捕食者与被捕食者模型——Logistic-Volterra

捕食者与被捕食者模型——Logistic-Volterra
捕食者与被捕食者模型——Logistic-Volterra

捕食者与被捕食者模型——Logistic-Volterra模型

摘要

Logistic模型是最常用的模型之一,在其基础上又可以发展出许多其他数学模型,其重要性不言而喻,而Volterra模型则是经典的被捕食者与捕食者模型之一。本文尝试结合两者,建立一个Logistic-Volterra模型,并做出数值解和分析。

关键词:Logistic模型 Volterra模型数值解

一、问题的提出

Volterra模型显示的被捕食者与捕食者系统存在着显著的周期振荡,而实际上,多数的捕食者与捕食者系统都是观察不到的。尝试建立模型,描述这种现象。

二、符号说明

r:被捕食者固有增长率

d:捕食者固有死亡率

a:捕食者掠取被捕食者的能力

b:被捕食者供养捕食者的能力

N1:被捕食者的最大环境容纳量

N2:捕食者的最大环境容纳量

三、模型假设

1.在没有天敌的情况下,被捕食者数量增加的固有速度与被捕食者数量x和阻滞作用因子

(1-x/N1)成正比,即dx

dt =rx(1?x

N1

)

2.在没有食物的情况下,捕食者数量减少的固有速度与捕食者数量y和阻滞作用因子

(1+y/N2)成正比,即dy

dt =?dy(1+y

N2

)

3.捕食者与被捕食者在同一环境下生存,它们的种群变化速度互相影响,影响因子应与它

们相遇的频率成正比,即捕食导致被捕食者数量减少的速度为-axy,捕食导致捕食者数量增加的速度为bxy

四、模型建立与求解

1.Volterra模型的分析

意大利数学家Volterra在上世纪20年代提出的Volterra模型:

dx

dt

=rx?axy

dy

dt

=?dy+bxy

取r=1 d=0.5 a=0.1 b=0.02,运用matlab的ode45功能函数,做出数值解,并绘图分析。

图1被捕食者与捕食者随时间变化图图2捕食者与被捕食者相图

从图形可以看出,捕食者与被捕食者共同生存,数量随时间作周期变化。

2.建立Logistic-Volterra模型

在Volterra模型中的物种自身增长率中,考虑自身阻滞作用,即加入Logistic项,得到以下模型:

dx dt =rx(1?

x

N1

)?axy

dy

=?dy(1+y

2

)+bxy

取r=1 d=0.5 a=0.1 b=0.02 N1=100 N2=25,运用matlab的ode45功能函数,做出数值解,并绘图分析。

图3被捕食者与捕食者随时间变化图图4捕食者与被捕食者相图

此时,捕食者与被捕食者的种群数量不再作显著的周期变化,而是趋向于一个稳定的值,在捕食者与被捕食者相图中,曲线由原来的简单封闭曲线演变为趋向于一个点的曲线。

五、模型评价

该模型所建立的常微分方程组具有一个渐近稳定的平衡点,比较好地描述了实际生物种群数量的演化过程。

模型中的自身阻滞作用和固有增长率是用同一参数来考虑的,考虑到这两种作用应该有不同的影响因子,应该用两个不同的参数来考虑。

六、参考文献

1.章绍辉.数学建模.北京:科学出版社,2010.

2.钟季康.大学物理习题计算机解法.北京:机械工业出版社,2008.

七、附录

Logistic-Volterra 常微分方程组函数

function y=catcher(t,x)

r=1;d=0.5;a=0.1;b=0.02;N1=100;N2=25;

y=zeros(2,1);

y(1)=r*x(1)*(1-x(1)/N1)-a*x(1)*x(2);

y(2)=-d*x(2)*(1+x(2)/N2)+b*x(1)*x(2);

运用ode45求解

x10=25;x20=2; %初值条件

[T,Y]=ode45('catcher',[0 50],[x10 x20]);

subplot(121)

plot(T,Y(:,1),'-',T,Y(:,2),'--');

subplot(122);

plot(Y(:,1),Y(:,2))

食饵—捕食者模型稳定性分析

食饵—捕食者模型稳定性分析 【摘要】自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生存,种群乙靠捕食甲为生,形成食饵-捕食者系统,如食用鱼和鲨鱼,美洲兔和山猫,害虫和益虫等。本文是基于食饵—捕食者之间的有关规律,建立具有自身阻滞作用的两种群食饵—捕食者模型,分析平衡点的稳定性,进行相轨线分析,并用数值模拟方法验证理论分析的正确性。 【关键词】食饵—捕食者模型相轨线平衡点稳定性

一、问题重述 在自然界中,存在这种食饵—捕食者关系模型的物种很多。下面讨论具有自身阻滞作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。 二、问题分析 本文选择渔场中的食饵(食用鱼)和捕食者(鲨鱼)为研究对象,建立微分方 程,并利用数学软件MATLAB 求出微分方程的数值解,通过对数值结果和图形的观察,猜测出它的解析解构造。然后,从理论上研究其平衡点及相轨线的形状,验证前面的猜测。 三、模型假设 1.假设捕食者(鲨鱼)离开食饵无法生存; 2.假设大海中资源丰富,食饵独立生存时以指数规律增长; 四、符号说明 )(t x /)(1t x ——食饵(食用鱼)在时刻t 的数量; )(t y /)(2t x ——捕食者(鲨鱼)在时刻t 的数量; 1r ——食饵(食用鱼)的相对增长率; 2r ——捕食者(鲨鱼)的相对增长率; 1N ——大海中能容纳的食饵(食用鱼)的最大容量;

2N ——大海中能容纳的捕食者(鲨鱼)的罪的容量; 1σ——单位数量捕食者(相对于2N )提供的供养食饵的实物量为单位数量捕食 者(相对于1N )消耗的供养甲实物量的1σ倍; 2σ——单位数量食饵(相对于1N )提供的供养捕食者的实物量为单位数量捕食 者(相对于2N )消耗的供养食饵实物量的2σ倍; d ——捕食者离开食饵独立生存时的死亡率。 五、模型建立 食饵独立生存时以指数规律增长,且食饵(食用鱼)的相对增长率为1r ,即 rx x =',而捕食者的存在使食饵的增长率减小,设减小的程度与捕食者数量成正 比,于是)(t x 满足方程 axy rx ay r x t x -=-=')()( (1) 比例系数a 反映捕食者掠取食饵的能力。 由于捕食者离开食饵无法生存,且它独立生存时死亡率为d ,即dy y -=',而食饵的存在为捕食者提供了食物,相当于使捕食者的死亡率降低,且促使其增长。设这种作用与食饵数量成正比,于是)(t y 满足 bxy dy bx d y t y +-=+-=')()( (2) 比例系数b 反映食饵对捕食者的供养能力。

