雷达设备测试要求及方法

雷达设备测试要求及方法
雷达设备测试要求及方法

第七部分:雷达设备测试要求及方法

目次

1范围 (1)

2规范性引用文件 (1)

3通用要求 (1)

3.1工作频率范围 (1)

3.2信道间隔 (1)

3.3天线端口,设备监测端口 (1)

3.4发射功率 (1)

3.5频率容限 (1)

3.6占用带宽 (1)

3.7杂散发射 (2)

4试验条件 (2)

4.1大气实验条件 (2)

4.2检测工作条件 (2)

4.3测试频率 (2)

4.4测试设备 (2)

5参考技术要求及测试方法 (3)

5.1脉冲雷达(气象雷达、船用雷达、航路监视一次雷达、二次监视雷达) (3)

5.2非调制单频雷达,非调制多频雷达 (4)

5.3调频雷达(线性调频雷达,调频连续波雷达) (5)

参考文献 (7)

在用无线电台(站)设备测试要求及方法第七部分:雷达设备1范围

本文件规定了在用雷达发射设备的测试要求及方法等内容。

本文件适用于在用雷达发射设备,包括:

-气象雷达(C波段/S波段/X波段天气雷达/多普勒天气雷达,测风雷达,风廓线雷达);

-船用雷达;

-航路监视一次雷达;

-二次监视雷达;

-连续波雷达(非调制单频/多频连续波雷达/调频连续波雷达);

-调频雷达(线性调频雷达)。

2规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 12572-2008 无线电发射设备参数通用要求和测量方法

3通用要求

3.1工作频率范围

在用雷达发射设备的工作频率范围应严格按照无线电管理机构相关规定执行。

在用雷达发射设备的用户应按照无线电管理机构的相关规定申请台站执照,并按照执照中指配的工作信道使用,不可随意更改工作信道。

3.2信道间隔

在用雷达发射设备的工作信道间隔应严格按照无线电管理机构最新的相关规定执行。

3.3天线端口,设备监测端口

在用雷达发射设备天线端口及设备监测端口阻抗为50 。

3.4发射功率

在用雷达发射设备的发射功率应符合无线电管理机构核定的参数和技术资料的要求。

3.5频率容限

在用雷达发射设备频率容限应符合无线电管理机构核定的参数和技术资料的要求。

3.6占用带宽

在用雷达发射设备占用带宽应符合无线电管理机构核定的参数和技术资料的要求。

3.7杂散发射

在用雷达发射设备杂散发射应符合无线电管理机构核定的参数和技术资料的要求

4试验条件

4.1大气实验条件

试验条件的选取应尽量考虑设备实际使用的环境,并在测试结果中予以记录。本文件所涉及的检验和测量均按如下试验条件进行:

正常温度:-20℃~55℃;

相对湿度:5%~75%;

正常电压:设备制造商声明的设备额定供电电压;

正常气压:86kPa~106kPa。

4.2检测工作条件

在用雷达发射设备的被检测样品是按照无线电管理机构的相关规定检测的无线电台(站),并且应具备以下条件:

a)被检方应提供无线电管理机构发放的无线电台(站)执照及检测所需的技术文件;

b)被检方应提供检测的相关技术支持,比如设置被测设备应符合标准测试方法中要求的工

作状态;

c)如果被测设备发射功率较大,不能通过连接衰减器减小信号功率的情况下,被测设备应

从射频功放前端,滤波器后端耦合出射频信号进行测试;

d)整个检测过程中,原则上不允许打开机壳进行测试。若需打开机壳测试,必须要在检测

报告中进行说明;

e)本文件不适用于非传导方式的测试。

4.3测试频率

在用雷达发射设备应选择其实际使用的频率进行测试。

4.4测试设备

测量设备所提供的测量结果应满足表1规定的测量不确定度要求。

5参考技术要求及测试方法

发射机电性能参数测量基本框图如图1和图2所示:

图1发射机电性能参数测试基本框图

注1:转换连接器为外接到天线端口的耦合器,波导等转换设备。

图2发射机电性能参数测试基本框图

5.1脉冲雷达(气象雷达、船用雷达、航路监视一次雷达、二次监视雷达)

5.1.1发射功率

参考技术要求:应符合无线电管理机构核定的功率要求。

参考测试方法:按图1或图2所示连接方式连接测试系统。测量设备采用峰值功率计或频谱分析仪。测试程序如下:

a)采用合适的射频信号源,校准测试图1或2中“连接/转换装置”在指定频段(频率)的插入

损耗量值L1(dB)、校核固定衰减器的衰减量值L2(dB);

b)确定要发射的脉冲组合,计算链路衰减值,避免出现测量设备过载的情况;

c)如果采用从监视口测试,请确定监视端口的耦合系数L3;

d)打开发射机,从测量设备上读出被测发射机输出峰值功率P(dBm);

e)计算被测发射机实际输出峰值功率值P EA(dBm)= P+L1+L2或P EA(dBm)= P+L1+L2+L3。

5.1.2频率容限

参考技术要求:标称频率严格遵照国家无线电频谱规划,应符合无线电管理机构核定的参数和技术资料的要求。频率容限值应符合GB/T 12572-2008的要求。

参考测试方法:按图1或图2所示连接方式连接测试系统。测量设备采用频谱仪或其它可进行频率参数测量的测量设备。测试程序如下:

a)被测发射机设置为相应脉冲模式,在最大功率状态下工作,测量设备测得被测发射机的

载波频率;

b)测试所得载波频率与标称频率之差,即为频率容限。

5.1.3占用带宽

参考技术要求:应符合无线电管理机构核定的参数和技术资料的要求。

参考测试方法:按图1或图2所示连接方式连接测试系统,测量设备可选用频谱分析仪或者具备频谱分析功能的综合测试仪测量设备。测试程序如下:

a)打开被测发射机,使设备在相应的脉冲组合状态下工作;

b)设置测量设备的扫宽(SPAN)要大于信道间隔,采用RMS检波方式,RBW小于或者

等于SPAN的1%;

c)测试被测发射机99%功率占用带宽。

5.1.4杂散发射

参考技术要求:-30dBm或比PEP低100dB,取要求较低的。

表3各测量频段的RBW建议值

参考测试方法:按图1或图2所示连接方式连接测试系统,测量设备选用频谱分析仪。若耦合器的工作频段无法满足杂散测试要求,则无法进行本项测试。

a)打开被测发射机使其以最大功率发射;

