一道典型的数形结合问题

一道典型的数形结合问题

一道典型的数形结合问题

方程sin log (02

a x x a π=>且1)a ≠恰有三个不相等的实数根,则a 的取值范围是 。 解:如图,若0a >,则要满足题意,

只需log 5159log 91

a a a ?;

如图,若0a <,则要满足题意, 只需log 31

1

1log 7173

a a a >-??<

(,)(5,9).73a ∈U

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

中考数形结合题

做家长信任的教育机构【中考冲刺】数形结合的5个常考类型 数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法. 1用数形结合的思想解题可分两类 (1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等; (2)运用数量关系来研究几何图形问题,常常要建立方程(组)或建立函数关系式等. 22. 热点内容 在初中教材中,“数”的常见表现形式为: 实数、代数式、函数和不等式等,而“形”的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数图象对应一条直线,二次函数的图像对应着一条抛物线,这些都是初中数学的重要内容. 【典型例题】

类型一、利用数形结合探究数字的变化规律 1. 如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是. 【思路点拨】 首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.第1个图形是2×3-3,第2个图形是3×4-4,第3个图形是4×5-5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n2+2n. 【答案与解析】 第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋(2×3-3)个; 第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子(3×4-4)个; 第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子(4×5-5)个; 按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)-(n+2)=n(n+2). 故答案为n(n+2)=n2+2n. 【总结升华】 这样的试题从最简单的图形入手.找出图形中黑点的个数与第n个图形之间的关系,找规律需要列出算式,一律采用原题中的数据,不要用到计算出来的结果来找规律. 举一反三:

浅谈数形结合思想在小学数学教学中的渗透

浅谈数形结合思想在小学数学教学中的渗透 摘要:“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。 关键词:数形结合;小学数学;数学思想 美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法中“数形结合”思想尤为重要。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。 数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。 本文先解读“数形结合”思想,浅谈其历史性及重要意义,后结合实践重点探讨“数形结合”在小学数学教学中的实际应用和实施途径。 一.了解小学数学教材中蕴涵的主要数学思想方法 数学思想:符号思想,集合思想,对应思想,化归思想。 数学方法: (1)思维方法:分析、综合、抽象、概括、归纳、演绎 (2) 一般方法:观察、实验、比较、分类、联想、类比、化归、猜想 (3)数学特点较强的方法:函数法、数学模型法、数形结合法、统计法、变换法、分析法、综合法 (4)数学技能:换元法、代入法、系数比较法、合并同类项法、因式分解法、判别式法、配方法、加减消元法、代入消元法、待定系数法、恒等变形法、公式法、构造法、通分母、去括号 在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。、 二、“数形结合”,由来已久?早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特

数形结合在函数中的应用汇总

数形结合在函数中的应用 四川省乐至中学唐贤国 教学目标:1、知识目标 1)理解数形结合的本质:几何图形的性质反映了数量关系,数量关系决定了几何图象的性质. 2)了解数形结合在解决函数问题中的作用,化抽象为直观,化直观为精确,从而使问题得到简捷解决. 2、能力目标 1)掌握用初等函数的图象来处理函数问题,培养用函数图象解决问题的意识.掌握运用图象将代数问题转化为几何问题的 技巧. 2)通过运用数形结合解题,培养学生的观察力、分析归纳能力,领会数形结合转化问题的思想方法. 3、情感目标 通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的能力.培养学生主动探索、勇于发现的科学精神, 培养学生的创新意识和创新精神.渗透理论联系实际、从特殊到 一般、把未知转化为已知的辨证唯物主义思想. 教学重点:利用基本初等函数的图象将函数问题转化为几何问题.(以形助数) 教学难点:利用图象转化函数问题,在代数与几何的结合上去找出解题思路.教学方法:启发式教学. 教学过程 一、新课引入