捕食者-被捕食者模型稳定性分析

捕食者-被捕食者模型 稳定性分析 本页仅作为文档封面,使用时可以删除 This document is for reference only-rar21year.March

被捕食者—捕食者模型稳定性分析 【摘要】自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生存,种群乙靠捕食甲为生,形成食饵-捕食者系统,如食用鱼和鲨鱼,美洲兔和山猫,害虫和益虫等。本文是基于食饵—捕食者之间的有关规律,建立具有自身阻滞作用的两种群食饵—捕食者模型,分析平衡点的稳定性,进行相轨线分析,并用数值模拟方法验证理论分析的正确性。 【关键词】食饵—捕食者模型相轨线平衡点稳定性

一、问题重述 在自然界中,存在这种食饵—捕食者关系模型的物种很多。下面讨论具有自身阻滞作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。 二、问题分析 本文选择渔场中的食饵(食用鱼)和捕食者(鲨鱼)为研究对象,建立微分方程, 并利用数学软件MATLAB 求出微分方程的数值解,通过对数值结果和图形的观察,猜测出它的解析解构造。然后,从理论上研究其平衡点及相轨线的形状,验证前面的猜测。 三、模型假设 1.假设捕食者(鲨鱼)离开食饵无法生存; 2.假设大海中资源丰富,食饵独立生存时以指数规律增长; 四、符号说明 )(t x /)(1t x ——食饵(食用鱼)在时刻t 的数量; )(t y /)(2t x ——捕食者(鲨鱼)在时刻t 的数量; 1r ——食饵(食用鱼)的相对增长率;

自身具有阻滞作用的食饵--捕食者模型简单分析

具有自身阻滞作用的食饵—捕食者模型简单分析 【摘要】种群之间的食饵—捕食者模型由于在自然界中由于资源有限和其他作用,种群自身也会阻滞自身的增长,从而他们构成了自身具有阻滞作用的食饵—捕食者系统。对其进行平衡点的稳定性分析,验证在自然界中的两种种群构成食饵—捕食者系统的相互关系。 【关键字】食饵—捕食者自身阻滞作用平衡点稳定性 一、问题重述 对于V olterra模型,多数食饵—捕食者系统观察不到那种周期动荡,而是趋于某种平衡状态,即系统存在稳定的平衡点。在V olterra模型中考虑自身阻滞作用的Logistic项建立具有自身阻滞作用的食饵—捕食者模型,并对模型的稳定性进行分析。 二、问题背景和分析 自然界中不同种群之间存在着既有依存、又有制约的生存方式:种群甲靠丰富的自然资源生长,而种群已靠捕食种群甲为生,食用于和鲨鱼、美洲兔和山猫、落叶松和蚜虫等都是这种生存方式的典型。生态学称甲为食饵(Prey),种群已为捕食者(Predator),二者构成了食饵—捕食者系统。然而在自然界中由于资源有限和其他作用,种群自身也会阻滞自身的增长,从而他们构成了自身具有阻滞作用的食饵—捕食者系统。 三、模型假设 食饵在自然界中生存若没有捕食者情况下独立生存,自身增长符合Logistic 增长,而捕食者在离开食饵没有其他的食饵,在有食饵的情况自身增长亦符合Logistic增长。

五、模型建立、求解与分析 5.1模型建立 当某个自然环境中只有一个种群生存时,可以同Logistic 模型(阻滞增长)述这个种群的演变过程,即: . (1)x x rx N =- 。 对于食饵种群在自然环境中生存时他不受捕食者捕食的增长为: . 1 1111 ()(1)x x f x r x N ==- , 在有捕食者的情况下食饵还受到捕食者的捕食,故其还受到捕食者的干预从使食饵增长率减小,在此情况下食饵的增长为: . 12111112 ()(1)x x x f x r x N N σ==- -。 对于捕食者在自然环境中生存没有食饵其死亡导致数量减少,从而为: . 2 2222 ()(1)x x g x r x N ==-- , 在有食饵的情况下,食饵降低了捕食者的死亡率是捕食者的增长模型为: . 21 222221 ()(1)x x x g x r x N N σ==--+。 得到自身具有阻滞作用的食饵—捕食者模型: . 12111112 ()(1)x x x f x r x N N σ==- -。 . 21222221 ()(1)x x x g x r x N N σ==-- + 5.2模型平衡点求解 根据以上模型设()0f x =和()0g x =,解其方程组即可得到平衡点。

捕食食饵模型

生物模型:设生物群体的数量N 是时间t 连续函数. 物种捕食模型: 捕食者P 的存在依赖于被捕食者的存在, 增长率由于被捕食者N 的存在而增大, 没有被捕食者时将自然趋向死亡. 被捕食者N 的增长率由于捕食者P 的存在而减少, 模型为 ???????+-=-=P N c r t N P c r t N p n )(d dP )(d d 21 (12) 其中 21,,,c c r r p n >0是常数. 相空间为N ≥0, P ≥0, 奇点有两个, (0, 0) 和 (N *, P *) = )/,/(12c r c r n p , 当N , P 不等于零时, 轨道方程可由方程的两式消去d t 而得变量分离方程; 0d d d d 12=-+-P P r P c N N r N c n p (13) 从点(N *, P *)积分到点(N , P )得 C P P P P r N N N N r P N H n p =--+--=]* ln )1*[(]*ln )1*[(:),( (14) 由不等式 0ln 1:)(≥--=x x x f , 对任意x >0恒成立, 且当x 1≠ 时, 0)(>x f , )(x f 在),1[∞上从零严格单调增加到无穷大. )(x f 在]1,0(上从无穷大严格单调减少到零. 因此, ),(P N H 关于(N *,P *)点是定正函数, 且在从(N *,P *)点出发的任一射线上随着与(N *,P *)点的距离增加而从零严格单调增加至无穷大. 因此对于任一 C > 0, 轨道方程(14)表示一条闭轨, 对应于方程的周期解. 设其周期为T =T (C ), 我们可以证明在闭轨上N , P 的平均值分别为N *, P *. 证: ???==--=-0d 1)(d *) (d )*(220P P c P r N c P N N t N N p T , 同理可证另一个关系式.