b)设置频谱仪的频率,分频段测试各频段的杂散测试值,检波方式为正峰值检波,发射机工作

频率点左右2.5倍信道间隔的频段范围为传导杂散发射的免测频段;

c)读取在频谱仪上各频段杂散信号功率的最大值。

5.2非调制单频雷达,非调制多频雷达

5.2.1发射功率

参考技术要求:应符合无线电管理机构核定的功率要求。

参考测试方法:按图1或图2所示连接方式连接测试系统。测量设备采用峰值功率计。测试程序如下:

a)采用合适的射频信号源,校准测试图1或2中“连接/转换装置”在指定频段(频率)的插入

损耗量值L1(dB)、校核固定衰减器的衰减量值L2(dB);

b)确定要发射的脉冲组合,计算链路衰减值,避免出现测量设备过载的情况;

c)如果采用从监视端口测试,请确定监视端口的耦合系数L3;

d)打开发射机,从测量设备上读出被测发射机输出峰值功率P(dBm);

e)计算被测发射机实际输出峰值功率值PE(dBm)= P+L1+L2或PE(dBm)= P+L1+L2+L3。

5.2.2频率容限

参考技术要求:标称频率严格遵照国家无线电频谱规划,应符合无线电管理机构核定的参数和技术资料的要求。频率容限值应符合GB/T 12572-2008的要求。

参考测试方法:按图1或图2所示连接方式连接测试系统。测量设备采用频谱仪或其它可进行频率参数测量的测量设备。测试程序如下:

a)被测发射机设置为在最大功率状态下工作,测量设备测得被测发射机的载波频率;

b)测试所得载波频率与标称频率之差,即为频率容限。

5.2.3占用带宽

参考技术要求:应符合无线电管理机构核定的参数和技术资料的要求。

参考测试方法:参考5.1.3。

5.2.4杂散发射

参考技术要求:-30dBm或比PEP低100dB,取要求较低的。

参考测试方法:参考5.1.4。

5.3调频雷达(线性调频雷达,调频连续波雷达)

5.3.1发射功率

参考技术要求:应符合无线电管理机构核定的功率要求。

参考测试方法:参考5.1.1。

5.3.2频率容限

参考技术要求:标称频率严格遵照国家无线电频谱规划,应符合无线电管理机构核定的参数和技术资料的要求。频率容限值应符合GB/T 12572-2008的要求。

参考测试方法:按图1或图2所示连接方式连接测试系统。测量设备采用频谱仪或其它可进行频率参数测量的测量设备。测试程序如下:

a)被测发射机设置为不加调制,在最大功率状态下工作,测量设备测得被测发射机的载波

频率;

b)若发射机无法工作在非调制状态下,先找到峰值点,分别测试左右-10dBc频率点记为

f1、f2,则(f1+f2)/2记为载波频率;

c)测试所得载波频率与标称频率之差,即为频率容限。

5.3.3占用带宽

参考技术要求:应符合无线电管理机构核定的参数和技术资料的要求。

参考测试方法:参考5.1.3。

5.3.4杂散发射

参考技术要求:-30dBm或比PEP低100dB,取要求较低的。

参考测试方法:参考5.1.4。

参考文献

[1]GB/T 12267-1990 船用导航设备通用要求和试验方法

[2]GB/T 13705-1992 船用无线电设备一般要求

[3]GB 12120-89 空中交通管制航路监视一次雷达通用技术条件

[4]MH/T 4017- 2004 空中交通管制S波段一次监视雷达设备技术规范

[5]GB 12182-90 空中交通管制二次监视雷达通用技术条件

[6]MH/T 4010- 2006 空中交通管制二次监视雷达设备技术规范

[7]ICAO Annex10 国际民用航空公约附件10

雷达基于模型开发

关于雷达的基于模型开发简要介绍 基于模型的设计思想是围绕可以执行的模型,将算法的研究,具体模型的细化设计,产品级代码的产生过程,以及验证过程平滑无缝的联系在一起。因为模型是可以执行的,通过执行能够及早发现算法及设计过程中的缺憾,及早改正问题,避免在实现或验证阶段发现问题并修改问题带来的巨大代价;自动代码产生工具,及联合仿真验证流程,减轻了手工编写代码,传统测试验证的巨大工作量付出,使科研人员有更多的时间和精力关注于算法,尝试更多思想,找到最佳方案,大大加快科研进程,显著提高科研效率。 所以这样逐步细化的设计流程可以帮助工程师及早发现问题和解决问题。基本上,在这个流程中的每一个模型都是下一步细化的起点。同时这个模型的输入输出也就可以用来验证细化后模型的行为。

在MathWorks的产品中,最适合用来描述客户需求的是MATLAB以及其上的工具箱。 客户可以提供快速建模的便利使得自己需求得到准确的描述。从某种程度上来讲,在用 户需求确定以后,所用的MATLAB模型就可以被认为是用户需求的另一种描述。 至于用于系统建模的工具,比较合适的是各种System Toolbox,比如DSP System Toolbox, Phased Array System Toolbox,以及Simulink和之上的模块库,象是SimRF 或者SimPowerSystem。这些工具可以提供一个系统整合平台,实现多领域的联合仿真, 并用Simulink V&V来验证 用于系统实现的工具包括MATLAB Coder, HDL Coder, 以及Embedded Coder之类的产品。类似的,HDL Verifier可以用来验证这个层次的模型。 目前在,在控制,信号处理,通信等领域,已经广泛采用基于模型的设计理念来加快 科研、开发进程,雷达系统的设计也可以通过基于模型的设计来提高开发效率。

