必修5不等式专题复习

必修5不等式专题复习
必修5不等式专题复习

必修5 不等式专题复习

不等式与不等关系 题型一:不等式的性质

1. 对于实数c b a ,,中,给出下列命题:

①2

2

,bc ac b a >>则若; ②b a bc ac >>则若,2

2

; ③2

2

,0b ab a b a >><<则若; ④b

a b a 11,0<<<则若; ⑤b

a

a b b a ><<则

若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->

->>>则若,0; ⑧11

,a b a b

>>若,则0,0a b ><。 其中正确的命题是______

题型二:比较大小(作差法、函数单调性、中间量比较,基本不等式)

2. 设2a >,1

2

p a a =+

-,2422-+-=a a q ,试比较q p ,的大小 3. 比较1+3log x 与)10(2log 2≠>x x x 且的大小

4. 若)2

lg(),lg (lg 21,lg lg ,1b

a R

b a Q b a P b a +=+=?=>>,则R Q P ,,的大小关系

是 .

(一) 解不等式 题型三:解不等式

5. 解不等式

6. 解不等式2(1)(2)0x x -+≥。

7. 解不等式25123

x

x x -<---

8. 不等式2120ax bx ++>的解集为{x|-1<x <2},则a =_____, b=_______

9. 关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02

>-+x b

ax 的解集为

10. 解关于x 的不等式2(1)10ax a x -++<

题型四:恒成立问题

11. 关于x 的不等式a x 2+ a x +1>0 恒成立,则a 的取值范围是_____________

12. 若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.

13. 已知0,0x y >>且

19

1x y

+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

(三)基本不等式2

a b

ab +≤

题型五:求最值

14. (直接用)求下列函数的值域

(1)y =3x 2+12x 2 (2)y =x +1

x

15. (配凑项与系数)

(1)已知5

4x <,求函数14245

y x x =-+-的最大值。

(2)当时,求(82)y x x =-的最大值。

16. (耐克函数型)求2710

(1)1

x x y x x ++=

>-+的值域。

注意:在应用基本不等式求最值时,若遇等号取不到的情况,应结合函数()a

f x x x

=+的单调性。 17. (用耐克函数单调性)求函数22

4

y x =+的值域。

18. (条件不等式)

(1) 若实数满足2=+b a ,则b a 33+的最小值是 .

(2) 已知0,0x y >>,且19

1x y

+=,求x y +的最小值。

(3) 已知x ,y 为正实数,且x 2+

y 2

2

=1,求x 1+y 2 的最大值.

(4) 已知a ,b 为正实数,2b +ab +a =30,求函数y =1

ab 的最小值.

题型六:利用基本不等式证明不等式

19. 已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a

++>++222

20. 正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc

21. 已知a 、b 、c R +

∈,且1a b c ++=。求证:1111118a b c ??????---≥

???????????

题型七:均值定理实际应用问题:

22. 某工厂拟建一座平面图形为矩形且面积为200m 2的三级污水处理池(平面图如

图),如果池外圈周壁建造单价为每米400元,中间两条隔墙建筑单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水池的长和宽,使总造价最低,并求出最低造价。

(四)线性规划

题型八:目标函数求最值

23. 满足不等式组??

?

??>≤-+≤-+0,087032y x y x y x ,求目标函数y x k +=3的最大值

24.

已知实系数一元二次方程2

(1)10x a x a b +++++=的两个实根为1x 、2x ,并且

102x <<,22x >.则

1b

a -的取值范围是

25. 已知,x y 满足约束条件:03440x x y y ≥??

+≥??≥? ,则

22

2x y x ++的最小值是

26. 已知变量230,330.10x y x y x y y +-≤??

+-≥??-≤?

满足约束条件若目标函数z ax y =+(其中a>0)仅在点(3,

0)处取得最大值,则a 的取值范围为 。

27. 已知实数x y ,满足121y y x x y m ≥??

≤-??+≤?

,,.如果目标函数z x y =-的最小值为1-,则实数m 等于

( )

题型九:实际问题

28. 某饼店制作的豆沙月饼每个成本35元,售价50元;凤梨月饼每个成本20元,售价30元。

现在要将这两种月饼装成一盒,个数不超过10个,售价不超过350元,问豆沙月饼与凤梨月饼各放几个,可使利润最大?又利润最大为多少?