食饵—捕食者模型

《数学模型》课程 食饵—捕食者模型 3. 讨论具有自身阻滞作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性,并用matlab 软件画出图形。 自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生长,而种群乙靠捕食甲为生,形成鱼和鲨鱼,美洲兔和山猫,落叶松和蚜虫等等都是这种生存方式的典型,生态学称种群甲为食饵,种群乙为捕食者。二者共同组成食饵—捕食者系统。 一食饵—捕食者 选用食饵(食用鱼)和捕食者(鲨鱼)为研究对象,设)(t x /)(1t x 为食饵(食用鱼)在时刻t 的数量,)(t y /)(2t x 为捕食者(鲨鱼)在时刻t 的数量,1r 为食饵(食用鱼)的相对增长率,2r 为捕食者(鲨鱼)的相对增长率;1N 为大海中能容纳的食饵(食用鱼)的最大容量,2N 为大海中能容纳的捕食者(鲨鱼)的最大容量,1σ为单位数量捕食者(相对于2N )提供的供养食饵的实物量为单位数量捕食者(相对于1N )消耗的供养甲实物量的1σ倍;2σ为单位数量食饵(相对于1N )提供的供养捕食者的实物量为单位数量捕食者(相对于2N )消耗的供养食饵实物量的2σ倍;d 为捕食者离开食饵独立生存时的死亡率 二模型假设 1.假设捕食者(鲨鱼)离开食饵无法生存;

2.假设大海中资源丰富,食饵独立生存时以指数规律增长; 三模型建立 食饵(食用鱼)独立生存时以指数规律增长,且食饵(食用鱼)的相对增长率为 1r ,即rx x =',而捕食者的存在使食饵的增长率减小,设减小的程度与捕食者数量成正比,于是)(t x 满足方程 axy rx ay r x t x -=-=')()( (1) 比例系数a 反映捕食者掠取食饵的能力。 由于捕食者离开食饵无法生存,且它独立生存时死亡率为d ,即dy y -=',而食饵的存在为捕食者提供了食物,相当于使捕食者的死亡率降低,且促使其增长。设这种作用与食饵数量成正比,于是)(t y 满足 bxy dy bx d y t y +-=+-=')()( (2) 比例系数b 反映食饵对捕食者的供养能力。 方程(1)、(2)是在自然环境中食饵和捕食者之间依存和制约的关系,这里没有考虑种群自身的阻滞作用,是Volterra 提出的最简单的模型。结果如下。 不考虑自身阻滞作用:数值解 令x(0)=x0,y(0)=0,设r=1,d=0.5,a=0.1,b=0.02,x0=25,y0=2 使用Matlab 求解 求解如下 1)先建立M 文件 function xdot=shier(t,x) r=1;d=0.5;a=0.1;b=0.02; xdot=[(r-a*x(2)).*x(1);(-d+b*x(1)).*x(2)]; 2)在命令窗口输入如下命令: ts=0:0.1:15; >> x0=[25,2]; >> [t,x]=ode45('shier',ts,x0);[t,x],

基础生态学实验Lotka-Volterra捕食者-猎物模型模拟

基础生态学实验 Lotka-Volterra捕食者-猎物模型模拟

【实验原理】 dN/dt=r1N-C1NP 猎物种群动态 dP/dt=-r2N+C2NP 捕食者种群动态 N:猎物的密度 r1:猎物种群的增长率 C1:捕食者发现和进攻猎物的效率,即平均每一捕食者捕食猎物的常数P:捕食者密度 -r2:捕食者在没有猎物时的条件下的死亡率 C2:捕食者利用猎物而转变为更多捕食者的捕食常数

【实验目的】 在掌握Lotka-Volterra 捕食者-猎物模型的生态学意义与各参数意义的基础上,通过改变参数值的大小,在计算机模拟捕食者种群与猎物种群数量变化规律,从而加深对该模型的认识。 【实验器材】 1、计算机 2、模拟运行软件 3、种群生物学模拟软件包(Populus),5.5 版本,美国明尼苏达大学 【实验步骤】 设置初始值,之后保持N0、P0不变,分别改变d2、g、r1、c的大小(具体数据见下表),观察记录每组数据下捕食者-猎物模型中两种群密度变化情况,

与对照组进行比较。 实验数据设置记录表 【实验结果与分析】 Part I 研究捕食者-猎物模型中两种群密度变化情况与捕食者死亡率(d)的关系 图1.1 对照组捕食者—猎物模型种群密度随时间变化的图(d=0.2)

图1.2 实验组1捕食者—猎物模型种群密度随时间变化的图(d=0.3) 图1.3 对照组捕食者—猎物模型种群密度图(d=0.2) 图1.4实验组1捕食者—猎物模型种群密度图(d=0.3) 表1研究种群密度变化情况与d的关系实验数据记录表

由以上图表可知: 捕食者死亡率d增长对猎物种群密度变化的影响反而要大于其对捕食者种群密度的变化。d减小,可见猎物种群密度明显增加,且两者种群密度波动周期变长。 这是由于捕食者死亡率d直接影响捕食者密度,使其降低,从而使猎物种群密度增加,而猎物种群密度的增加又利于捕食者繁殖,使捕食者种群增加。综上,多方面因素的作用导致猎物种群密度明显增加,而捕食者种群密度基本不变。 Part II 研究捕食者-猎物模型中两种群密度变化情况与转化常数(g)的关系 图2.1 对照组捕食者—猎物模型种群密度随时间变化的图(g=0.25)