一种雷达方位角检测方法

第28卷第12期 兵工自动化 Vol. 28, No. 12 2009年12月 Ordnance Industry Automation Dec. 2009 · 82· doi: 10.3969/j.issn.1006-1576.2009.12.028 一种雷达方位角检测方法 胡定军,王玮,冯玉龙 (镇江船艇学院 指挥系,江苏 镇江 212003) 摘要:介绍了一种雷达方位角测量的方法,该方法采用旋转变压器/轴角转换器AD2S80BD ,将旋转变压器输出的模拟信号通过AD2S80BD 轴角转换电路转换成数字量信号,再利用单片机MSP430F123进行解算,得出雷达角位置信号,实时供雷达终端显示或转发。该系统接口电路简单可靠,工作稳定,在雷达测量系统中有较高的应用价值。 关键词:旋转变压器;雷达;方位角;AD2S80BD 中图分类号:TP206+.1; TN956 文献标识码:A Study on Measuring Radar Azimuth HU Ding-jun, WANG Wei, FENG Yu-long (Dept. of Watercraft Commanding, Zhenjiang Watercraft College, Zhenjiang 212003, China) Abstract: Introduce the method of radar azimuth detection. The method adopts resolver and angle converter AD2S80BD, The analog signals of resolver were transformed into the digital signal by AD2S80BD axis angle circuit. Then the radar angle position can be disposed by simple chip MSP430F123, and it can be shown and transmitted on the radar terminator. The system interface circuit is simple, reliable and stable, with high application value in radar measurement system. Keywords: Resolver; Radar; Azimuth; AD2S80BD 0 引言 角位置测量装置是工业控制设备的重要组成部分,在飞行器姿态控制和检测、导弹控制、雷达天线跟踪等角位置测量控制系统中有着广泛应用。为精密测量雷达系统各轴角,在雷达角位置检测系统中采用旋转变压器,它具有耐高温、耐湿度、抗冲击、抗干扰等特点,但其输出信号为模拟量,故采用AD 公司的数字转换器芯片AD2S80BD ,将旋转变压器产生的模拟信号快速转换为二进制数字信号,实现对角位置的数字化分析。 1 雷达方位角测量系统组成 雷达方位角测量系统由方位轴、旋转变压器、 AD2S80BD 组成的轴角/数字转换电路等部分组成。将旋转变压器安装在雷达方位轴的方位铰链上,雷达转盘转动时带动方位轴的方位铰链的活动,旋转变压器也随之活动,产生的两相正、余弦信号[1]输入到由AD2S80BD 组成的轴角/数字转换电路,转换后的16位二进制数字信号,输入到雷达终端处理显示或转发,其系统组成如图1[2]。 图1 雷达方位角测量系统组成 2 旋转变压器的工作原理 旋转变压器是一种单相激励双相输出(幅度调制型)无刷旋转变压器,如图2。旋转变压器初级 励磁绕组(R1—R2) 和二相正交的次级感应绕组(S1—S3,S2—S4)同在定子侧,转子侧是与初级绕组和次级绕组磁通耦合的特殊结构的线圈绕组[3]。 图2 旋转变压器原理图 当旋转变压器转子随雷达方位轴同步旋转、初级励磁绕组(R1-R2)外加交流励磁电压后,次级两输出绕组(S1-S3,S2-S4)中会产生感应电动势,大小为励磁与转子旋转角的正、余弦值的乘积。旋转变压器输入输出关系如下: 120sin R R E E t ??= 1312sin S S R R E KE θ??= 2412cos S S R R E KE θ??= 这里的θ是转子旋转的角度,E 0是励磁最大幅值,?是励磁角频率,K 是旋转变压器变比。 3 AD2S80BD 的轴角/数字硬件电路 收稿日期:2009-06-10;修回日期:2009-07-15 作者简介:胡定军(1977-),男,江苏人,硕士,工程师,从事信号采集与模拟控制、电子自动化研究。

华奥通无线通信模块检测方法

华奥通无线通信模块检测方法 为了保证通信模块的质量,对于进货检验需要按如下方法进行 测试内容: 1. 5米通信效率测试 2. 高低温测试 测试工具: 1.计算机一台、专用串口线a 1根(DB9孔-DB9孔,连接方法2-3 、3-2、5-5、9-4、4-9)、 专用电源转换板一块(UM-POW),串口线b 1根(DB9-4位白色插头,连接方法3-1,2-2,5-4) 2.MODSCAN软件 3.Super32-L309控制器一台,24V电源一块 4.工装用无线模块1块

测试方法: 5米通信效率测试 该项测试为全检 1) 将专用串口线a 一端连接到L309的串口上,一端连接到连接到待测无线模块的串口上。 2) 将无线模块的1、2、3、5拨码拨到ON ,其余为OFF 。 3) 将电源板接到工装用无线模块上,并将串口线b ,接到电源板上,并将DB9插头接到计算机的串口上。

4)给L309 和电源转换板供24V,并上电。 5)将L309与计算机距离5米 6)运行MDOSCAN软件,并配置串口为9600 8 N 1 7)设置站号为254. 8)设置采集120个HOLD 寄存器。 9)开始采集,这时观察发送与接收次数,当发送次数达到100次后,看接收次数,通信合 格率达到98%为通信模块合格。否则为不合格,返回厂家。 高低温测试 该项测试为抽检,抽检比例为批次10% 1)按照常温测试连接测试工装 2)将测试工装放到高低温箱中,温度为高温60度、低温-30度 3)运行MODSCAN软件,测试通信模块的通信效率,通信效率在95以上的为合格。MODSCAN软件抓图

雷达测流设备

近年来随着经济的迅速发展和人口的不断增长,我国的突发性事故时有发生,如化学危险品库燃烧大爆炸;装载剧毒农药车辆翻车造成农药泄露;又或者是什么地方又开始发生洪灾什么等等。这类事故发生突然,破坏性大,直接关系到生命安全,这已成为当今社会不可忽视的问题,引起政府各个部门高度重视。 河道水库监测终端对河道或水库的水、雨情进行全天候在线监测;监测中心应用软件对相关数据进行快速的分析和处理,并无缝对接山洪灾害预警信息发布平台。河道、水库的水位、雨量监测系统对该地的防洪减灾工作意义重大,并起到了很好的示范作用。目前,该系统已在全国范围内得到了全面的推广和应用。 据了解,水文信息采集系统是目前我国很多城市排水防涝数字化管控平台的重要组成部分,也是整个项目信息采集、传输、接收、存储、分发、上报的最基础环节。 水文监测设施设备的主要功能是,通过相应水情监测设施和水情传感器,实现对各种水情信息的现场检测,水文信息监测主要包括:降水量、水位、流量、水质等。 一般来说,防汛水位监测会采用水文信息采集系统建设会在城市多处安装自动水位站、超声波、雷达水位计等警示装置,并通过GPRS 模块无线传输的方式,与中心站联网通信,实现对水位的自动采集。

HZ-SVR-24Q雷达流量计 航征科技是目前国内具有自主知识产权的雷达方案提供商,拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户,提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

智能雷达光电探测监视系统单点基本方案..