复习――不等式的基本知识参考答案

高中数学必修内容练习---不等式

1. ②③⑥⑦⑧;

2. p q >;

3.

当01x <<或43x

>

时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43

x =时,1+3log x =2log 2x

4.

∵1>>b a ∴

0lg ,0lg >>b a 2

1

=

Q (p b a b a =?>+lg lg )lg lg Q ab ab b a R ==>+=lg 2

1lg )2lg( ∴R >Q >P 。

5.

6. {|1x x ≥或2}x =-;

7. (1,1)(2,3)-U )

; 8. 不等式2

120ax

bx ++>的解集为{x|-1<x <2},则a =___-6____, b=__6_____

9.

),2()1,(+∞--∞Y ).

10. 解:当a =0时,不等式的解集为{}

1x x >; 2分

当a ≠0时,a (x -

a

1)(x -1)<0;当a <0时,原不等式等价于(x -a 1

)(x -1)>0

不等式的解集为11x x x a ?

?>

?或; ............................................................................... 6分

当0<a <1时,1<

a 1,不等式的解集为11x x a ?

?<

?; ............................................. 8分

当a >1时,a 1<1,不等式的解集为11x x a ??

<

; .................................................. 10分

当a =1时,不等式的解为φ. ............................................................................................ 12分

11. _____0≤x <4________ 12. 1

2

m >-

) 13.

(],16m ∈-∞

14. 解:(1)y =3x 2+

1

2x 2

≥23x 2·1

2x 2 = 6 ∴值域为[ 6 ,+∞)

(2)当x >0时,y =x +1x

≥2

x ·1

x

=2;

当x <0时, y =x +1x = -(- x -1

x )≤-2

x ·1

x

=-2

∴值域为(-∞,-2]∪[2,+∞)

15. (1)解5,5404x x <

∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--??

231≤-+=

当且仅当1

5454x

x

-=

-,即1x =时,上式等号成立,故当1x =时,max 1y =。

(2)

,即x =2时取等号 当x =2时,

(82)y x x =-的最大值为8。

16. 解析一:

,即

时,

4

21)591

y x x ≥+?

+=+((当且仅当x =1时取“=”号)。 解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t

-+-++==++)

当,即t =时,4

59y t t

≥?=(当t =2即x =1时取“=”号)。

17. 24(2)x t t +=≥,则2

24

y x +221

4(2)4

x t t t x =+=+≥+

因10,1t

t t >?=,但1

t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。

因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故5

2

y ≥。

所以,所求函数的值域为

5,2??

+∞????

。 18. (条件不等式) (1) 解: b a

33

和都是正数,b a 33+≥632332==?+b a b a

当b a

33

=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6.

(2)

解:19

0,0,1x y x y >>+=Q

,()1991061016y x x y x y x y x y

??∴+=++=++≥+= ???

当且仅当

9y x

x y

=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += (3)

解:x 1+y 2 =x

2·1+y 2

2

= 2 x ·

12 +y 22

下面将x ,

12 +y 2

2 分别看成两个因式: x ·

12 +y 2

2 ≤x 2+(

12 +y 22 )22 =x 2+y 22 +12 2 =3

4

即x 1+y 2 = 2 ·x

12 +y 22 ≤ 34

2

(4) 解:法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30b

b +1

由a >0得,0<b <15 令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16

t

≥2

t ·16

t

=8 ∴ ab ≤18 ∴ y ≥

1

18

当且仅当t =4,即b =3,a =6时,等号成立。 法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab

令u =ab 则u 2

+2 2 u -30≤0, -5 2 ≤u ≤3 2

∴ab ≤3 2 ,ab ≤18,∴y ≥1

18

19. 已知

c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222

20. 正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc 21. 已知a 、b 、c R +

∈,且1a b c ++=。求证:1111118a b c ??????---≥

???????????

