双曲线专题复习

双曲线专题复习
双曲线专题复习

《圆锥曲线》---------双曲线

主要知识点

1、 双曲线的定义:

(1) 定义:_____________________________________________________________ (2) 数学符号:________________________ (3) 应注意问题:

2

注意:如何根据双曲线的标准方程判断出它的焦点在哪个轴上?进一步,如何求出焦点坐标?

3

注意:(1)如何比较标准地在直角坐标系中画出双曲线的图像? (2)双曲线的离心率的取值范围是什么?离心率有什么作用? (3)当时b a ,双曲线有什么特点? 4.双曲线的方程的求法

(1)双曲线的方程与双曲线渐近线的关系

①已知双曲线段的标准方程是22221x y a b -=(0,0)a b >>(或22

221(0,0)x y a b b a

-=>>),

则渐近线方程为________________________________________________________________; ②已知渐近线方程为0bx ay ±=,则双曲线的方程可表示为__________________________。 (2)待定系数法求双曲线的方程

①与双曲线22

221x y a b

-=有共同渐近线的双曲线的方程可表示为_______________________;

②若双曲线的渐近线方程是b

y x a

,则双曲线的方程可表示为_____________________;

③与双曲线22

221x y a b

-=共焦点的双曲线方程可表示为_______________________________;

④过两个已知点的双曲线的标准方程可表示为______________________________________;

⑤与椭圆22

221x y a b

+=(0)a b >>有共同焦点的双曲线的方程可表示为

______________________________________________________________________________。

5.双曲线离心率的有关问题 (1)c

e a

=

,1e >,它决定双曲线的开口大小,e 越大,开口越大。 (2)等轴双曲线的两渐近线互相垂直,离心率2e =

(3)双曲线离心率及其范围的求法。

①双曲线离心率的求解,一般可采用定义法、直接法等方法求解。

②双曲线离心率范围的求解,一般可以从以下几个方面考虑:a .与已知范围联系,通过求

值域或解不等式来完成;b .

通过判别式?;c .利用点在曲线内部形成的不等式关系;d .利用解析式的结构特点。

6、直线与双曲线的位置关系的判定及相关计算

(1)直线与双曲线的位置关系有:____________、____________、____________ 注意:如何来判断位置关系?

(2)若斜率为k 的直线被双曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则相交弦长 =AB _____________________ 二、典型例题:

考点一:双曲线的定义

例1 已知动圆M 与圆C 1:(x +4)2

+y 2

=2外切,与圆C 2:(x -4)2

+y 2

=2内切,求动圆圆心M 的

轨迹方程.

变式训练:由双曲线4

92

2y x -=1上的一点P 与左、右两焦点F 1、F 2构成△PF 1F 2,求△PF 1F 2

的内切圆与边F 1F 2的切点坐标.

巩固训练:(1). F 1、F 2是双曲线162

x -20

2y =1的焦点,点P 在双曲线上.若点P 到焦点F 1的

距离等于9,求点P 到焦点F 2的距离.

(2).过双曲线x 2-y 2

=8的左焦点F 1有一条弦PQ 在左支上,若|PQ |=7,F 2是双曲线的右焦点,则△PF 2Q 的周长是 .

(3).一动圆与两定圆12

2

=+y x 和01282

2

=+-+x y x 都外切,则动圆圆心轨迹为 A.椭圆 B. 双曲线 C.双曲线的一支 D.抛物线

考点二:双曲线的方程

例2 根据下列条件,求双曲线的标准方程. (1)与双曲线16

92

2y x -

=1有共同的渐近线,且过点(-3,23);

(2)与双曲线4

162

2y x -=1有公共焦点,且过点(32,2).

变式训练:已知双曲线的渐近线的方程为2x ±3y =0, (1)若双曲线经过P (6,2),求双曲线方程; (2)若双曲线的焦距是213,求双曲线方程; (3)若双曲线顶点间的距离是6,求双曲线方程.