1)提问:上述四个函数图象分别对应于四个函数y = x 2 , y = 2x , y=0.5x , y= log 2 x 中的哪一个? 2)说明上述四种函数及图象代表了几类基本函数的基本图象. 3)强调:作出简图时要注意到函数的性质在其图象上的体现,比如特殊的点、 线(对称轴、渐进线)。 2.几种常见的图象变换(提问) 平移变换、伸缩变换、对称变换. 3.说明函数图象的作用:它直观地体现了函数的变化状况和函数的各种性 质(奇偶性、单调性和周期性等).许多函数问题大多可以从函数的图象中得到直观地解释或形象地提示解决问题的方法. 二、 基础训练题组 1.函数 31)1(+=x y 的反函数的图象不经过第______象限. A .一 B .二 C .三 D .四 分析:正确作出函数的图象是本题的关键所在.由于它是复合函数, 其图象需要由基本函数的图象作适当的变换得到.(提问学生:如何作出图象?本题有2种变换方法,可启发学生思考.) 方法二:先求出反函数,再作其图象.31)1(+=x y 的反函数为13-=x y 。

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

数形结合例题选集

数形结合 一、在一些命题证明中的应用举例: 1、证明勾股定理: 2222 c b a b a 0.5ab 4=+=-+?)()( 解析:上图中,四个小三角形(阴影部分)的面积加上中间小正方形的面积等于大正方形的面积,化简后得到勾股定理222c b a =+。 2、证明乘法公式(平方差与完全平方): ))((b a b a b a 22-+=- 2ab b a b a 222 ++=+)( 解析:在上图中,利用正方形和小正方形面积的转化,能更进一步理解平方差公式与完全平方公式的运算过程以及公式的本质问题。 3、证明基本不等式:

解析:如上图所示,直角三角形斜边上的中线等于斜边的一半,长度为 2 b a +,根据直角三角形的相似关系,可以得到直角三角形斜边上的高的长度为a b ,显然在直角三角形中,斜边上的中线的长度会大于等于高,利用这样简洁明了的几何图解,对基本不等式的理解也就更加简单了。 4、证明正(余)弦定理: 解析: (1)如上图所示,csinB bsinC bsinC a 2 1 h a 21S ABC =??=?= ?的面积; 即sinC c sinB b sinA a sinC c sinB b ===,同理可得; 根据圆的性质(等弧对等角)2R sinA a 2R a sinD sinA D A ===∠=∠,即,; 综上,得正弦定理:2R sinC c sinB b sinA a ===。 (2)根据勾股定理2 2222222cosB c a b cosB c c CE AC BE AB )()(,即?--=?--=-; 整理可得余弦定理:2ac b c a cosB 2 22-+=;同理得出cosA 、cosC 的余弦定理。 5、证明结论),(,2 0x sinx x x tan π ∈>>

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

数学中数形结合思想、分类讨论的思想、函数与方程的思想

初中数学中蕴含的数学思想方法很多,最基本最主要的有:数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1. 数形结合的思想和方法 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: (1)、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 (2)、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 (3)、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 (4)、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 (5)、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 (6)、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。(7)、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。(8)、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。 ①由数思形,数形结合,用形解决数的问题。 例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 ②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何

七年级数形结合数学专题训练

平面直角坐标系------数形结合思想的平台 一、知识点: 1.平面直角坐标系的定义; 2.坐标平面内点的坐标的定义; 3.各象限内及坐标轴上点的坐标的特征; 4.一三(二四)象限角平分线上的坐标特点; 5.与坐标轴平行的直线上的点的坐标的特征; 6.一维、二维坐标; 7、点的坐标与点到坐标轴的距离之间的关系, 8、坐标平面内线段长度与线段两端点坐标之间的关系; 9、面积割补法; 10、绝对值的性质; 11、图形面积公式; 12、平移的性质; 二、基本思想方法: 1、思想:数形结合思想、分类讨论思想、方程思想、算术法。 2、方法:画示意图、平移。 三、典型题目 (一)基础知识训练 称点是点C,则点C所表示的数是.在x轴上,到原 2.(1)请在下面的网格中建立平面直角坐标系,使得A,B两点的坐标分别为(4,1),(1,-2); (2)在(1)的条件下,过点B作x轴的垂线,垂足为点M,在BM的延长线上截取MC=BM. ①写出点C的坐标; ②平移线段AB使点A移动到点C,画出平移后的线段CD,并写出点D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) 3.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B向上平移5个单位到达点C,求: (1)A、B两点间的距离; (2)写出点C的坐标; (3)四边形OABC的面积. 4.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B (5,0),C(3,3),D(2,4),求四边形ABCD的面积