证明:Q a 、b 、c R +

∈,

1a b c ++=。∴

1121a b c bc a a a a -+-==≥。同理

121ac

b b

-≥,

121ab

c c

-≥

。上述三个不等式两边均为正,分别相乘,得 1112221118bc ac ab a b c a b c ??????---≥= ???????????

g g 。当且仅当13a b c ===时取等号。 22. 解: 若设污水池长为x 米,则宽为

(米)

水池外圈周壁长: (米)

中间隔墙长:

(米)

池底面积:200(米2)

目标函数:

23. 4

24. )21

,3(-

-

25. 1 26.

),2

1

(+∞ 。 27. 5

28. 解:设一盒內放入x 个豆沙月饼,y 个凤梨月饼,利润为z 元

则x,y必须满足,

目标函数为z=15x+10y

在可行区內的顶点附近z=f ( x,y ) 的最大值,

所以,一盒内装2个豆沙月饼8个凤梨月饼或4个豆沙月饼5个凤梨月饼,可得最大利润110元。

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

人教版高中数学必修5不等式练习题及答案

第三章 不等式 一、选择题 1.若a =20.5,b =log π3,c =log πsin 5 2π ,则( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 2.设a ,b 是非零实数,且a <b ,则下列不等式成立的是( ). A .a 2<b 2 B .ab 2<a 2b C . 21ab <b a 21 D . a b <b a 3.若对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 4.不等式x 3-x ≥0的解集为( ). A .(1,+∞) B .[1,+∞) C .[0,1)∪(1,+∞) D .[-1,0]∪[1,+∞) 5.已知f (x )在R 上是减函数,则满足f (11 -x )>f (1)的实数取值范围是( ). A .(-∞,1) B .(2,+∞) C .(-∞,1)∪(2,+∞) D .(1,2) 6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ). A B C D 7.设变量x ,y 满足约束条件?? ? ??y x y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .5 8.设变量x ,y 满足?? ? ??5 --31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ). A .[ 21,3 4 ] B .[ 3 4 ,2] C .[ 2 1 ,2] D .[ 2 1 ,+∞) ≥0 ≤1 ≥1 ≥0 ≥1 ≤ 1 (第6题)

高中数学必修五第三章:不等式专题

《不等式专题》 第一讲:不等式的解法 知识要点: 一、不等式的同解原理: 原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得不等式与原不等式是同解不等式; 原理2:不等式的两边都乘以(或除以)同一个正数或同一个大于零的整式,所得不等式与原不等式是同解不等式; 原理3:不等式的两边都乘以(或除以)同一个负数或同一个小于零的整式,并把不等式改变方向后所得不等式与原不等式是同解不等式。 二、一元二次不等式的解法: 一元二次不等式的解集的端点值是对应二次方程的根,是对应二次函数的图像与x 轴交点的横坐标。 二次函数 () 的图象 有两相异实根 有两相等实根 无实根 注意: (1)一元二次方程20(0)ax bx c a ++=≠的两根12,x x 是相应的不等式2 0(0)ax bx c a ++>≠的解集的端点的取值,是抛物线2 (0)y ax bx c a =++≠与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二 次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三 种情况,得到一元二次不等式2 0(0)ax bx c a ++>≠与20(0)ax bx c a ++<≠的解集。

三、一元高次不等式的解法: 解高次不等式的基本思路是通过因式分解,将它转化成一次或二次因式的乘积的形式,然后利用数轴标根法或列表法解之。 数轴标根法原则:(1)“右、上”(2)“奇过,偶不过” 四、分式不等式的解法: (1)若能判定分母(子)的符号,则可直接化为整式不等式。 (2)若不能判定分母(子)的符号,则可等价转化: ()()()()() ()()()()()()()()() ()()()()000;0.0000;0.0 f x g x f x f x f x g x g x g x g x f x g x f x f x f x g x g x g x g x ?≥?>??>≥??≠??≤?>?>><>?>>><>?<-><>?-<<>?<->?>或或 对于含有多个绝对值的不等式,利用绝对值的意义,脱去绝对值符号。

最新高一下学期期末复习之——必修五不等式知识点及主要题型-讲义含解答

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5)倒数法则:b a a b b a 1 10,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、, ac b 42-=?, 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2