巩固训练:(1)求与椭圆

22

1255

x y +=共焦点且过点的双曲线的方程;

(2)中心在原点,一个顶点的坐标为(3,0),且焦距与虚轴长之比为5:4,求双曲线的标准方程;

(3)已知双曲线的离心率e =(5,3)M - ,求双曲线的方程;

(4)与双曲线14

2

2

=-y x 有共同渐近线,且过点)2,2(的双曲线方程;

(5)已知双曲线12222=-b

y a x (a >0,b >0)的两条渐近线方程为x y 33

±=,若顶点到渐近线的距离为1,则双曲线方程为_________________.

(6).已知方程

22

121

x y m m -=++表示双曲线,则m 的取值范围是__________________. (7).经过两点)3,72(),26,7(B A --的双曲线的标准方程为___________.

考点三:双曲线的几何性质

例3 双曲线C :

2

22

2b y a x -=1 (a >0,b >0)的右顶点为A ,x 轴上有一点Q (2a ,0),若C 上

存在一点P ,使·=0,求此双曲线离心率的取值范围.

变式训练:已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线方程;(2)若点M (3,m )在双曲线上,求证:1·2MF =0;(3)求△F 1MF 2的面积.

巩固训练:(1)已知双曲线122

22=-b

y a x (a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°

的直线与双曲线的一条渐近线平行,则此双曲线的离心率是:

A.1

B. 2

C.3

D.4

(2)已知双曲线2221(2x y a a -

=>的两条渐近线的夹角为3

π

,则双曲线的离心率为: A.2 B. 3 C.263 D.23

3

(3)设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线

垂直,那么此双曲线的离心率为_________.

(4)双曲线22

221(0,0)x y a b a b

-=>>的一个焦点为F (4,0),过双曲线的右顶点作垂直于x 轴的垂

线交双曲线的渐近线于A ,B 两点,O 为为坐标原点,则△AOB 面积的最大值为: A. 8 B. 16 C. 20 D. 24

考点四:双曲线的离心率

例1、已知F 1、F 2分别是双曲线 22

221(0,0)x y a b a b

-=>>的左、右焦点,过F 1作垂直于X

轴的直线与双曲线交于A 、B 两点,若△AF 2B 是直角三角形,求双曲线的离心率。

变式训练:

1、若△AF 2B 是等边三角形,则双曲线的离心率为__________。

2、若△AF 2B 是锐角三角形,则双曲线的离心率的取值范围为________。

3、若△AF 2B 是钝角三角形,则双曲线的离心率的取值范围为________。 巩固训练:

1、已知F 1、F 2分别是双曲线 22

221(0,0)x y a b a b

-=>>的左、右焦点,过F 2作倾斜角为?

60的直线与双曲线的右支有且只有一个交点,求双曲线的离心率的取值范围。

2、已知F 1、F 2分别是双曲线 22

221(0,0)x y a b a b

-=>>的左、右焦点,过F 2作垂直于渐近

线的直线与双曲线的两支都相交,求双曲线的离心率的取值范围。

3、直线1-=kx y 与双曲线42

2

=-y x 没有公共点,则k 的取值范围为_______,有两个公共点,则k 的取值范围为_______,有一个公共点,则k 的取值范围为_______,与左支有两个公共点,则k 的取值范围为_______。

考点五:双曲线中的焦点三角形

例、设F 1和F 2为双曲线

2

2

x y 1169

-=的两个焦点,P 是双曲线上一点,已知∠F 1PF 2=600求△F 1PF 2的面积

变式训练:设F 1和F 2为双曲线

2

2

x y 1169

-=的两个焦点,P 是双曲线上一点, 已知∣PF 1∣∣PF 2∣=32,求∠F 1PF 2的余弦值与三角形F 1PF 2面积

巩固训练:

1. 双曲线

22

1169

x y -=左焦点1F 的弦AB 长为6,则2ABF △(2F 为右焦点)的周长是____________

2、已知定点A B ,,且6AB =,动点P 满足4PA PB -=,则PA 的最小值是 .