5.计算图中四边形ABOD的面积. 6.已知点A(-4,-1),B(2,-1) =12.求点C的坐标(写必要的(1)在y轴上找一点C,使之满足S △AB C 步骤); =12的点C有多少个?这些(2)在直角坐标系中找一点C,能满足S △AB C 点有什么特征? 7.如图,每个小正方形的边长为单位长度1. (1)写出多边形ABCDEF各个顶点A、B、C、D、E、F的坐标,说出各点到两坐标轴的距离;并总结坐标平面内的点到坐标轴距离公式。(2)点C与E的坐标什么关系? (3)直线CE与两坐标轴有怎样的位置关系? (4)你能求出图中哪些线段的长度?(总结公式)哪些图形的面积? 8.如图,在△ABC中,已知点A(0,3),B(-2,-3),C(3,-5).(1)在给出的平面直角坐标系中画出△ABC; (2)将△ABC向左平移4个单位,作出平移后的△A′B′C′; (3)点B′到x、y轴的距离分别是多少? 9.如,在平面直角坐标系中,O为坐标原点,已知点A(0,a),B(b,b),C(c,a),其中a,b满足关系式|a-4|+(b-2)2=0,c=a+b. (1)求A、B、C三点的坐标,并在坐标系中描出各点; (2)在坐标轴上是否存在点Q,使△COQ得面积与△ABC的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由; (3)如果在第四象限内有一点P(2,m),请用含m的代数式表示四边形BCPO的面积.

浅谈小学数形结合思想

浅谈小学数形结合思想方法 摘要:数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,本文介绍相关概念并结合人教版小学数学教材,初步整理了数形结合思想方法在各教学领域的渗透与应用,提出培养数形结合思想方法的策略。 关键词:小学数学;数形结合 1.数形结合思想方法的概念 数形结合思想就是通过数和形之间的对应关系和互相转化来解决问题的思想方法。1数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,包含“以形助数”和“以数解形”两个方面:前者借助形的直观性来阐明抽象的数之间的关系;后者是利用数的精确性、规范性与严密性来阐明形的某些属性。数形结合思想方法使数与形两种信息互相转换并且优势互补,从而能够将复杂的问题简单化,抽象的问题具体化。2 2.数形结合思想在各个学习领域的渗透与应用 小学数学分为“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”这四个学习领域,数形结合思想在这四个领域中都得到了广泛的应用。我通过对教材的分析,初步整理了数形结合思想方法在各教学领域的渗透与应用。 2.1数形结合思想方法在“数与代数”知识领域中的渗透与应用 数是十分抽象的,教材在编排上充分利用了数形结合,帮助孩子理解数的含义。如,一年级上册1~5的认识这一课时: 教材的内容与目标体现以下两方面:(1)体会“形”的直观性。借助各种实物图作为直观工具,帮助学生理解数字的含义。(2)了解可以用数来描述几何图形。通过让学生用相应数量的小棒摆一摆图形的过程,引导学生数一数,增强用数的量化来描述形,让学生初步感受数中有形、形中有数的思想。 除此之外,在加减法的计算学习中,利用画图来直观呈现各种信息,帮助学生分析数量关系;在乘法口诀的学习中,利用各种图形(点子图、数轴、表格)帮助学生理解乘法的意义和口诀的推导;在分数的学习中,为了让学生能够理解分数的含义,教材运用了大量的图形作为直观手段;在小数的学习中,利用尺子、线段、正方形等直观手段帮助学生理解小数的意义与性质;在方程的学习中,利用天平图作为直观手段,理解等式的性质,利用画线段图帮助学生理解数量关系……可以说,数形结合思想在“数与代数”的学习中无处不在,应用十分广泛。 2.2数形结合思想方法在“图形与几何”知识领域中的渗透与应用 1王永春.小学数学与数学思想方法[M].上海:华东师范大学出版社,2014:65. 2毕保洪,贺家兰.数形结合思想的应用[J].中学教与学,2017,1:15-16.

广东高考理数大二轮专项训练专题 数形结合思想(含答案)

2016广东高考理数大二轮专项训练 第2讲数形结合思想 1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质. 2.运用数形结合思想分析解决问题时,要遵循三个原则: (1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错. (3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线. 3.数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围. (2)构建函数模型并结合其图象研究方程根的范围. (3)构建函数模型并结合其图象研究量与量之间的大小关系. (4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式. (5)构建立体几何模型研究代数问题. (6)构建解析几何中的斜率、截距、距离等模型研究最值问题. (7)构建方程模型,求根的个数. (8)研究图形的形状、位置关系、性质等. 4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点: (1)准确画出函数图象,注意函数的定义域.