一元二次方程 ()的根 2 > = + + a c bx ax 有两相异实根 ) ( , 2 1 2 1 x x x x< 有两相等实根 a b x x 2 2 1 - = =无实根的解集 )0 ( 2 > > + + a c bx ax{} 2 1 x x x x x> <或 ? ? ? ? ? ? - ≠ a b x x 2 R 的解集 )0 ( 2 > < + + a c bx ax{} 2 1 x x x x< ?>≥?? ≠ ? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f>在区间D上恒成立,则等价于在区间D上() min f x A >若不等式()B x f<在区间D上恒成立,则等价于在区间D上() max f x B < (三)线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax+By+C=0同一侧的所有点(y x,),把它的坐标(y x,)代入

必修五不等式单元测试题

人教版必修五《不等式》单元测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x 2≥2x の解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2} D .{x |x ≤0或x ≥2} 2.下列说法正确の是( ) A .a >b ?ac 2>bc 2 B .a >b ?a 2>b 2 C .a >b ?a 3>b 3 D .a 2>b 2?a >b 3.直线3x +2y +5=0把平面分成两个区域,下列各点与原点位于同一区域の是( ) A .(-3,4) B .(-3,-4) C .(0,-3) D .(-3,2) 4.不等式x -1 x +2 >1の解集是( ) A .{x |x <-2} B .{x |-2N B .M ≥N C .M 2 B .m <-2或m >2 C .-20时,f (x )>1,那么当x <0时,一定有( ) A .f (x )<-1 B .-11 D .0log 1 2(x +13)の解集是_________. 13.函数f (x )=x -2 x -3 +lg 4-x の定义域是__________. 14.x ≥0,y ≥0,x +y ≤4所围成の平面区域の周长是________. 15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份 销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、

高中数学必修五《基本不等式》培优专题(无答案)

高中数学——基本不等式培优专题 目录 培优(1)常规配凑法 培优(2)“1”的代换 培优(3)换元法 培优(4)和、积、平方和三量减元 培优(5)轮换对称与万能k法 培优(6)消元法(必要构造函数求异) 培优(7)不等式算两次 培优(8)齐次化 培优(9)待定与技巧性强的配凑 培优(10)多元变量的不等式最值问题 培优(11)不等式综合应用

培优(1) 常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)((≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -++ +1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab b a =+3 2,则ab 的最小值是_____________ 6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则 b b a 21 4+ -的最小值是_____________

7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 111=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 培优(2) “1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

苏教版高中数学必修五高二(不等式)专题练习

高二数学(必修5不等式)专题练习 班级 姓名 一、选择题 1.若a>0,b>0,则不等式-b< 1 x 1b D.x<1b -或x>1a 2.设a ,b ∈R ,且a ≠b ,a+b=2,则下列不等式成立的是 ( ) A 、2b a ab 122+<< B 、2b a 1ab 2 2+<< C 、12 b a ab 22<+< D 、1ab 2b a 2 2<<+ 3.二次方程22 (1)20x a x a +++-=,有一个根比1大,另一个根比1-小,则a 的取值范围是A .31a -<< B .20a -<< C .10a -<< D .02a << ( ) 4.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2 x π∈ C .2 y = D .1y x =- 5.下列结论正确的是 ( )

A .当2lg 1lg ,10≥+≠>x x x x 时且 B .21,0≥+>x x x 时当 C .x x x 1,2+ ≥时当的最小值为2 D .当x x x 1,20-≤<时无最大值 6.已知函数2 (0)y ax bx c a =++≠的图象经过点(1,3)-和(1,1)两点,若01c <<,则 a 的取值范围是A .(1,3) B .(1,2) C .[)2,3 D .[]1,3 ( ) 7.不等式组1 31y x y x ≥-???≤-+?? 的区域面积是 ( ) A .12 B .32 C .5 2 D .1 8.给出平面区域如下图所示,其中A (5,3),B (1,1),C (1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a 的值是 ( ) A .32 B .21 C .2 D .2 3 9、已知正数x 、y 满足81 1x y +=,则2x y +的最小值是( ) A.18 B.16 C .8 D .10 10.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式 250bx x a -+>的解集为 A 、11{|}32 x x -<< B 、11 {|}32 x x x <->或 C 、{|32}x x -<< D 、{|32}x x x <->或 ( ) 二、填空题 11.设函数23 ()lg()4 f x x x =--,则()f x 的单调递减区间是 。 12.已知x >2,则y =2 1 -+x x 的最小值是 . 13.对于任意实数x ,不等式23 208 kx kx +-<恒成立,则实数k 的取值范围是 14、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 。 15.设实数,x y 满足2210x xy +-=,则x y +的取值范围是___________。