3、 设F 1和F 2为双曲线2

2x

y 14

-=的两个焦点,P 为双曲线上一点,若∠F 1PF 2=900, 则三角形F 1PF 2面积是

4、设F 1和F 2为双曲线

2

2

x y 1169

-=的两个焦点,P 是双曲线上一点,已知∠F 1PF 2=600则P 点到F 1和F 2两点的距离之和为___________

5、已知双曲线C 2

2

22x y 1a b

-=(a>0,b>0)的两个焦点为F 1(-2,0) ,F 2(2,0),点P (3双曲线C 上(1)求双曲线C 的方程(2)记O 在坐标原点,过Q (0,2)的直线L 与双曲

线C 相交于不同的两点E,F ,若△OEF 的面积,求直线L 的方程

考点六:直线和双曲线的位置关系

例4. 已知曲线22221(0,0)x y a b a b

-=>>的离心率e =直线l 过A (a ,0)、B (0,)b -两

点,原点O 到l 。(1)求双曲线的方程;(2)过点B 作直线m 交双曲线于M 、N 两点,若23-=?OM ,求直线m 的方程。

变式训练:直线12:1:2

2

=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B.(Ⅰ)求实数k 的取值范围;(Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.

巩固训练:1、已知双曲线2

2

22x y -=的左、右两个焦点为1F , 2F ,动点P 满足|P 1F |+| P 2F |=4.①求动点P 的轨迹E 的方程;②设过2F 且不垂直于坐标轴的动直线l 交轨迹E 于A 、B 两点,问:终段O 2F 上是否存在一点D ,使得以DA 、DB 为邻边的平行四边形为菱形?作出判断并证明.

2、已知双曲线C :λ

-12

x -λ2y =1(0<λ<1)的右焦点为B ,过点B 作直线交双曲线C 的右

支于M 、N 两点,试确定λ的范围,使OM ·ON =0,其中点O 为坐标原点.

3、已知中心在原点的双曲线C 的一个焦点是F 1(-3,0),一条渐近线的方程是5x -2y =0. (1)求双曲线C 的方程;

(2)若以k (k ≠0)为斜率的直线l 与双曲线C 相交于两个不同的点M ,N 且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为2

81

,求k 的取值范围.