智能雷达光电探测监视系统单点基本方案
一、 系统概述
根据监控需求: 岸基对海 3~10 公里范围内主要大小批量目标; 主动雷达光电探测和识别; 多目标闯入和离去自动报警智能职守; 系统接入指挥中心进行远程监控管理; 目标海图显示管理; 系统能够自动发现可疑目标、跟踪锁定侵入目标、根据设定条件进行驱散、 同时自动生成事件报告记录,可以实现事故发生后的事件追溯,协助事故调查。 1. 项目建设主要目的 ? 为监控区域安全提供综合性的早期预警信息; ? 通过综合化监测提高处置和应对紧急突发事件的指挥能力。 2. 基本需求分析: 需配置全自动、全量程具备远距离小目标智能雷达探测监视和光电识别系 统,系统具备多目标自动持续稳定跟踪、多种智能报警功能、支持雷达视频实 时存储、支持留查取证的雷达视频联动回放功能等;同时后期系统需具备根据 用户需求的功能完善二次开发能力。同时支持后续相关功能、扩点组网应用需 求。 根据需求和建设主要目的,选型国际同类技术先进水平,拥有相关技术自 主知识产权,具备二次技术深化开发的北京海兰信数据科技股份有限公司 (2001 年成立,2010 年国内创业板上市,股票代码:300065,致力于航海智 能化与海洋防务/信息化的国内唯一上市企业)的智能监视雷达光电系统。该系 统在国内外有众多海事相关成熟应用案例,熟悉国内海事、海监、海警、渔政

公务执法及救捞业务需求特点等。同时,该系统近期成功中标国内近年来相关 领域多套(20 套)雷达光电组网项目,充分说明该系统的技术领先及成熟应 用的市场广泛接受度。
3. 项目建成后的主要特点 ? 全天候、全覆盖、全自动的立体化监控。该系统具备对多传感器信息 融合的能力,确保对探测范围内雷达信息源、光电、AIS、GPS 等设备信号源 进行有机的融合和整合。 ? 系统具备了预警、报警、实时录取回放的综合功能。任何目标物进入 雷达视距时,系统即开始进行监测。目标物触碰警报规则后,指挥室获得报警 信号,同时联动设备综合光电锁定警报目标,以便驱离。整个过程系统实时记 录、方便随时调用回放。 ? 系统技术水平国内领先。该系统中创新地采用了国际先进的“先跟踪 后探测”算法技术对目标进行探测和跟踪,保证了在严苛条件下满足对目标地 探测与持续跟踪能力。 ? 该系统采用先进的设计思想,开放灵活的系统网络架构,能够根据需 求进行不同的组合和配置,系统可扩展性强。 ? 维护便捷,由于采用网络架构,获得用户授权后能连接到用户网络, 可以远程支援维修维护系统,从而提高维护效率,减少维护成本。 ? 可靠性高,充分适应不同的海洋环境。
二、 系统设备清单
序号 1
2
材料名称
规格型号
X 波段雷达,IP65(含安装支架) HLD800/900;8ft,25kw
小目标雷达数据处理器及显示 HLD-STTD-1000
终端软件
Radpro V1.6.0.0
数量 1套
1套

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

雷达自动跟踪技术研究

31 自动跟踪 本章介绍了跟踪检测目标的技术。使用雷达硬件和雷达信号处理实现跟踪,从而形成一个闭环系统。单目标跟踪(STT)和边跟踪边扫描(TWS)模式(在第2章中介绍)被检验。在我们考虑跟踪测量和方法之前,我们需要定义一些术语。 估计,准确性和精确度通常用于描述跟踪的不同方面。估算应用于任何参数的值,该参数的值(1)仅在与腐蚀干扰相结合时才能测量,例如热噪声(图31-1);(2)不能直接测量,例如基于一系列距离测量的距离速率。 根据该定义,雷达系统测量或计算的每个参数,无论多么精确,都是估计值。 接下来,区分两个重要参数:准确度和精度。通常,两者都指数量的测量,其在跟踪中包括目标参数,例如真实范围,速度和方位。因此,测量值表示雷达系统对目标的真实参数的估计。 准确度表示测量值与真实值的接近程度,而精度表示在同一参数的多个测量值中存在多少可变性。它们共同构成了雷达系统对真实目标参数进行估算的基础。图31-2显示了一个示例,其中准确度和精度可以看作非常不同并且(有时)彼此独立。跟踪雷达的目标是具有高准确度和高精度。

跟踪中使用的另一个术语是判别式,其量化测量函数的校准。它通常由执行测量的硬件或软件输出与跟踪误差的真实值的关系图表示(图31-3)。曲线的线性部分的斜率是判别式并且确定测量的灵敏度。通常,斜率随着信噪比的增加而增加。 判别式的一个重要特征是它们通常是归一化的,因此无量纲。因此,不一定需要精确测量电压或功率电平。此外,除了信噪比的影响之外,跟踪误差的测量值不随信号强度而变化。它们与目标的大小,范围,机动和雷达截面(RCS)波动无关。如果需要,可以通过将判别式乘以预先计算的常数来给出判别式。在整个跟踪过程中使用判别式,其目的是改进目标测量参数的估计,例如距离,多普勒,仰角和方位角。 31.1 单目标跟踪 单目标跟踪可提供有关目标位置,速度和加速度的连续且准确的当