捕食者猎物模型

经典的捕食者-猎物模型是由洛特卡和沃尔泰拉提出的。 若以捕食者密度为纵坐标、猎物密度为横座标、按时间顺序作出相位图,就可以得到一个封闭环(如下图)。相位图表示两个种群的密度将按封闭环的轨道逆时针方向无限循环,其中心点即为平衡点,通过平衡点作互相垂直的线,将相位图分为4块,在垂直线右面捕食者种群增加(P1→P2→P3),在左面减少(P3→P2→P1);在水平线下面,猎物种群增加(N1→N2→N3),在上面减少(N3→N2→N1)。因此,洛特卡-沃尔泰拉模型表明猎物-捕食者种群动态中分为4个时期: ①猎物增加(N2→N3),捕食者也增加(P1→P2); ②猎物减少(N3→N2),捕食者继续增加(P2→P3); ③猎物(N2→N1)和捕食者(P3→P2)都减少;。 ④捕食者继续减少(P2→P1),而猎物增加(N1→N2)。如此循环不息。 1(2014?杭州一模)科学家通过研究种问捕食关系,构建了捕食者一猎物模型,如图甲所示(图中箭头所指方向代表曲线变化趋势);图乙为相应的种群数量变化曲线.下列叙述错误的是() A.甲图所示模型能解释捕食者和猎物的种群数量均能维持相对稳定 B.甲图曲线变化趋势反映了生态系统中普遍存在的负反馈调节 C.甲图中①②③④种群数量变化与乙图中abcd依次对应 D.乙图中P为猎物的种群数量,H为捕食者的种群数量 【解析】A、据图甲分析,由于负反馈调节,捕食者和猎物的种群数量均能维持相对稳定,A正确;B、甲图曲线变化趋势反映了生态系统中普遍存在的负反馈,即猎物的种群数量增加,捕食者的种群数量也增加,这样猎物的种群增长受到抑制,B正确;C、甲图中①区域表示猎物种群数量增加引起捕食者的种群数量增加,对应乙图中a,②区域猎物种群数量减少,捕食者种群数量继续增加,对应乙图中b,③区域表示随着猎物种群数量的减少,捕食

食饵捕食模型

楚雄师范学院数学系《数学建模》课程 教学论文 题目:具有自身阻滞作用的两种群食饵—捕食模型 专业:信息与计算科学 班级:08级3班 学号:152 学生姓名:罗文枢 完成日期:2011 年 6 月

具有自身阻滞作用的两种群食饵—捕食模型 摘要:在自然界中,更多的生物是杂居在一起的,各种生物根据其生理特点、食物来源分成了不同的层次,各层次之间及同一层次的生物种群之间有着各样的联系,尤其是相互之间影响非常大的生物种群,需要放在一起讨论,在这里,我们一两种群为例进行建模和讨论,具有自身阻滞作用的两种群食饵—捕食者模型。捕食—食饵模型是数学生态学研究的重要内容,影响种群波动的因素很多,自身阻滞作用就是其中重要的一种因素。因为资源环境是有限的,相互竞争是不可避免的,所以自身阻滞也是影响平衡位置的不稳定性和周期波动现象的主要因素。时滞可以对生态系统的性质产生相当大的影响,理论生态学家们普遍认为在种群的相互作用中,自身阻滞作用是不可避免的。本文主要通过对两类具有自身阻滞作用的典型的捕食-食饵模型的研究,通过分析发现时滞对模型的稳定性有非常重要的作用。事实上只要在Volterra模型加入考虑自身阻滞作用的Logsitic项就可以得到这种现象了。 关键字:自身阻滞,稳定性分析,相轨线分析,平衡点分析,Logistic模型;

一.问题重述: 讨论具有自身阻滞作用的两种群食饵—捕食者模型,首先根据两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。 二.问题分析: 本论文主要是讨论具有自身阻滞作用的食饵—捕食者模型。我们用Logistic模型来描述这个种群数量的演变过程,即食饵会受到自然界中的资源所限制,它不仅会无限的增大,而且捕食者也会受到食饵的数量的影响。此种情况下会出现以下的3种现象: 1.当捕食者灭绝时,食饵也不会无限的增长,即指数函数型增长,因为有自身的阻滞作用,它达到某个数量就不在会增长而趋于稳定了; 2.当食饵受到自然资源的影响的灭绝时,捕食者也会因食物而灭绝; 3.当两种群都不灭绝时,它们会趋于某个非零的有限值,从而达到稳定状态。 三.模型假设: 1.假设在某特定环境中只存在食饵和捕食者两种群; 2.假设食饵和捕食者均能正常生长,没有疾病等原因促使死亡; 3.假设两种群的增长率不变; 4.食饵由于捕食者的存在使增长率降低,假设降低的程度与捕食者数量成正比; 5.捕食者由于食饵为它提供食物的作用使其死亡率降低或使之增长,假设增长的程度与食饵数量成正比。 四.符号说明: ()t x :食饵在时刻t的数量; 1 ()t x :捕食者在时刻t的数量; 2 R:食饵独立生存时以指数规律增长,相对增长率; 1 R:捕食者独立生存时以指数规律增长,相对增长率; 2 N:食饵生存的最大容量; 1 N:捕食者生存的最大容量; 2