必修五基本不等式题型分类(绝对经典)

一对一个性化辅导教案课题基本不等式复习 教学 重点 基本不等式 教学 难点 基本不等式的应用 教学目标掌握利用基本不等式求函数的最值学会灵活运用不等式 教学步骤及教学内容一、教学衔接: 1、检查学生的作业,及时指点; 2、通过沟通了解学生的思想动态和了解学生的本周学校的学习内容。 二、内容讲解: 1.如果那么当且仅当时取“=”号). 2.如果那么(当且仅当时取“=”号) 3、在用基本不等式求函数的最值时,应具备三个条件:一正二定三相等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 三、课堂总结与反思: 带领学生对本次课授课内容进行回顾、总结 四、作业布置: 见讲义 管理人员签字:日期:年月日 作1、学生上次作业评价:○好○较好○一般○差 备注:

基本不等式复习

知识要点梳理 知识点:基本不等式 1.如果(当且仅当时取“=”号). 2.如果(当且仅当时取“=”号). 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。 ①一正:函数的解析式中,各项均为正数; ②二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③三取等:函数的解析式中,含变数的各项均相等,取得最值。 类型一:利用(配凑法)求最值 1.求下列函数的最大(或最小)值. (1)求的最小值; (2)若 (3)已知,,且. 求的最大值及相应的的值变式1:已知 类型二:含“1”的式子求最值

2.已知且,求的最小值. 变式1:若 变式2: 变式3:求函数 类型三:求分式的最值问题 3. 已知,求的最小值 变式1:求函数

高中数学必修五基本不等式学案

高中数学必修五基本不等式:ab≤a+b 2(学案) 学习目标:1.了解基本不等式的证明过程.2.能利用基本不等式证明简单的不等式及比较代数式的大小(重点、难点).3.熟练掌握利用基本不等式求函数的最值问题(重点). [自主预习·探新知] 1.重要不等式 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”). 思考:如果a>0,b>0,用a,b分别代替不等式a2+b2≥2ab中的a,b,可得到怎样的不等式? [提示]a+b≥2ab. 2.基本不等式:ab≤a+b 2 (1)基本不等式成立的条件:a,b均为正实数; (2)等号成立的条件:当且仅当a=b时取等号. 思考:不等式a2+b2≥2ab与ab≤a+b 2成立的条件相同吗?如果不同各是 什么? [提示]不同,a2+b2≥2ab成立的条件是a,b∈R;ab≤a+b 2成立的条件 是a,b均为正实数. 3.算术平均数与几何平均数 (1)设a>0,b>0,则a,b的算术平均数为a+b 2,几何平均数为 (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 思考:a+b 2≥ab与? ? ? ? ? a+b 2 2 ≥ab是等价的吗? [提示]不等价,前者条件是a>0,b>0,后者是a,b∈R. 4.用基本不等式求最值的结论 (1)设x,y为正实数,若x+y=s(和s为定值),则当x=y=s 2时,积xy有最

小值为2xy . (2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =p 时,和x +y 有最大值为(x +y )2 4. 5.基本不等式求最值的条件 (1)x ,y 必须是正数. (2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足. 思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值? [提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值. [基础自测] 1.思考辨析 (1)对任意a ,b ∈R ,a 2+b 2≥2ab ,a +b ≥2ab 均成立.( ) (2)对任意的a ,b ∈R ,若a 与b 的和为定值,则ab 有最大值.( ) (3)若xy =4,则x +y 的最小值为4.( ) (4)函数f (x )=x 2 +2 x 2+1 的最小值为22-1.( ) [答案] (1)× (2)√ (3)× (4)√ 2.设x ,y 满足x +y =40,且x ,y 都是正数,则xy 的最大值为________. 400 [因为x ,y 都是正数, 且x +y =40,所以xy ≤? ???? x +y 22 =400,当且仅当x =y =20时取等号.] 3.把总长为16 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 16 [设一边长为x m ,则另一边长可表示为(8-x )m ,则面积S =x (8-x )≤? ???? x +8-x 22 =16,当且仅当x =4时取等号,故当矩形的长与宽相等,都为4 m 时面积取到最大值16 m 2.]