雷达动态探测目标的仿真建模

雷达动态探测目标的仿真建模 谢卫,陈怀新 (中国电子科技集团公司第十研究所,成都 610036) 摘要:通过对雷达动态探测目标过程分析,提出了雷达探测目标仿真模型的方法,实现了雷达目标检测、多目标滤波跟踪、资源调度管理等数字模型。实际表明这些模型满足数据融合中雷达探测目标数据的需求,并且建模方法对数据融合传感器模型建立具有实际指导意义。关键词:雷达;建模;仿真;数据融合 Radar detection of targets dynamic simulation modeling XIE Wei,CHEN Huai-xin (CETC No.10th Research Institute, Chengdu, China; ) Abstract:With the analysis of the process of radar dynamic detecting targets, a method of the simulation model based on of radar detect targets is presented, some mathematic models (such as target indication by radar, variable number of targets tracking, resource management based on Scheduling algorithm) are realized. An actual experiment that the simulation data provided by radar detecting model can supply for the study of data fusion was made, simultaneity modeling method has a certain actual instructing meaning at the aspect of sensor detecting model of data fusion. Key words: radar; modeling; simulation; data fusion 1 引言 现代战场上各种目标的出现,要求利用多种传感器组网来采集信息并加以融合,充分利用不同目标各个方向、不同频段的反射特性,最大限度地提取信息,满足战场需要。对于数据融合来说真实的战场目标和传感器探测数据,是检验其有效性的最好条件。然而这样的真实数据很少,而且成本也较高,在融合算法的前期研究和实验阶段,就需要我们较真实的模拟多中传感器的探测数据。雷达是战争中至关重要的侦察手段,本文以雷达为列,分析其数据处理流程,并进行仿真建模。 2 雷达探测仿真建模 雷达探测功能仿真是通过仿真目标回波、接收机噪声、干扰、杂波等信号的幅度信息来复现雷达的检测过程。一般采用基于Monte Carlo的方法来实现,其流程如下图所示:

倒车雷达的检测方法

Date 日 期 2007-8-31 上海大众现在生产的Polo 劲情劲取和Passat 领驭的倒车雷达取消了CAN-BUS,用VAS505x 无法进 入76地址词(老状态零件可以)。新状态倒车雷达的故障是通过倒车雷达自检时的报警声来诊断的,具体方法如下: 在车后2 米内无障碍物的条件下,将倒车挡挂入后,仔细分辨倒车雷达模块通电后的自检提示: 1、全部功能正常:自检提示音为“嘀”一声后进入正常工作模式。 2、左外传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀”一声报警,此提示为左外 传感器故障。 3、左中传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀”两声报警,此提示为 左中传感器故障。 4、右中传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀、嘀”三声报警,此提 示为右中传感器故障。 5、右外传感器故障:自检后出现约4-6秒的长鸣音,长鸣音后出现 “嘀、嘀、嘀、嘀”四声报警, 此提示为右外传感器故障。 6、2个以上传感器故障:自检后出现约4-6秒的长鸣音,依照左、中、右的顺序,优先提示第一颗传 感器故障位置(每次自检后只提示一个故障位置)。例:当左中、右外两颗同时出现故障时,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀”两声报警。更换左中传感器后再次通电自检,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀、嘀、嘀”四声报警,更换左外传感器后再通电才出现自检提示音为“嘀”一声的正常提示音,而后进入正常工作模式。(即主机的自检每次通电后只能提示一个传感器异常,如有多个传感器异常需要更换后多次进行通电确认)。 7、当倒车雷达主机在通电后,自检出现约4-6秒的长鸣音后,发出 “嘀、嘀、嘀、嘀、嘀”五声报 警时,提示为倒车雷达主机出现故障。如倒车雷达主机在通电后,没有任何的提示反应,请先确认倒车雷达主机端子的安装状态,是否为线束脱落或断路造成。 8、以上异常报警同样适用在工作中的传感器,即在正常工作状态下,出现异常报警方式同上。 From 发自: 技术支持股 Department 部门:技术支持科 涉及车型: Polo 劲情劲取、Passat 领驭编号: Subject 主题 Polo 劲情劲取、Passat 领驭倒车雷达故障诊断

雷达测速试验报告

雷达测距实验报告 1. 实验目的和任务 1.1 实验目的 本次实验目的是掌握雷达带宽同目标距离分辨率的关系,通过演示实验了解雷达测距基本原理,通过实际操作掌握相关仪器仪表使用方法,了解雷达系统信号测量目标距离的软硬件条件及具体实现方法。 1.2 实验任务 本次实验任务如下: (1)搭建实验环境; (2)获得发射信号作为匹配滤波的参考信号; (3)获得多个地面角反射器的回波数据,测量其各自位置,评估正确性; (4)获得无地面角发射器的回波数据,与(3)形成对比,并进行分析。 2. 实验场地和设备 2.1 实验场地和环境条件 本次实验计划在雁栖湖西校区操场进行,环境温度25℃,湿度40%。 实验场地如上图所示,除角反射器以外,地面上还有足球门、石块以及操场上运动的人等比较明显的目标。

2.2 实验设备 实验所需的主要仪器设备如下: (1) 矢量信号源SMBV100A ; (2) 信号分析仪FSV4; (3) S 波段标准喇叭天线; (4) 角反射器 (5) 笔记本电脑 2.3 设备安装与连接 设备连接关系图如下: 雷达波形文件雷达回波数据 时钟同步 计算机终端 SMBV100A 矢量信号源 FSV4信号分析仪 角反射器 交换机 图1 实验设备连接示意图 其中:蓝色连接线表示射频电缆,灰色连接线表示网线。 3. 实验步骤 3.1 实验条件验证 检查仪器工作是否正常,实验环境是否合适。 3.2 获取参考信号 1. 调节信号源参数,生成线性调频信号,作为匹配滤波的参考信号,然后通过射频电缆将信号源与频谱仪相连,利用频谱仪的A/D 对线性调频信号采样,并通过网线将数据传输给计算机,并保存为“b1.dat ”。参考信号的主要参数如下所示:

FCC认证对于无线通信产品的测试方法

FCC认证对于无线通信产品的测试方法 FCC认证对于无线通信产品的测试方法 在申请FCC认证中,向FCC提交的技术报告中,包括了射频输出功率、调制特征、占用带宽、天线端口的杂散发射、杂散辐射场强、频率稳定性和频谱特征等方面的性能指标,FCC 法规原则上规定了每种性能指标的限值和测试要求,在这里准测认证检测机构为您简单介绍测试方法: 1、射频输出功率 按照功率的调节程序,调节馈入到射频放大电路的电压和电流值,使其处于最大额定功率发射状态,并在射频输出端口加上合适的负载,从而测试得最大射频输出功率。对不同的发射类型,功率调节的方法将会有所不同,在技术报告中应对此作详细说明。 2、调制特征 (1)对语音调制的通信产品,需测定100-5000Hz频率范围内音频调制电路的频率响应曲线。如果产品使用了音频低通滤波器,还要测定该音频滤波器的频率响应曲线。 (2)对采用调制限制处理的产品,需测定在整个调制的频率和信号功率级范围内的调制百分比—输入电压的关系曲线。 (3)对采用限制峰值包络功率电路的单边带、独立边带的无线电话发射机,需测定峰值包络输出功率—输入电压之间的关系曲线。 (4)其他类型的产品将根据申请的认证类型及相应的法规进行处理。 3、占用带宽 测量占用带宽时,对采用不同调制方式的产品,测量方法将有所不同,但基本原则是选择典型业务模式下调制信号具有最大幅度的情况来进行测试,并且在报告中对输入的调制信号做详细说明。 4、天线端口的杂散发射 除了产品有用频点处的射频功率或电压外,还需要对无用的杂散频率进行测量。测量时,可以在天线输出端口加上合适的假天线;谐波和一些比较显著的杂散发射点需要重点关注。 5、杂散辐射场强 该项测试主要检测产品机壳端口、控制电路模块和电源端口的谐波和一些较显著的杂散发射频点的场强。工作频率低于890MHz的产品,测量需要在开阔场或者电波暗室中进行。对于现场测试,需要对测量现场附近的射频源及明显的反射物体做详细的调查分析与说明。 6、频率稳定性 需要考查的频率稳定性包括环境温度和输入电压变化时,产品频率确定和稳定电路的频率的变化情况,在特殊情况下,还可能包括产品配用不同的天线或在较大的金属物体附近移动时的频率稳定性。 温度变化的范围是-30℃~+50℃,测量的温度间隔不大于10℃。测量每个温度点的频率时,都需要等待足够长的时间以使谐振电路相关的元件达到稳定状态。 电压变化的范围是额定工作电压的85%~115%,对依靠电池工作的便携产品,最低电压可以是截止电压。 7、频谱特征 对杂散发射和辐射场强评估和测量的频谱范围,将依据产品的工作频率来确定。进行频谱特征研究的最低频率可以选择产品实际使用的最低频率点;如果最低频率低于9kHz,则选择9kHz作为研究的最低频率点。最高频率的选择遵循以下原则: (1)对于工作频率在10GHz以下的产品,选择最高基频的10次谐波作为评估的最高频率,如果10次谐波的频率大于40GHz,则选择40GHz作为评估的最高频率。 (2)对于工作频率在10GHz和30GHz之间的产品,选择最高基频的5次谐波作为评估

雷达测速(窄波雷达)

测速抓拍系统 设 计 方 案 沈阳腾翔科技有限公司

一、概述 1.1前言 近年来,随着城市机动车数量的不断增长,在带来诸多便利的同时,也存在着一些问题。车辆违法行为层出不穷,交通事故频频发生,都给城市交通管理造成了一定的难度。在“向科技要警力、向科技要效率”的今天,充分利用高科技手段,开发和研制出可以纠正遏制交通违法行为,有效实现交通管理,提高交通运输效率的产品显的十分必要。目前国内外虽有类似产品先后被研发出并面世,但都或多或少存在着不足之处。产品大多采取标清摄像机加视频采集卡的方式实现对违法车辆的记录,虽然价格低廉,但稳定性欠缺,故障率较高,增加了维护成本和工作量。国外产品较为稳定,但功能相对比较单一,价格十分昂贵,不适宜全面推广,大多只应用在一些要求非常严格的高端智能测速抓拍领域。 针对上述情况,公司推出了新一代窄波高清一体化测速抓拍取证系统。它相对第一代测速仪有了很大的改进,像素200万、500万可选,采取触摸屏操作,操作简便明了。同时二代测速系统设计更加简单轻便,更加灵活,并且增加了一些智能调节功能。该系统紧密结合公安业务需求,综合吸收了国内外产品的优点,采用全嵌入式结构,系统稳定可靠、功能强大、安装方便,适宜全面推广。系统的设计还充分利用了公司在安防监控行业的技术优势,实现了安防监控与智能交通的完美结合,随着该系统的推出,将真正的解放警力,提高交警的工作效率,实现“科技强警”。 1.2设计依据 1.《中华人民共和国道路交通安全法》 2.《中华人民共和国道路交通安全法实施条例》 3.《公路交通安全实施设计技术规范》 (JTJ074-2003) 4.《公路车辆智能监测记录系统通用技术条件》( GA/T497-2009) 5.《公安交通指挥系统工程建设通用程序和要求》(GA/T651-2006) 6.《公安交通管理外场设备基础施工通用要求》(GA/T652-2006) 7.《公安交通指挥系统工程设计制图规范》(GA/T515-2004) 8.《安全防范工程技术规范》(GB50348—2004)

第四节 路面雷达测试系统

第四节路面雷达测试系统 一、概述 路面雷达测试系统,能在高速公路时速下,实时收集公路的雷达信息,然后将信息输入电脑程序内,在很短的时间里,电脑程序便会自动分析出公路或桥面内备层厚度、湿度、空隙位置、破损位置及程度。 目前,我国公路路面厚度测试常采用钻孔测量芯样厚度的方法,给路面造成损坏或留下后患。而路面雷达测试系统是一种非接触、非破损的路面厚度测试技术,检测速度高,精度也较高,检测费用低廉。因此,它不仅适用于沥青路面或水泥混凝土路面各层厚度及总厚度测试;路面下空洞探测;路面下相对高湿度区域检测;路面下的破损状况检测。还可以用于检测桥面混凝土剥落状况;检测桥内混凝土与钢筋脱离状况;测试桥面沥青覆盖层的厚度。 二、主要设备 1.路面探测雷达:包括1-4套雷达。 2.数据采集与处理系统:包括计算机、显示器、打印机、数据采集系统和距离量测仪。 3.Windows电脑操作软件:具有数据的采集、处理。回放及备份等功能。 4.交流电源转换器。 5.雷达检测车。 三、工作原理 雷达检测车以一定速度在路面上行驶,路面探测雷达发射电磁脉冲,并在短时间内穿过路面,脉冲反射波被无线接收机接收,数据采集系统记录返回时间和路面结构中的不连续电介质常数的突变情况。路面各结构层材料的电介质常数明显不同,因此电介质常数突变处,也就是两结构层的界面。根据测知的各种路面材料的电介质常数及波速,则可计算路面各结构层的厚度或给出含水量、损坏位置等资料。 四、使用技术要点 1.检测速度可达80km/h以上。 2.检测距离:以80km/h的速度对路面及桥面进行连续检测不少于4h(320km)。 3.最大探测深度大于60cm。 4.厚度数据精度一般为深度的2%-5%。 5.检测在计算机控制下进行,可实时地同时进行数据采集、存储及雷达波形显示。 6.数据经处理后,可显示路面彩色剖面图、三维路面厚度剖面图、雷达波形图、原始雷达波形瀑布图、桥面剥落或破损状况图,打印路面各层厚度表。 路面雷达测试系统检测路面厚度的试验方法尚未列入我国路面检测规程,其测试方法可参照路面雷达测试系统使用说明书。