捕食关系

捕食关系 摘要: 捕食是一种生物以它种生物为食的种间关系。前者是捕食者,后者是被捕食者。捕食关系中既有草食性动物吃植物,肉食性动物吃肉食性或草食性动物,也有植物吃动物。一般来讲,两者之间是捕食者受益,被捕食者受害。在自然界中,这种关系经历了漫长的自然进化过程,捕食者和被捕食者两者在构造、生理、习性和生活方式上形成了捕食和反捕食的种种适应,形成一定的平衡关系。人为地控制这种复杂关系,结果往往是适得其反。捕食者的存在在一定程度上是被捕食者生存的必要条件 关键词:捕食,动物,关系,生物,大自然 正文: 在大自然中,各种生物之间存在着许多的捕食关系,同时这也是大自然能够平衡的原因.不仅动物之间存在捕食关系,植物之间也一样存在捕食关系,还有植物与动物之间均存在捕食关系 .捕食行为是指一个物种的动物杀死和吃掉另一个物种的动物。它和同种相残不同,同种相残是指物种内一个个杀死和吃掉另一个个体,它和寄生也不同,寄生是指生物利用寄主但通常不会把寄主杀死。 捕食行为的动机是饥饿, 捕捉猎物的,速度和效率通常是随着饥饿程度的增加而增加。但也有例外, 如蝗螂和跳蛛,它们捕捉猎物的动作总是那么刻板不变, 不受饥饿程度的影响。但捕食行为的其他方面如警觉性是与饥饿程度有关的。很多捕食动物都喜欢捕食某一特定的猎物,而且与正常的饥饿没有明显的关系。首先是猎物的选择,捕食者对猎物的选择通常是决定于猎物的可获得性。红脚鹏总是在水觅食行为,。边觅食, 而且对猎物有一定的选择性, 当它以海洋多毛类沙蚕为食时, ,它总是挑选大沙蚕, 而不去吃小沙蚕, 因为这样可以提高食物摄取率。当它以甲壳动,物螺赢蜚为食时, 总是选择在食物丰富的海滩觅食。但当沙蚕和螺赢蜚同时存在时, 它常常更喜欢捕食螺赢蜚, 虽然沙蚕能够更快地满足它对能量的需求。这种情况很可能是由于螺赢蜚体内含有某些头向内鱼尾外露, 这样便于吞咽, 但如果捕鱼是为了喂红脚鹏所需要的特殊营养物,。 第二则是猎物的贮藏,很多鸟类和哺乳动物所捕杀的猎物数量都比它们所吃掉的多,因此常吧吃剩的猎物贮藏起来。豹,美洲狮和虎只有在狩猎后因受到干扰不能马上把猎物吃完时才把猎物贮藏起来。有人训练小嘴乌鸦在各种颜色的贻贝壳下寻找人为放置的食物, 发现小嘴乌鸦可以很快形成搜寻印象如果乌鸦 最初是黑色贝壳下找到了食物, 那它在以后的一段时间内就总是翻转黑色贝壳 而不去注意其他颜色的贝壳。到第2天它很可能又去专门翻转另一种颜色的贝壳, 而不再注意黑色贝壳了。这种把搜寻注意力集中在某种特定猎物某一特定地点和特定时间的行为常常可以提高捕食物的搜寻效率捕食动物在找到了一个小猎物后, 常常会在原地附近继续搜寻, 如果猎物是呈斑块状分布的, 那捕食者就极可能找到更多的猎物, 从而提高捕食效率。不同捕食者识别其猎物的方法是很不相同的, 大多数捕食者都以多种猎物为食, 但也有一些例外, 如有螺莺专门以属的蜗牛为食少数捕食者能依据特殊的信号刺激识别自己的猎物, 而大多数捕食者 识别猎物所依据的是一般性特征, 如大小颜色移动方式和形态等。用食虫猴类小

食饵捕食者模型

食饵——捕食者模型 摘要 自然界中不同种群之间存在着一种有趣的既有依存,又有制约的生存方式:种群甲靠丰富的自然资源生长,而种群乙靠捕食种群甲为生。生态学上称种群甲为食饵)(Pr ey ,种群乙为捕食者)(Pr edator ,二者共处组成食饵——捕食者系统(简称P P -系统)。为了对食饵、捕食者的数量关系做出分析和预测,建立了食饵——捕食者模型:根据微分方程稳定性理论辅之以相轨线分析,对具有自身阻滞作用的两种群的数量关系做出分析和预测。 关键词 食饵——捕食者,模型,生态学,Logistic 规律。 问题重述 讨论具有自身阻滞作用的两种群食饵——捕食者模型,首先根据两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。 模型建立 种群甲(食饵)靠丰富的自然资源生长,而种群乙(捕食者)靠捕食种群甲为生,食饵(甲)和捕食者(乙)在t 时刻的数量分别记为)(t x ,)(t y ,r 是甲的固有增长率,种群甲和乙的最大容量分别为N 、M 。数量的演变均遵从Logistic 规律。于是对种群甲有 )1()(N x rx t x -= 其中因子)1(N x -反映由于甲对有限资源的消耗导致的对它本身增长的阻滞作用, N x 可解释为相对于N 而言单位数量的甲消耗别的供养甲的食物量(设食物总量为1)。 当两个种群在同一自然环境中生存时,考察由于乙消耗同一种有限资源对甲 的增长产生的影响,可以合理的在因子)1(N x -中再减去一项,该项与种群乙的 数量y (相对于M 而言)成正比,于是得到种群甲增长的方程为 )1()(1M y N x rx t x σ--= (1) 这里的意义是:单位数量乙(相对于M 而言)消耗的供养甲的食物量为单位数 量甲(相对N )消耗的供养甲的食物量的1σ倍。

捕食者死亡率具比率型的捕食者_食饵模型

2009年11月 襄樊学院学报 Nov.,2009 第30卷第11期 Journal of Xiangfan University V ol.30 No.11 捕食者死亡率具比率型的捕食者-食饵模型 肖氏武1 ,陈旭松2 (1.襄樊学院 数学与计算机科学学院,湖北 襄樊 441053; 2.襄樊职业技术学院 公共课部,湖北 襄樊 441021) 摘要 :建立捕食者死亡率依赖于捕食者与食饵的比率的捕食-食饵模型,分别考虑捕食者的 功能性反应为双线性型与比率依赖型的情形,在一定条件下得到正平衡点全局稳定和极限环的存 在性,并进行了数值模拟. 关键词:比率依赖;捕食者-食饵模型;极限环 中图分类号:O175. 1 文献标识码:A 文章编号:1009-2854(2009)11-0009-05 在现实世界里,任何生物种群都处于某一群落中与别的种群发生着一定的联系,而真正的单种群只有在生物学家的实验室里才存在. 由于捕食者与食饵的这种捕食现象在自然界中普遍存在且相当重要,因此研究捕食者与食饵之间的动力学关系已经是并将长期成为生物界与生物数学方面的重要研究课题之一[1-3]. 虽然在过去的四十多年里,捕食者-食饵理论取得了很大的进步,但是在这方面还是有很多数学和生态学上的问题没解决[3-6]. 在捕食者-食饵相互作用的理论的研究中,一个具有里程碑的进展是被Hairston N. G . [7]和 Rosenzweig M. L.[8]等人揭示的现在被称为富足性谬论(Paradox of enrichment)的发现. 在生物数学领域中,数学家的很多工作被看作是数学对生物学的重要贡献. 直到现在,在生态学家之间对此也引起争议. 当然,争论的焦点并不是模型的数学分析,而是建立的模型本身. 最近,有很多确定的生物和生物物理证据[9-10]显示,在很多情况下,特别是当捕食者必须寻找食物(因此必须分享或竞争食物)时,一个更合理的捕食者-食饵理论应该建立在所谓的比率依赖理论的基础之上. 比率依赖是指每一个捕食者个体的增长率应该是关于食饵与捕食者数量的比的函数,因此,又称之为捕食者功能性反应. 这些理论为众多的领域和实验及观察结果所支持[9, 11]. 一般地,具比率型的捕食者-食饵模型可取如下形式 ()()()()dx x x x yp dt y dy x cyq r y dt y ??=?????=??? 1 基本模型 Tanner J. T. 提出一类被称为Holling-Tanner 的混合型捕食者-食饵模型[12-13] (1)(1)dx x cxy ax dt K x m dy fy dy dt x ?=????+??=??? 这里,,,,,,a K c m f d 为正常数,其生物意义显然可知. 基本假设是如果食饵密度x 为常数,捕食者的捕获力为x f . 显然,Holling--Tanner 模型中关于捕食者的方程类似于比率依赖型,而关于食饵的方程是典型的 收稿日期:2009-08-17 作者简介:肖氏武(1971— ), 男, 湖北天门人, 襄樊学院数学与计算机科学学院副教授.