高中数学必修五第三章测试题.doc

一. 选择题 1. 若 a < 0, b > 0,则下列不等式正确的是( ) A . 1 1 B .a b C . a 2 b 2 D . a b a b 2. 设 x 、 y R + ,且 x+y=1则 ( 1 4 ) 的最小值为( ) x y A .15 B . 12 C .9 D . 6 3. 若 a >b >0,c <d <0,则一定有 ( ) a b a b a b a b A . c >d B . c c D . d 0, ) | x |<1 的解集为 ( A . { x | - 2< x <- 1} B . { x | - 1< x < 0} C . { x |0 < x < 1} D . { x | x >1} 9. 若不等式 x 2 ax 1 0 对一切 x (0, 1 ] 成立,则 a 的最小值为( ) 2

必修五不等式专题附加答案解析

不等式专题 一共分为6部分 1.不等关系与不等式 2.一元二次不等式及其解法 3.二元一次不等式组与平面区域 4.线性规划与实际应用 5.线性规划与基本不等式 6.不等式综合复习 第一部分不等关系与不等式 实数的符号: 任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立。 两实数的加、乘运算结果的符号具有以下符号性质: ①两个同号实数相加,和的符号不变 符号语言:0,00a b a b >>?+>; 0,00a b a b <>?>; 0,00a b ab < ③两个异号实数相乘,积是负数 符号语言:0,00a b ab >?>; ②0b a b a -,a b =,a b <三种关系有且只有一种成立。 要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

1、某人有楼房一幢,室内面积共2180m ,拟分割成大、小两类房间作为旅游客房,大房间面积为 218m , 可住游客5人,每名游客每天住宿费40元;小房间每间面积为215m ,可住游客3人,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元,如果他只能筹款8000元用于装修,试写出满足上述所有不等关系的不等式. 【解析】假设装修大、小客房分别为x 间,y 间,根据题意,应由下列不等关系: (1) 总费用不超过8000元 (2) 总面积不超过2 180m ; (3) 大、小客房的房间数都为非负数且为正整数. 即有: **1800(0(100060080001815))x x N y y N x y x y ≤≥∈≥∈+≤??+????? 即* *600(0(534065))x x N y y N x y x y ≤≥∈≥∈+≤??+? ???? 此即为所求满足题意的不等式组 1、某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 【答案】设杂志社的定价为x 元,则销售的总收入为 2.5 (80.2)0.1 x x --? 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式 2.5 (80.2)200.1x x -- ?≥ 2、某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,且有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式. 解析:设每天派出甲型卡车x 辆,乙型卡车y 辆. 根据题意,应有如下的不等关系: (1)甲型卡车和乙型卡车的总和不能超过驾驶员人数; (2)车队每天至少要运360 t 矿石; (3)甲型卡车不能超过4辆,乙型卡车不能超过7辆. 用下面的关于x ,y 的不等式表示上述不等关系即可, 91066836004,07,x y x y x x y x +≤???+?≥?? ≤≤∈??≤≤∈?N N ,即9 543004,07,x y x y x x y x +≤??+≥? ?≤≤∈??≤≤∈?N N

人教版必修5不等式单元测试题

2.已知x,y是正数,且 1 3.不等式>1的解集是() < x2+1 2,tan x+cot x的最小值是2;⑤3x+3-x的最小值 必修五数学不等式单元检测题 一、选择题(本大题共10小题,每小题5分,共50分) 1.不等式x2≥2x的解集是() A.{x|x≥2}B.{x|x≤2}C.{x|0≤x≤2}D.{x|x≤0或x≥2} 9 +=1,则x+y的最小值是() x y A.6 B.12 C.16 D.24 x-1 x+2 A.{x|x<-2}B.{x|-2b?ac2>bc2B.a>b?a2>b2C.a>b?a3>b3D.a2>b2?a>b 5.若a,b,c∈R,且a>b,则下列不等式中一定成立的是() A.a+b≥b-c B.ac≥bc C. c2 a-b>0D(a-b)c2≥0 6.对于任意实数a,b,c,d,命题①若a>b,c<0,则ac>bc;②若a>b,则ac2>bc2;③ 若ac2b,则11 ;⑤若a>b>0,c>d>0,则ac>bd。 a b 其中正确的个数是() A.1 B.2 C.3 D.4 7.已知a,b∈R+,且a+b=5,则2a+2b的最小值是() A.32 B.42 C.82 D.10 1x2+2 8.下列命题中,其正确的命题个数为①x+的最小值是2;②的最小值是2;③ x log x+log2的最小值2;④0