雷达系统建模与仿真报告

设计报告一 十种随机数的产生 一 概述. 概论论是在已知随机变量的情况下,研究随机变量的统计特性及其参量,而随机变量的仿真正好与此相反,是在已知随机变量的统计特性及其参数的情况下研究如何在计算机上产生服从给定统计特性和参数随机变量。 下面对雷达中常用的模型进行建模: ● 均匀分布 ● 高斯分布 ● 指数分布 ● 广义指数分布 ● 瑞利分布 ● 广义瑞利分布 ● Swerling 分布 ● t 分布 ● 对数一正态分布 ● 韦布尔分布 二 随机分布模型的产生思想及建立. 产生随机数最常用的是在(0,1)区间内均匀分布的随机数,其他分布的随机数可利用均匀分布随机数来产生。 2.1 均匀分布 1>(0,1)区间的均匀分布: 用混合同余法产生 (0,1)之间均匀分布的随机数,伪随机数通常是利用递推公式产生的,所用的混和同余法的递推公式为: 1 n x =n x +C (Mod m )

其中,C是非负整数。通过适当选取参数C可以改善随机数的统计性质。一般取作小于M的任意奇数正整数,最好使其与模M互素。其他参数的选择 (1) 的选取与计算机的字长有关。 (2) x(1)一般取为奇数。 用Matlab来实现,编程语言用Matlab语言,可以用 hist 函数画出产生随机数的直方图(即统计理论概率分布的一个样本的概率密度函数),直观地看出产生随机数的有效程度。其产生程序如下: c=3;lamade=4*200+1; x(1)=11; M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M); end; x=x./M; hist(x,10); mean(x) var(x) 运行结果如下: 均值 = 0.4948 方差 = 0.0840 2> (a,b)区间的均匀分布: 利用已产生的(0,1)均匀分布随机数的基础上采用变换法直接产生(a,b)

地表雷达检测技术方案

贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 2016年3月15日 目录

1 工程概况 (1) 2 探测项目和方法 (1) 3 编制依据 (1) 4 雷达探测的基本原理 (2) 5 探测流程 (3) 6 检测仪器和设备 (3) 7 需有关单位配合的事项 (3) 7 质量和安全保证措施 (4) 8 预期成果 (4) 9 本工程项目安排 (4)

1 工程概况 贵阳市轨道交通2号线兴筑西路站-水井坡站区间长1234.974m,其中水井坡站(长189.6m),为本一站一区间的土建工程施工。 水井坡站是贵阳市轨道交通2号线的一个中间站,位于主干道金阳南路的下方,周围交通较为繁忙。车站起止里程YDK19+978.193~YDK20+167.819,总长189.6m,为地下两层岛式车站,车站结构为明挖地下两层单柱双跨矩形结构。标准段宽19.9m,基坑深约15-21m,主体建筑面积7941.8m2,总建筑面积11936m2。顶板覆土约3.6m,轨面埋深15.35m。本站共设4个出入口、2组风亭。1、4号出入口过街段采用暗挖外其余均为明挖法施工。车站两端均为矿山法区间。 兴筑西路站-水井坡站区间,本区间线路出兴筑西路站后,穿过诚信南路东侧的一个小山包及金阳客站公交停车场(侧穿加气站),再穿过翠柳路后,进入喀斯特公园内,在公园内线路继续往东南,穿出公园东南角、石村东路后,到达金阳南路水井坡站,区间设计里程为:YDK18+741.914~YDK19+976.888,区间隧道全长1234.974m。采用矿山法施工。隧道拱顶埋深14.5~39.6m,线间距为12m~17m。 本工程项目为城市交通通道,工程地质条件复杂,为了保证施工安全,必须须对开挖段落的工程地质地质条件弄清楚,防止工安全施工大发生,故根据贵阳市城市轨道交通有限公司文件“筑轨道〔2015〕96号”“贵阳市城市轨道交通有限公司关于印发《贵阳市城市轨道交通工程地表地质雷达探测管理办法(试行)》的通知”的要求,根据本段的具体情况,对该标段的开挖站台和暗挖区间隧道地表进行了雷达探测,雷达测线布置严格按办法进行。其具体探测方案如下: 2 探测项目和方法 根据本工程的实际和相关规范要求,采用技术成熟地质雷达法,对施工站台的周围,以及暗挖区间的地表的空洞、脱空、水囊、疏松堆积体等进行探测,防止施工过程中的坍塌、涌泥、涌水等事故发生。 3 编制依据 《铁路隧道超前地质预报技术指南》(铁建设【2008】105); 《铁路隧道工程施工技术指南》(TZ 204-2008); 《铁路隧道设计施工有关标准补充规定》(铁建设【2007】88);

倒车雷达测试及评价试验规范

Q/SQR 奇瑞汽车股份有限公司企业标准 Q/SQR . x x. x x x - 2008倒车雷达性能台架测试及评价试验规范

前言 本规范主要规定了奇瑞汽车股份有限公司-2003进行。本规范是在满足奇瑞汽车产品性能要求的前提下制定的。本标准作为公司开发新产品和抽检配套供应商供货质量的依据。 本规范由奇瑞汽车股份有限公司试验技术中心提出。 本规范由奇瑞汽车股份有限公司汽车工程研究院归口 本规范起草单位:奇瑞汽车股份有限公司试验技术中心 本规范首次发布日期是2008年XX月XX日。 本规范主要起草人:李川、郑春平、周琴