数形结合思想在求参数范围中的应用

数形结合思想在求参数范围中的应用 [典例] 已知函数y =|x 2 -1|x -1 的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. [解析] 因为函数y =|x 2-1|x -1=????? x +1,x ≤-1或x >1,-x -1,-1

小学数学总结-数形结合

数形结合总结 数形结合之规律 【典型例题】 例1 观察下列算式: , 65613,21873,7293,2433, 813,273,93,338 7 6 5 4321======== …… 用你所发现的规律写出20043的末位数字是__________。 例2 观察下列式子: 326241?==+?;4312252?==+?;5420263?==+?;6530274?==+?…… 请你将猜想得到的式子用含正整数n 的式子表示来__________。 例4 图3—4①是一个三角形,分别连接这个三角形三边的中点,得到图3—4②;再分别连结图3—4②中间的小三角形三边的中点,得到图3—4③,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题。 …… (1)将下表填写完整 (2)在第n 个图形中有____________________个三角形(用含n 的式子表示)。 例6.如图,把一个面积为1的正方形分等分成两个面积为21的矩形,接着把面积为21的矩形等分成两个面积为4 1 的正方形,再把面积为 41的矩形等分成两个面积为8 1 的矩形,如此进行下去,试利用图形提示的规律计算: =+++++++256 11281641321161814121 例7.把棱长为a 的正方体摆成如图的形状,从上向下数,第一层1个,第二层3个……按这种规律摆放,第五层的正 方体的个数是 例8.观察下列图形并填表。 ① ② ③ 1 1

周长 5 8 11 14 … 例9.把1到200的数像下表那样排列,用正方形框子围住横的3个数,竖的3个数,这9个数的和是162。如果在表的另外的地方,也用正方形围住另外的9个数。 (1) 当正方形左上角的数是100时,这9个数的和是多少? (2) 当正方形中9个数的和是1557时,最大的数是多少? 200 199198197196 19528272625242322212019181716151413121110987654321 例10.将1至1001个数如下图的格式排列。用一个长方形框入12个数,要使这12个数的和等于(1)1986;(2)2529;(3)1989是否办得到?如果办不到,简单说明理由:如果办得到,写出长方形框里的最大的数和最小的数。 1001 10009999989979969952827262524232221 2019181716151413121110987 654321 例11.把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表. (1)用如图方式框住表中任意4个数,记左上角的一个数为x ,则另三个数用含x 的式子表示出来,从小到大依次是______,______,______. (2)由(1)中能否框住这样的4个数,它们的和会等于244吗?若能,则求出x 的值;若不能,则说明理由. 例12. 把2011个正整数1,2,3,4,…,2010,2011按如图方式排列成一个表.