9..设 x > 0, y > 0, xy = 4 ,则 s = x A.1 B.2 C. 2 2 D. 2g 12 . 若 关 于 x 的 函 数 y = x + 在 (0 , + ∞ ) 的 值 恒 大 于 4 , 则 ( ) 14 . 若 <0 , 化 简 y = 25 - 30 x + 9 x 2 - ( x + 2 ) 2 - 3 的 结 果 为 ( ) 15. 已 知 等 比 数 列 {a } 的 各 项 均 为 正 数 , 公 比 q ≠ 1 , 设 P = 3 2 < x < } B 、 {x | x < - 或x > } 17 、已 知 M 是 △ AB C 内 的 一 点 ,且 AB · AC = 2 3 ,∠ BAC = 30° ,若 △ MBC ,△ MCA 和 △ MAB 的 面 积 分 别 为 , x , y , 则 + 的 最 小 值 是 ( ) y + 取最小值时 x 的值为( ) y x 4 2 10.若 x, y ∈ R ,且 x 2 + y 2 = 4 ,则 2 x y x + y - 2 的最小值为( ) A. 2 - 2 2 B. 1 + 2 2 C.-2 D. - 1 3 11 . 设 M = 2 a ( a - 2) + 3 , N = ( a - 1)( a - 3) , a ∈ R , 则 有 ( ) A . M > N B . M ≥ N C . M < N D . M ≤ N m 2 x A . m >2 B . m < - 2 或 m >2 C . - 2< m <2 D . m < - 2 13 . 已 知 定 义 域 在 实 数 集 R 上 的 函 数 y = f ( x ) 不 恒 为 零 , 同 时 满 足 f ( x + y ) = f ( x )· f ( y ) , 且 当 x >0 时 , f ( x )>1 , 那 么 当 x <0 时 , 一 定 有 ( ) A . f ( x )< - 1 B . - 1< f ( x )<0 C . f ( x )>1 D . 0< f ( x )<1 x + 2 3 x - 5 A . y = - 4 x B . y = 2 - x C . y = 3 x - 4 D . y = 5 - x n a + a 9 , Q = a 5 a 7 , 则 P 与 Q 的大小关系是( ) A . P > Q B . P < Q C . P = Q D . 无 法 确 定 16 .已 知 不 等 式 ax 2 - 5x + b > 0 的 解 集 为 {x | -3 < x < 2}, 则 不 等 式 bx 2 - 5x + a > 0 的 解 集 为 ( ) A 、 {x | - 1 1 1 1 3 2 3 2 C 、 {x | -3 < x < 2} D 、 {x | x < -3或x > 2} → → 1 1 4 2 x y A . 20 B . 18 C . 16 D . 9 二、填空题(本大题共 5 小题,每小题 5 分,共 25 分) 18.若1 < a < 4, -2 < b < 4 ,则 2a - b 的取值范围是 19.若 x ∈ R ,则 x 2 与 x -1 的大小关系是

高中数学必修五 第3章 不等式 同步练习 3.4基本不等式(含答案)

《基本不等式》同步测试 一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 若a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A.12 B.22a b + C.2ab D.a 3. 设x >0,则133y x x =--的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且141x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C .1 1 1 a b c ++≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .11xy ≥ 8. a ,b 是正数,则 2,2a b ab a b ++三个数的大小顺序是 ( ) A. 22a b ab a b ++ 22a b ab a b +≤+ C.22ab a b a b ++ D.22 ab a b a b +≤+ 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<<

相关文档
最新文档