Lotka-volterra捕食者-猎物模型模拟

实验名称:Lotka-volterra捕食者-猎 物模型模拟 姓名: 学号: 系别: 实验日期:

dN/dt=r1N-C1NP 猎物种群动态 dP/dt=-r2N+C2NP 捕食者种群动态 N:猎物的密度 r1:猎物种群的增长率 C1:捕食者发现和进攻猎物的效率,即平均每一捕食者捕食猎物的常数 P:捕食者密度 -r2:捕食者在没有猎物时的条件下的死亡率 C2:捕食者利用猎物而转变为更多捕食者的捕食常数 【实验目的】 在掌握Lotka-Volterra 捕食者-猎物模型的生态学意义与各参数意义的基础上,通过改变参数值的大小,在计算机模拟捕食者种群与猎物种群数量变化规律,从而加深对该模型的认识。 【实验器材】 XP操作系统的计算平台 模拟运行软件

实质】 模型揭示了这种捕食关系的两个种群数量动态是此消彼长、往复振荡的变化规律。【方法步骤】 参数设置 (1)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 = 0.1 C1 = 0.01 C2 = 0.01 (2)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 = 0.5 C1 = 0.01 C2 = 0.01 (3)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 =2.5 C1 = 0.01 C2 = 0.01 (4)Please enter the following: Prey Predator N0 =100 P0 = 20 r1 = 0.1 r2 = 5 C1 = 0.01 C2 = 0.01 【分析讨论】(模拟分析图形见附表) (1)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 = 0.1

Lotka – Volterra 捕食者 – 猎物模型模拟

基础生态学实验 Lotka – Volterra 捕食者–猎物模型模拟 姓名王超杰 学号201311202926 实验日期2015年5月14日 同组成员董婉莹马月娇哈斯耶提 沈丹

一、【实验原理】 Lotka-Volterra捕食者-猎物模型是对逻辑斯蒂模型的延伸。它假设:除不是这存在外,猎物生活于理想环境中(其出生率与死亡率与种群密度无关);捕食者的环境同样是理想的,其种群增长只收到可获得的猎物的数量限制。本实验利用模拟软件模拟Lotka-Volterra捕食者-猎物模型,并以此研究该模型的规律特点。 捕食者—猎物模型简单化假设:①相互关系中仅有一种捕食者和一种猎物。②如果捕食者数量下降到某一阀值以下,猎物数量种数量就上升,而捕食者数量如果增多,猎物种数量就下降,反之,如果猎物数量上升到某一阀值,捕食者数量就增多,而猎物种数量如果很少,捕食者数量就下降。③猎物种群在没有捕食者存在的情况下按指数增长,捕食者种群在没有猎物的条件下就按指数减少。因此有 猎物方程:dN/dt=r1N-C1 PN; 捕食者方程:dP/dt=-r2P+C2PN。 其中N和P分别指猎物和捕食者密度,r1 为猎物种群增长率,-r2为捕食者的死亡率,t为时间,C1为捕食者发现和进攻猎物的效率,即平均每一捕食者捕杀猎物的常数,C2为捕食者利用猎物而转变为更多捕食者的捕食常数。 Lotka-Volterra捕食者-猎物模型揭示了这种捕食关系的两个种群数量动态是此消彼长、 往复振荡的变化规律。 二、【实验目的】 在掌握Lotka-Volterra 捕食者-猎物模型的生态学意义与各参数意义的基础上,通过改变参数值的大小,在计算机模拟捕食者种群与猎物种群数量变化规律,从而加深对该模型的认识。 三、【实验器材】 Windows 操作系统对的计算平台,具有年龄结构的种群增长模型的计算机模拟运行软件Populus。 四、【试验方法与步骤】 题目:探究捕食者存在时,捕食者与猎物数目之间随时间变化的规律 1.模拟建立两个虚拟种群,且物种之间存在捕食关系。初始种群内个体数P0=10;N0=20。 捕食者死亡率d2=0.6;猎物种群增长率r1 =0.9;g=0.5;C=0.1。代时为60 2.改变捕食者死亡率d2,观察实验结果,给出生态学描述及解释。 3.改变猎物种群增长率r2, 观察实验结果,给出生态学描述及解释。 4.改变捕食者发现和进攻猎物的效率C,观察实验结果,给出生态学描述及解释。 五、【实验结果】 1.P0=10;N0=20。d2=0.6;r1 =0.9;g=0.5;C=0.1。代时为60

自身阻滞作用下的食饵—— 捕食者模型

楚雄师范学院数学系《数学模型》课程 教学论文 自身阻滞作用下的食饵—捕食者模型题目: 专业:数学与应用数学 班级:数学系09级01班 学号: 20091021135 学生姓名:韩金伟 完成日期: 2011 年 12 月 楚雄师范学院数学系09级01班韩金伟学号:20091021135