倒车雷达性能台架测试及评价试验规范 1 范围 本规范适用于奇瑞汽车有限公司生产的系列车型所用倒车雷达系统台架性能测试及评价。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 Q/ 倒车辅助系统技术要求 ISO 17386-2003 Intelligent Transportation Systems. Manoeuvring Aids for Low Speed Operation. Performance requirements and test procedures 3 试验条件 试验环境条件 环境温度:23℃±5℃ 相对温度:25~75% 气压:86~106kPa 试验电压:13± 4 性能要求 探测区域分类 及ISO 17386-2003要求,把倒车雷达探测距离分为5段,见图1: OA(0~20cm]:由倒车雷达探头换能器工作原理决定,该区域为不定状态区域,因此在测试过 程中可以不进行测试; OS(0~35cm):为急停区域,当障碍物出现在在区域内时,必须停车,且声音报警声长鸣; SB[35~60cm]:为急停区域,当障碍物出现在在区域内时,必须停车,且声音报警声急促4Hz; BC(60~90cm]:为缓行区,在该区域内,车辆应该减慢车速,保证车速在5km/h内(在实际行驶 过程中),且声音报警声频率2Hz; CD(90~150cm]:为预警区,表示障碍物已经进入车辆倒车辅助系统进行提示作用,保证车速 在5km/h内(在实际行驶过程中),且声音报警声频率1Hz。 探测误差 及ISO 17386-2003要求,倒车雷达探测误差距离为±5cm。 测试条件 1)、倒车雷达安装台架(按实车状态调整好探头的测试台架) 2)、倒车雷达探测标准障碍物:Φ75mm、高1000mm的标准PVC管(水平范围探测);Φ50mm、 长500mm的标准PVC管(滚地试验) 3)、探测距离范围记录原始记录单(见附表一) 4)、倒车雷达探测范围测试网格(宽至少超出倒车雷达安装整车车宽两侧各20cm)(见附表二) 5)、倒车雷达评价的区域在AD段内,如设计探测距离超出1.5m,超出部分均算为CD部分距离。 图1:倒车雷达探测距离分区 检测过程注意事项

通信网络-详解无线局域网测试方法

WLAN测试方法 方法一传统的协议分析观点 早期无线网测试基本上都以协议分析作为主要方法,这是因为,无线的传输基于微波,通过空间传输,网络传输的介质已经不是主要问题了,因此完成对传输数据包分析测试,从网络应用角度上完成网络传输的性能问题测试,就足可以完成无线网络的测试工作。常见的这类协议分析多数是基于软件对无线网络传输的数据包进行捕包和解码及分析等功能来实现的。自上而下的网络分析方法是相当多的网络管理人员熟悉的手段,因此就产生了这样的观点:认为传统的协议分析技术能完全解决无线网络的测试需求。 事实并非如此,无线网络的物理层其实更需要测试。无线网络虽然摆脱了传统有线网络介质上的物理特性约束,但它也带来了前所未有的物理层方面的问题。我们可以说三维空间是无线网络传输的媒介,微波是数据传输的载体。以802.11b为例,2.4G的传输频率是公共的无线频率,与蓝牙、微波炉以及各种微波设施相同,无线网络的信号是否会埋没在各种干扰噪声之中呢?此时无线传输的各种信道的信号强度、噪声强度,信噪比成为检测无线局域网物理层传输性能的最基本的参数。这与局域网中对五类和六类布线系统的传输性能参数测定一样,衰减、近端串扰、回波损耗等性能参数决定了铜线的布线系统通信质量。 方法二无线射频分析观点 由于无线局域网是基于微波射频传输的,因此有人就认为对它的测试主要集中在对射频分析上,它能够完成无线局域网物理层的全部测试,也就完成了无线局域网的安装测试问题。这种测试类似于布线测试,如五类链路测试和光缆链路测试。但是,这并不能完全反映无线局域网链路层以上的传输性能情况,就如我们不能说马路宽敞平直,就认为这是一条畅通的道路一样。没有实时的网络流量分析、网络吞吐量测试以及协议和应用统计,就无法真正满足无线网络性能以及安全性的测试需求。 在双绞线为基础的网络中,布线阶段和网络建设阶段是非常明确的两个阶段。由于综合布线建立的是一个与应用无关的布线系统,所以在布线过程中只对布线系统的性能进行评估,并不考虑网络的传输问题。而无线局域网的基础建设中,物理介质和网络应用是二合一的整体,所以即使是无线网络的工程测试,也绝不能仅仅测试物理信号那么简单和片面。 在底层测试上,无线局域网与布线系统测试还有一个明显的不同点,即布线系统的性能是基于点对点确切链路来保证的,而无线局域网摆脱了线缆的束缚,以无线广播的方式传输,

安捷伦雷达测试解决方案

?雷达信号的模拟 大功率信号,低相噪信号 宽带信号, 相参信号 ?雷达信号的分析 ?矢量分析 ?脉冲参数分析 ?脉冲相噪测试 ?脉冲器件寄生相噪测试 ?数字相控阵系统测试 ?模块级(T/R组件)测试 ? Agilent Technologies, Inc. 2009 2

对目标方位的确定多卜勒频移效应 f d= 2 * v r/ λc 对目标速度的确定 相控阵雷达 ?功率合成,实现大的功率孔径乘积 ?系统效率高,可获得很高的发射信号功率 ?简化复杂的馈线系统设计,改善了发射天线的体积和重量 ?通过电扫描完成波束扫描,波束扫描速度快 ?波束的成形控制 ?系统的多功能,实现频谱共享阵面和综合化电子系统 ?提高电子对抗能力 ?稳定性提高,T/R组件5%损坏时,系统仍能工作。

全数字式相控阵雷达 ?数字T/R模块:包含微波电路,数字电路,时钟电路和光电路的复杂系统?数字波束合成 ?大容量高速数据传输技术 ?高性能信号处理机 ?雷达信号的模拟 ?雷达信号的分析 ?模块级(T/R组件)测试 ? Agilent Technologies, Inc. 2009 6

替换 信号类型测试应用技术要求 正弦波信号替代系统本振,ADC等电路性能测试功率,频率精度,相位噪声 调制信号测试接收机或关键部件性能功率,频率精度,调制带宽,调制能力,调制精度失真信号测试接收机或关键处理器性能信号带宽,失真处理能力,信号幅度精度 基带信号测试模拟或数字基带电路性能模拟IQ,数字IQ 信号输出能力。数字接口形式,速率 备注 具有一定相关性的两路信号同时发射。两路信号的 双路信号具有定相关性的两路信号同时发射。两路信号的 PRI和载波频率可以相同也可不同。 用户反侦察积抗干扰信号 脉冲压缩信号具备很大的时宽带宽积。包含线性调频,非线性调频 信号,二相编码信号,多相编码信号和频率编码信号。用于预警雷达和高分辨力雷达

相关文档
最新文档