,器件的结温已达到其最高允许温度Tjm。台基公司产品手册中均给出了相应通态电流对应的散热器温度THS或管壳温度T C值,用户使用中应根据实际通态电流和散热条件来选择合适型号的器件。 2.正向方均根电流I F(RMS)( 整流管) 通态方均根电流I T(RMS)( 晶闸管) 是指在规定的散热器温度THS或管壳温度TC 时,允许流过器件的最大有效电流值。用户在使用中,须保证在任何条件下,流过器件的电流有效值不超过对应壳温下的方均根电流值。3.浪涌电流I FSM(整流管)、I TSM(晶闸管) 表示工作在异常情况下,器件能承受的瞬时最大过载电流值。用10ms底宽正弦半波峰值表示,台基公司在产品手册中给出的浪涌电流值是在器件处于最高允许结温下,施加80% V RRM条件下的测试值。器件在寿命期内能承受浪涌电流的次数是有限的,用户在使用中应尽量避免出现过载现象。 4.断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压,一般用单脉冲测试防止器件损坏。用户在测试或使用中,应禁止给器件施加该电压值,以免损坏器件。 5.断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时,断态和反向所能承受的最大重复峰值电压。一般取器件不重复电压的90%标注(高压器件取不重复电压减100V标注)。用户在使用中须保证在任何情况下,均不应让器件承受的实际电压超过其断态和反向重复峰值电压。 6.断态重复峰值(漏)电流IDRM 反向重复峰值(漏)电流IRRM 为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流。该参数在器件允许工作的最高结温Tjm下测出。 7.通态峰值电压V TM(晶闸管) 正向峰值电压V FM(整流管) 指器件通过规定正向峰值电流I FM(整流管)或通态峰值电流I TM(晶闸管)时的峰值电压,也称峰值压降。该参数直接反映了器件的通态损耗特性,影响着器件的通态电流额定能力。器件在不同电流值下的的通态(正向)峰值电压可近似用门槛电压和斜率电阻来表示: V TM=VTO+rT*I TM V FM=VFO+rF*I FM 台基公司在产品手册中给出了各型号器件的最大通态(正向)峰值电压及门槛电压和斜率电阻,用户需要时,可以提供该器件的实测门槛电压和斜率电阻值。 8.电路换向关断时间t q(晶闸管) 在规定条件下,在晶闸管正向主电流下降过零后,从过零点到元件能承受规定的重加电压而不至导通的最小时间间隔。晶闸管的关断时间值决定于测试条件,台基公司对所制造的快速、高频晶闸管均提供了每只器件的关断时间实测值,在未作特别说明时,其对应的测试条件如下: l 通态峰值电流ITM等于器件ITA V;

晶闸管的结构及性能特点

晶闸管的结构及性能特点 (一)普通晶闸管 普通晶闸管(SCR)是由PNPN四层半导体材料构成的三端半导体器件,三个引出端分另为阳极A、阴极K和门极G、图8-4是其电路图形符号。 普通晶闸管的阳极与阴极之间具有单向导电的性能,其内部可以等效为由一只PNP晶闸管和一只NPN晶闸管组成的组合管,如图8-5所示。 当晶闸管反向连接(即A极接电源负端,K极接电源正端)时,无论门极G 所加电压是什么极性,晶闸管均处于阻断状态。当晶闸管正向连接(即A极接电源正端,K极接电源负端)时,若门极G所加触发电压为负时,则晶闸管也不导通,只有其门极G加上适当的正向触发电压时,晶闸管才能由阻断状态变为导通状态。此时,晶闸管阳极A极与阴极K极之间呈低阻导通状态,A、K 极之间压降约为1V。 普通晶闸管受触发导通后,其门极G即使失去触发电压,只要阳极A和阴极K 之间仍保持正向电压,晶闸管将维持低阻导通状态。只有把阳极A电压撤除或