浅谈数形结合思想的应用

浅谈数形结合思想的应用 ——蒋海朋摘要:数学是在客观上研究数量关系和空间形式的一门科学,用通俗易懂的话来概括就是数学是研究“数”和“形”的一门科学。数相对于形来说更为抽象,形相对于数来说较为直观,在研究学习中,数与形是相辅相成、息息相关的。对于这个问题,本人在结合自己学习的总结以及前人所提供的经验,并且查阅相关资料,对于这个话题做一个简单的分析。文中的例子都是本人在学习中总结的历年高考、中考的试题以及模拟题,有很强的代表性。 关键词:数形结合数学思想应用 1 引言 1.1问题提出的背景 纵观数学发展的历史进程,数学家们早已把“数”和“形”联系在一起。早在公元300年之前,欧几里得的著作《几何原本》,他从几何的角度出发去研究和处理等价的代数问题;笛卡尔利用坐标为根基,通过代数为途径来研究几何问题,进而创立了解析几何学;化圆为方、三等分角、立方倍积这些几何难题都通过代数的方法得以完美解决。 数学往往被分为两大类:代数、几何。虽然他们被分为两类,但他们绝不是相互独立的,反而是密切相关的。很多代数上的问题计算量很大,看似非常复杂,甚至无从下手,但是利用了图形之后就会发现问题迎刃而解,直观的图形很容易反映图形的性质;很多几何问题因为辅助线相对复杂想不到,导致无法进一步研究,但是往往我们利用坐标系能够把几何问题转化成代数问题,同样也做到了化 繁为简。这就是数学上常用的数形结合思想。 1.2问题研究的意义 伟大的数学家华罗庚就曾说过:“数形结合百般好,割裂分家万事休。”这两句诗充分直观得反映了“数”与“形”这两者密不可分的联系。应用数形结合思想来思考问题就是要求我们结合代数的准确论证和图形的直观描述来发现问题的解决途径的一种思想方法。由此可见,数形结合思想对于数学解题方面的应用来说是十分重要的,但老师往往仅仅把它当做一种思想一谈而过,照着课本讲课,没有引导学生进一步思考,导致很多学生都不能具体有序地应用这种思想。 2 数形结合思想的重要地位 2.1使用数形结合思想的意义 数形结合思想无疑是连接“数”和“形”的桥梁,几何的直观形象和数量关系的严谨他们各有优点,在应用过程中有目的有计划地将“数”与“形”结合在一起,根据题目的已知条件,整合“数”和“形”的相关信息,巧妙结合,从而建起它们中间的桥梁,兼取两者之优,能让我们的解题更为轻松。

七年级(下)数形结合数学专题训练

平面直角坐标系------数形结合思想的平台
一、知识点: 1. 平 面 直 角 坐 标 系 的 定 义 ; 2. 坐 标 平 面 内 点 的 坐 标 的 定 义 ; 3. 各 象 限 内 及 坐 标 轴 上 点 的 坐 标 的 特 征 ; 4. 一 三 ( 二 四 ) 象 限 角 平 分 线 上 的 坐 标 特 点 ; 5. 与 坐 标 轴 平 行 的 直 线 上 的 点 的 坐 标 的 特 征 ; 6. 一 维 、 二 维 坐 标 ; 7、 点 的 坐 标 与 点 到 坐 标 轴 的 距 离 之 间 的 关 系 , 8、 坐 标 平 面 内 线 段 长 度 与 线 段 两 端 点 坐 标 之 间 的 关 系 ; 9、 面 积 割 补 法 ; 10 、 绝 对 值 的 性 质 ; 11 、 图 形 面 积 公 式 ; 12 、 平 移 的 性 质 ; 二、基本思想方法: 1、 思 想 : 数 形 结 合 思 想 、 分 类 讨 论 思 想 、 方 程 思 想 、 算 术 法 。 2、 方 法 : 画 示 意 图 、 平 移 。 三、典型题目 (一)基础知识训练 1 .如 图 ,数 轴 上 A , B 两 点 表 示 的 数 分 别 是 1 和 2 ,点 A 关 于 点 B 的 对 称 点 是 点 C ,则 点 C 所 表 示 的 数 是 点距离为 5 的坐标 分 别 为 ( 4, 1) , ( 1 , -2 ) ; ( 2 )在( 1 )的 条 件 下 ,过 点 B 作 x 轴 的 垂 线 ,垂 足 为 点 M ,在 BM 的 延 长 线 上 截 取 MC=BM . ①写出点 C 的坐标; ② 平 移 线 段 AB 使 点 A 移 动 到 点 C , 画 出 平 移 后 的 线 段 CD , 并 写 出 点 D 的坐标. (注:本题训练坐标平面内点的坐标与线段长度的关系,请尝试总结出公式) . .在 x 轴 上 ,到 原
2.( 1 )请 在 下 面 的 网 格 中 建 立 平 面 直 角 坐 标 系 ,使 得 A , B 两 点 的 坐 标
1

数形结合思想在二次函数中应用 小专题

专题二二次函数中的数形结合 一、选择题 1.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1 C.顶点坐标是(1,2)D.与x轴有两个交点 2.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是() A.B.C.D. 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0 没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2. 其中,正确结论的个数是() A. 0 B.1 C. 2 D.3 4.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c <2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1), 其中正确结论的个数是() A.4个B. 3个 C. 2个D. 1个 5.已知开口向下的抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论: ①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根. 其中正确结论的个数为() A.1个B.2个C.3个D.4个 6.已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10, 8)两点.若a<0,0<h<10,则h可能为 ( )

A.1 B.3 C.5 D.7 7.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为() 8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为() .或C或或﹣或9.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是() A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b 10.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表: 下列结论: (1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为() A.4个B.3个C.2个D.1个 二.填空题 11.抛物线y=x2﹣2x+3的顶点坐标是. 12.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为. 13.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表: 则当y<5时,x的取值范围是. 14.如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是.