楚雄师范学院数学系09级01班 韩金伟 学号:20091021135 自身阻滞作用下的食饵——捕食者模型 V olterra (Logistic )考虑自身阻滞作用的食饵——捕食者模型 一、模型要求 讨论具有自身阻滞作用的两种群食饵——捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性,并用matlab 软件画出图形。 二、问题叙述 针对两种群的生存关系食饵(食用鱼)和捕食者(鲨鱼)的V olterra 模型,我们在实际的生态系统中观察不到V olterra 模型显示的那种周期性震荡,而是趋向于某种平衡状态,即系统存在稳定平衡点。在V olterra 模型中,我们看到他并没有考虑种群的自身阻滞作用对模型的影响。为此,我们现在就在V olterra 模型中加入考虑种群自身阻滞作用Logistic 项重新建立模型对食饵(食用鱼)和捕食者(鲨鱼)的关系加以分析。 三、建立模型 食饵(食用鱼)和捕食者(鲨鱼)在时刻t 的数量分别记作)(),(21t x t x ,因为大海中资源丰富,假设在它们生存的空间里容纳食饵和捕食者的最大容纳量分 别为21N N ,,当食饵独立存在时以指数规律增长,(相对)增长率为1r ,即11x r x = ,而捕食者的存在使食饵的增长率减小,设减小的程度与捕食者的数量成正比,即 22N x ,食饵数量的增长对自身也有一定的阻滞作用,阻滞率为11N x ,于是)(1t x 满足方程 )1(r )(2 211111N x N x x t x σ--= (1) 1σ反映单位数量的乙(相对于甲)捕食单位数量甲(相对于乙)的能力。 捕食者离开食饵无法生存,设它独立存在时死亡率为2r ,即22x r y -= ,而食饵的存在为捕食者提供了食物,相当于使捕食者的死亡率降低,且促使其增长,设这种作用与食饵数量成正比,即 1 1 N x ,而捕食者的增长又对自身产生了阻滞作用,阻滞率为 2 2 N x ,于是)(2t x 满足方程

捕食者_被捕食者模型稳定性分析报告

被捕食者—捕食者模型稳定性分析 【摘要】自然界中不同种群之间还存在着一种非常有趣的既有相互依存、又有相互制约的生活方式:种群甲靠丰富的天然资源生存,种群乙靠捕食甲为生,形成食饵-捕食者系统,如食用鱼和鲨鱼,美洲兔和山猫,害虫和益虫等。本文是基于食饵—捕食者之间的有关规律,建立具有自身阻滞作用的两种群食饵—捕食者模型,分析平衡点的稳定性,进行相轨线分析,并用数值模拟方法验证理论分析的正确性。 【关键词】食饵—捕食者模型相轨线平衡点稳定性

一、问题重述 在自然界中,存在这种食饵—捕食者关系模型的物种很多。下面讨论具有自身阻滞作用的两种群食饵-捕食者模型,首先根据该两种群的相互关系建立模型,解释参数的意义,然后进行稳定性分析,解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性。 二、问题分析 本文选择渔场中的食饵(食用鱼)和捕食者(鲨鱼)为研究对象,建立微分方 程,并利用数学软件MATLAB 求出微分方程的数值解,通过对数值结果和图形的观察,猜测出它的解析解构造。然后,从理论上研究其平衡点及相轨线的形状,验证前面的猜测。 三、模型假设 1.假设捕食者(鲨鱼)离开食饵无法生存; 2.假设大海中资源丰富,食饵独立生存时以指数规律增长; 四、符号说明 )(t x /)(1t x ——食饵(食用鱼)在时刻t 的数量; )(t y /)(2t x ——捕食者(鲨鱼)在时刻t 的数量; 1r ——食饵(食用鱼)的相对增长率; 2r ——捕食者(鲨鱼)的相对增长率; 1N ——大海中能容纳的食饵(食用鱼)的最大容量;

2N ——大海中能容纳的捕食者(鲨鱼)的罪的容量; 1σ——单位数量捕食者(相对于2N )提供的供养食饵的实物量为单位数量捕食者(相对于1N )消耗的供养甲实物量的1σ倍; 2σ——单位数量食饵(相对于1N )提供的供养捕食者的实物量为单位数量捕食者(相对于2N )消耗的供养食饵实物量的2σ倍; d ——捕食者离开食饵独立生存时的死亡率。 五、模型建立 食饵独立生存时以指数规律增长,且食饵(食用鱼)的相对增长率为1r ,即 rx x =',而捕食者的存在使食饵的增长率减小,设减小的程度与捕食者数量成正比,于是)(t x 满足方程 axy rx ay r x t x -=-=')()( (1) 比例系数a 反映捕食者掠取食饵的能力。 由于捕食者离开食饵无法生存,且它独立生存时死亡率为d ,即dy y -=',而食饵的存在为捕食者提供了食物,相当于使捕食者的死亡率降低,且促使其增长。设这种作用与食饵数量成正比,于是)(t y 满足 bxy dy bx d y t y +-=+-=')()( (2) 比例系数b 反映食饵对捕食者的供养能力。

Lotka-Volterra捕食者-猎物模型模拟实验报告

Lotka-Volterra捕食者-猎物模型 姓名:吴艳 学号:200911201040 班级:生命科学学院09级一班同组人:张甜田,雷如飞,何毅 日期:2011-5-20

·摘要 Lotka-Volterra捕食者-猎物模型是对逻辑斯蒂模型的延伸。它假设:除不是 这存在外,猎物生活于理想环境中(其出生率与死亡率与种群密度无关);捕食者的环境同样是理想的,其种群增长只收到可获得的猎物的数量限制。本实验利用模拟软件模拟Lotka-Volterra捕食者-猎物模型,并以此研究该模型的规律特点。 ·实验原理 捕食者—猎物模型简单化假设:①相互关系中仅有一种捕食者和一种猎物。 ②如果捕食者数量下降到某一阀值以下,猎物数量种数量就上升,而捕食者数量如果增多,猎物种数量就下降,反之,如果猎物数量上升到某一阀值,捕食者数量就增多,而猎物种数量如果很少,捕食者数量就下降。③猎物种群在没有捕食者存在的情况下按指数增长,捕食者种群在没有猎物的条件下就按指数减少。 因此有猎物方程:dN/dt=r1N-C1 PN和捕食者方程:dP/dt=-r2P+C2PN。其中N 和P分别指猎物和捕食者密度,r1 为猎物种群增长率,-r2 为捕食者的死亡率,t为时间,C1为捕食者发现和进攻猎物的效率,即平均每一捕食者捕杀猎物的常数,C2为捕食者利用猎物而转变为更多捕食者的捕食常数。 ·实验目的 在掌握Lotka-Volterra捕食者-猎物模型的生态学意义和各参数意义的基础上,通过改变相应参数值的大小,在计算机上模拟捕食者种群与猎物种群的数量变化规律,从而加深对该模型的认识。 ·实验内容 观察记录每组数据下捕食者-猎物模型中两种群的增长情况。 ·实验结果与分析 2组对照组: 时间-猎物种群密度与时间-捕食者种群密度曲线:

食饵——捕食者数学模型论文 精品

食饵——捕食者数学模型 摘要:在自然界不同种群之间存在一种既有依存,又相互制约的生存方式。种群甲靠丰富的自然资源生存,种群乙靠捕食甲为生,形成食饵—捕食者系统。为了分析他们之间数量的变化关系,以及它们之间数量达到平衡的情况。本文根据它们之间的特殊关系与这种潜在的规律,建立了具有自滞作用的食饵—捕食者模型。我们利用matlab软件求微分方程的数值解,通过对数值结果和图形的观察猜测解析构造,然后研究平衡点及相轨线的形状,验证猜测的正确性 关键词:自滞作用数值解matlab 平衡点相轨线分析稳定性

一、问题重述 自然界不同种群之间存在一种既有依存,又相互制约的生存方式。种群甲靠丰富的自然资源生存,种群乙靠捕食甲为生,形成食饵—捕食者系统。为了分析他们之间数量的变化关系,以及它们之间数量达到平衡的情况。解释平衡点稳定的实际意义,对模型进行相轨线分析来验证理论分析的正确性,并用matlab软件画出图形。 二,问题背景 一次世界大战期间地中海渔业的捕捞量下降(食用鱼和鲨鱼同时捕捞),但是其中鲨鱼的比例却增加,这是为什么?V olterra建立的模型回答了这个问题 三,问题分析 首先,在复杂的自然界中,存在着许多影响种群发展的因素。假如给食饵(食用鱼)和捕食者(鲨鱼)一个理想的环境,它们是呈J形增长的。现实情况中,由于受到环境的限制,种群增长一般符合阻滞增长的模型。我们利用软件matlab 求出微分方程的数值解,并通过对数值和图形观察做出猜测,然后分析相轨线,验证猜测的的正确性。最后对数学模型进行修改和确定。 四、基本假设 1,假设它们是处于封闭的自然条件下,人类活动对其生存不产生影响 2,假设食饵和捕食者在封闭的环境中可以正常生长,没有疾病等促使他们死亡3,假设食饵和捕食者在各年龄段中的分布率不变,即年龄结构不变,并采用各种措施一直维持这以结构 4,假设捕食者离开食饵无法生存 5,食饵和捕食者不会因为捕食关系导致物种灭绝 五,符号说明

Volterra捕食模型

Lotka-volterra捕食者-猎物模型模拟 实验名称:Lotka-volterra捕食者-猎物模型模拟 实验成员:杨贵华、王栋俊、杨淦钧、姚吉明、鲜和章、王炎 院系:理学院13数学 实验日期:10月20日 dN/dt=r1N-C1NP 猎物种群动态 dP/dt=-r2N+C2NP 捕食者种群动态 N: 猎物的密度 r1: 猎物种群的增长率 C1: 捕食者发现和进攻猎物的效率,即平均每一捕食者捕食猎物的常数 P: 捕食者密度 -r2: 捕食者在没有猎物时的条件下的死亡率 C2: 捕食者利用猎物而转变为更多捕食者的捕食常数 【实验目的】 在掌握Lotka-V olterra 捕食者-猎物模型的生态学意义与各参数意义的基础上,通过改变参数值的大小,在计算机模拟捕食者种群与猎物种群数量变化规律,从而加深对该模型的认识。 【实验器材】 操作系统的计算平台 模拟运行软件 实质】 模型揭示了这种捕食关系的两个种群数量动态是此消彼长、往复振荡的变化规律。【方法步骤】 参数设置 (1)Please enter the following:

Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 = 0.1 C1 = 0.01 C2 = 0.01 (2)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 = 0.5 C1 = 0.01 C2 = 0.01 (3)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 =2.5 C1 = 0.01 C2 = 0.01 (4)Please enter the following: Prey Predator N0 =100 P0 = 20 r1 = 0.1 r2 = 5 C1 = 0.01 C2 = 0.01 【分析讨论】(模拟分析图形见附表) (1)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 = 0.1 此模型设为标准模型,接下来的实验设计的讨论均以此模型为标准进行比较讨论。 对此模型的生态学解释:刚开始的时候由于被捕食者的数量较多使得捕食者的食物充足,在较短的时间内数量增加较明显,幅度较大,但是,随着捕食者的数量增加,被捕食者被捕食的几率也上升种群数量就会急剧下降,由于食物的减少,捕食者的生存环境变得恶劣,个体的生存受到威胁,群体的发展受到制约,最终使得种群数量减少,捕食者的减少使得被捕食者的生存环境得以改善,数量增加,同时被不是这的食量增加是捕食者的生存状况得以改善,所以,随着被捕食者数量的增加,捕食者的种群也在同步增长,随着捕食者种群的扩大,被捕食者的生存又一次受到限制,就这样,捕食者与被捕食者的种群的变化互相制约、影响,交替增长与减小。周期为150代。 (2)Please enter the following: Prey Predator N0 = 100 P0 = 20 r1 = 0.1 r2 = 0.5 C1 = 0.01 C2 = 0.01 对此模型的生态学解释:与基本模型相比较修改设计后的模型使得相互调整周期缩短为30代左右,可以知道是由于捕食者的种群繁殖速率的增加,加快了自然调节速率,使得自然中这两个物种的相互作用轻度加强,最终导致相互调节周期的缩短。同时捕食者的最大种群数量减少为44左右,可以从此模型与基本模型的差异中知道,造成这种变化的原因可能是由于种群的增长速率较大,使得种群的数量在较短的时间内增加很多,结果导致本来需要很长时间就可以恢复原种群大小范围,结果由于时间较短,使得种群的发展时间不租而使种

相关文档
最新文档