阳极A、阴极K之间电压极性发生改变(如交流过零)时,普通晶闸管才由低阻导通状态转换为高阻阻断状态。普通晶闸管一旦阻断,即使其阳极A与阴极K 之间又重新加上正向电压,仍需在门极G和阴极K之间重新加上正向触发电压后方可导通。 普通晶闸管的导通与阻断状态相当于开关的闭合和断开状态,用它可以制成无触点电子开关,去控制直流电源电路。 (二)双向晶闸管 双向晶闸管(TRIAC)是由NPNPN五层半导体材料构成的,相当于两只普通晶闸管反相并联,它也有三个电极,分别是主电极T1、主电极T2和门极G。图8-6是双向晶闸管的结构和等效电路,图8-7是其电路图形符号。

双向晶闸管可以双向导通,即门极加上正或负的触发电压,均能触发双向晶闸管正、反两个方向导通。图8-8是其触发状态。

晶闸管参数名词解释

晶闸管参数名词解释 1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包 括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态 反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定V RSM=1.11V RRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3.通态方均根电流:通态电流在一个周期内的方均根值。 4.通态平均电流:通态电流在一个周期内的平均值。 5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温 的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态 电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7.I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。 通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。 8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。 1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S; d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。 9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。 10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。 1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值

单向晶闸管的基本结构及工作原理

单向晶闸管的基本结构及工作原理 晶闸管有许多种类,下面以常用的普通晶闸管为例,介绍其基本结构及工作原理。 单向晶闸管内有三个PN 结,它们是由相互交叠的4 层P区和N区所构成的.如图17-1(a) 所示。晶闸管的三个电极是从P1引出阳极A,从N2引出阳极K ,从P2引出控制极G ,因此可以说它是一个四层三端 半导体器件。 为了便于说明.可以把图17-1 (a) 所示晶闸管看成是由两部分组成的[见图17-1(b)],这样可以把晶闸管等效为两只三极管组成的一对互补管.左下部分为NPN型管,在上部分为PNP 型管[见图17-1 (c)]。 当接上电源Ea后,VT1及VT2都处于放大状态,若在G 、K 极间加入一个正触发信号,就相当于在V T1基极与发射极回路中有一个控制电流IC,它就是VT1的基极电流IB1。经放大后,VT1产生集电极电流ICI。此电流流出VT2 的基极,成为VT2 的基极电流IB2。于是, VT2 产生了集电极电流IC2。IC2再流入VT1 的基极,再次得到放大。这样依次循环下去,一瞬间便可使VT1和VT2全部导通并达到饱和。所以,当晶闸管加上正电压后,一输入触发信号,它就会立即导通。晶闸管一经导通后,由于导致VT1基极上总是流过比控制极电流IG大得多的电流,所以即使触发信号消失后,晶闸管仍旧能保持导通状态。只有降低电源电压Ea,使VT1、VT2 集电极电流小于某一维持导通的 最小值,晶闸管才能转为关断状态。 如果把电源Ea反接,VT1 和VT2 都不具备放大工作条件,即使有触发信号,晶闸管也无法工作而处于关断状态。同样,在没有输入触发信号或触发信号极性相反时,即使晶闸管加上正向电压.它也无法导通。 上述的几种情况可参见图17-2 。

可控硅参数说明(精)

符号说明: VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。此电压小于反向最高测试电压100V。反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。 V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。 V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。 IT(AV/ IF(AV--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。 I T(RMS, I F(RMS――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值 I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50Hz I2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。 P GM--门极峰值功率;门极触发电压与最大触发电流的乘积; P G(AV --门极平均功率;门极触发电压与正常触发电流的乘积; di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏

(完整版)双向可控硅详解

双向可控硅详解 双向可控硅是一种硅可控整流器件,也称作晶闸管。这种器件在电路中能够实现交流电的无触点控制,以小电流控制大电流,具有无火花、动作快、寿命长、可靠性高以及简化电路结构等优点。因此,它被广泛应用于各种电器调速、调光、调压、调温以及各种电器过载自动保护等电子电路中。 双向可控硅的外型及内部结构 从外表上看,双向可控硅和普通可控硅很相似,也有三个电极。但是,它除了其中一个电极G仍叫做控制极外,另外两个电极通常却不再叫做阳极和阴极,而统称为主电极Tl和T2。它的符号也和普通可控硅不同,是把两个可控硅反接在一起画成的,如图2所示。它的型号,在我国一般用“3CTS”或“KS”表示;国外的资料也有用“TRIAC”来表示的。 双向可控硅的规格、型 号、外形以及电极引脚排列 依生产厂家不同而有所不 同,但其电极引脚多数是按 T1、T2、G的顾序从左至右 排列(观察时,电极引脚向 下,面对标有字符的一面)。 目前市场上最常见的几种 塑封外形结构双向可控硅 的外形及电极引脚排列如 下图1所示。 双向可控硅的电路符号如图2所示。双向可控硅的外形结构和普通可控硅没有多大区别,几十安以下的,则通常采用图1所示塑封外形结构。几十安到一百余安电流大小的则采用螺栓型;额定电流在200安以上的一般都是平板型的; 从内部结构来看,双向可控 硅是一种N—P—N—P—N型五 层结构的半导体器件,见图3(a)。 为了便于说明问题,我们不妨把 图3(a)看成是由左右两部分组

合而成的,如图3(b)。这样一来,原来的双向可控硅就被分解成两个P—N—P—N型结构的普通可控硅了。如果把左边从下往上看的p1—N1—P2—N2部分叫做正向的话,那么右边从下往上看的N3—P1—N1—P2部分就成为反向,它们之间正好是一正一反地并联在一起。我们把这种联接叫做反向并联。因此,从电路功能上可以把它等效成图3(c),也就是说,一个双向可控硅在电路中的作用是和两只普通可控硅反向并联起来等效的。这也正是双向可控硅为什么会有双向控制导通特性的根本原因。 对于两只反向并联的普通可控硅来说,因为它们各自都有自己的控制极,所以必须通过两个控制极的协调工作,才能达到控制电路的目的。而双向可控硅却不同,它只有一个控制极,通过这唯一的控制极就能控制双向可控硅的正常工作。显然,它的触发电路、比起两只反向并联的普通可控硅的触发电路要简单得多。这不仅给设计和制造带来很多方便,而且也使电路的可靠性得到提高,设备的体积缩小,重量减轻,这是双向可控硅的一个突出的优点。 双向可控硅的特性曲线. 既然一个双向可控硅是由两只普通可控 硅反向并联而成的,那么,我们会很自然地想 到,它的特性曲线就应该是由这两只普通可控 硅的特性曲线组合而成。图4示出了双向可控 硅的特性曲线。 由图可见,双向可控硅的特性曲线是由 一、三两个象限内的曲线组合成的。第一象限的曲线说明当加到主电极上的电压使Tc 对T1的极性为正时,我们称为正向电压,并用符号U21表示。当这个电压逐渐增加到等于转折电压UBO时,图3(b)左边的可控硅就触发导通,这时的通态电流为I21,方向是从T2流向Tl。从图中可以看到,触发电流越大,转折电压就越低,这种情形和普通可控硅的触发导通规律是一致的,当加到主电极上的电压使Tl对T2的极性为正时,叫做反向电压,并用符号U12表示。当这个电压达到转折电压值时,图3(b)右边的可控硅便触发导通,这时的电流为I12,其方向是从T1到T2。这时双向可控硅的特性曲线,如图4中第三象限所示。在上述两种情况中,除了加到主电极上的电压和通态电流的方向相反外,它们的触发导通规律却是同的。如果这两个并联连接的管子特性完全相同的话,一,三象限的特性曲线就应该是对称的。 通过对双向可控硅特性曲线的分析可以知道;双向可控硅不象普通可控硅那样,必须在阳极和阴极之间加上正向电压,管子才能导通。对双向可控硅来说,无所谓阳极和

相关文档
最新文档