高一数学专题1-数形结合思想含答案

数形结合思想 一.作图、识图、用图技巧 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究. (4)利用基本函数图象的变换作图 ①平移变换: y =f (x )――→h >0,右移|h |个单位 h <0,左移|h |个单位 y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位 y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ), y =f (x )――→01,纵坐标伸长到原来的A 倍y =Af (x ). ③对称变换: y =f (x )――→关于x 轴对称y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x )――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称 y =-f (-x ). f (x )――→关于原点对称y =-f (-x ). 二、通法归纳与感悟 1.应用数形结合的思想应注意以下数与形的转化

(1)集合的运算及韦恩图; (2)函数及其图像; (3)方程(多指二元方程)及方程的曲线; (4)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可; (5)对于研究函数、方程或不等式(最值)的问题,可通过函数的图像求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用. 2.运用数形结合的思想分析解决问题时,应把握以下三个原则 (1)等价性原则 在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导. (2)双向性原则 在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的. 例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化. (3)简单性原则 就是找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单,而不是去刻意追求代数问题运用几何方法,几何问题运用代数方法. 三、利用数形结合讨论函数零点、方程的解或图像的交点 利用数形结合求方程解应注意两点 (1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. (2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合. 1. (2013·长沙模拟)若f (x )+1=1f x +1 ,当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是( ) A. ???? ??0,12 B. ??????12,+∞ C. ??????0,13 D. ? ?? ??0,12 2. 若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]

浅谈数形结合思想方法的渗透

浅谈数形结合思想方法的渗透 数形结合思想是数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法,数形结合思想是数学中最重要、最基本的思想,是解决许多数学问题的有效思想,利用数形结合能使“数”和“形”统一起来。以形助数,以数辅形,可以使许多数学问题变得简易化。华罗庚教授对此有精辟概述:“数无形,少直观;形无数,难入微”。那么如何在教学中渗透数形结合的思想。下面谈谈自己的看法: 一、教师要深入研究教材,有效渗透数形结合 小学数学内容中,有相当部分的内容是计算问题,计算教学要引导学生理解算理,算理就是计算方法的道理,学生不明白道理又怎么能更好的掌握计算方法①?在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、对比、分析、抽象、概括的过程中看到数学知识蕴涵的思想。如一年级下册“两位数加减一位数和整十数“35-2和35-20内容时,教师可提出问题,这两题怎么计算?让学生说出算法,再根据学生的回答分别写出支形图,并写出想的过程,然后进一步追问:“有没有不同的算法?”激发学生思考,开拓学生的学习思维。最后进一步问:计算35-2,能不能先用十位上的3减2等于1,结果35-2等于15对吗?让学生思考讨论,产生思维的碰撞,让学生的思维碰撞出智慧的火花。接下来让学生用摆小棒验证,教师可充分利摆小棒,使学生明白:因为35中的3表示3个十,5表示5个1,计数单位不同,所以不能用十位上的3减2,可以用5个1减2个1等于3个1,它们的计数单位都是1,再和3个十合并起来等33。通过摆小棒有效地渗透数形结合,使问题简明直观。教师要深入研究教材,弄清编排的意图,吃透教材,才能用好教材,有效渗透数形结合思想,彰显了数学学习的价值,通过摆小棒这个活动让学生感受到简单推理的过程,获得一些简单推理的经验就可以了。在教师的引导下,让学生明白这两题是把相同数位相加减的算理,这是教材编排的意图,也是本节课的重点。学生不明白道理又怎么能更好的掌握计算方法?在教学时,应以清晰的理论指导学生理解算理,在理解算理的基础上掌握计算方法,正所谓“知其然,知其所以然”。渗透数学思想,路漫漫兮,任重而道远,作为孩子们的导师,我们应该充分根据孩子们的发展规律,适当地利用教材,在教学过程中巧妙地渗透思想,培

相关文档
最新文档