双曲线专题复习讲义及练习学生

双曲线专题复习讲义 考点1双曲线的定义及标准方程 题型1:运用双曲线的定义 题型1求离心率或离心率的范围 2 2 [例3]已知双曲线X y 每 1,(a 0,b 0)的左,右 焦 a b 点分别为F 1,F 2,点P 在双曲线的右支上,且 端点,若该椭圆的长轴长为 4,则△ AF 1F 2面积的最大值 为 ___ . 4.过点(-6 , 3)且和双曲线x 2 -2y 2 =2有相同的渐近线 的双曲线方程为 _________________ 。 | PF 1 | 4|PF 2 |,则此双曲线的离心率 e 的最大值为_. 【新题导练】 双曲线 x2 64 y2 36 =1上一点P 到双曲线右焦点的距离是4,那么点P 到左准线的距离是 题型2与渐近线有关的问题 在双曲线的几何性质中,应充分利用双曲线的渐近线方程,简化 解题过程.同时要熟练掌握以下三方面内容: (1)已知双曲线方 程, 求它的渐近线;(2)求已知渐近线的双曲线的方程; (3)渐近线 的 b 、f c2 — a2 /c2. ---------- 斜率与离心率的关系,如 k =a —a2—1= . e2—1. 【新题导练】 2 1. 设P 为双曲线X 2 - 1上的一点F 1、F 2是该双曲 12 线的两个焦点,若|PF 1|: |PF 2|=3 : 2,则厶PF 1F 2的面 积为 ( ) A. 6、3 B. 12 C. 12 .3 D. 24 2 2 2. 如图2所示,F 为双曲线C : — — 1的左焦点, 9 16 双曲线C 上的点P 与P 7 i i 1,2,3关于y 轴对称, [例4]若双曲 线 2 X ~2 a 2 莒 1(a 0,b 0)的焦点到 渐 b 2 近线的距离等于实轴长,则双曲线的离心率为 7 . 【新题导 练】 2 双曲线— 4 2 y_ 9 1的渐近线方程 是 A. 2 x B. 3 C. D.2 则 RF P 2F P 3F F 4F F ^F P 6F 的值是() 8.焦点为(0, 6),且与双曲线 1有相同的渐近线 A . 9 B. 16 C. 18 D. 27 题型2求双曲线的标准方程 2 [例2 ]已知双曲线C 与双曲线— 16 2 —=1有公共焦点, 4 的双曲线方程是 2 A .— 12 2 y 24 2 1B .— 12 2 x 24 ) 2 C . 乂 24 2 x 12 2 D .— 24 2 乂 1 12 双曲线专题练习 且过点(3 ...2,2).求双曲线C 的方程. 【新题导练】 3.已知双曲线的渐近线方程是 y 2,焦点在坐标轴上 且焦距是10,则此双曲线的方程为 __________________ ; 4?以抛物线y 2 8 -. 3x 的焦点F 为右焦点,且两条渐近 线 是x J3y 0的双曲线方程为 _________________________ . 考点2双曲线的几何性质 一、填空题 2 1 .椭圆工 9 k= 。 2 1与双曲线丄 k 仝1的焦点相同,则 3 2 2.双曲线丄 9 2 鼻1的渐近线为 4 3 ?已知 戸、F 2为椭圆的两个焦点, A 为它的短轴的一个 5.过原点与双曲线 1交于两点的直线斜 率 2 2 5.已知双曲线—' m n 1的一条渐近线方程 为 的取值范围是 6、若双曲线8kx 2 ky 2 8的一个焦点是 0, 3),则 k C . 5 1 或2 D.不存在 2

双曲线教案完整篇

2.3.1双曲线及其标准方程 教学目标: 1.知识与技能 掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程. 2.过程与方法 教材通过具体实例类比椭圆的定义,引出双曲线的定义,通过类比推导出双曲线的标准方程. 3.情感、态度与价值观 通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力. 教学重点:双曲线的定义、标准方程及其简单应用 教学难点:双曲线标准方程的推导 授课类型:新授课 教具:多媒体、实物投影仪 教学过程: 一.情境设置 1.复习提问: (由一位学生口答,教师利用多媒体投影) 问题 1:椭圆的定义是什么? 问题 2:椭圆的标准方程是怎样的? 问题3:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢? 2.探究新知: (1)演示:引导学生用《几何画板》作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。 (2)设问:①|MF 1|与|MF 2 |哪个大? ②点M到F 1与F 2 两点的距离的差怎样表示? ③||MF 1|-|MF 2 ||与|F 1 F 2 |有何关系? (请学生回答:应小于|F 1F 2 | 且大于零,当常数等于|F 1 F 2 | 时,轨迹是以 F 1、F 2 为端点的两条射线;当常数大于|F 1 F 2 | 时,无轨迹) 二.理论建构 1.双曲线的定义 引导学生概括出双曲线的定义: 定义:平面内与两个定点F 1、F 2 的距离的差的绝对值等于常数(小于<|F 1 F 2 |)

的点轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(投影) 概念中几个关键词:“平面内”、“距离的差的绝对值”、“常数小于21F F ” 2.双曲线的标准方程 现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导(教师使用多媒体演示) (1)建系 取过焦点F 1、F 2的直线为x 轴,线段F 1F 2的垂直平分线为y 轴建立平面直角坐标系。 (2) 设点 设M (x ,y )为双曲线上任意一点,双曲线的焦距为2c (c>0),则F 1(-c ,0)、F 2(c ,0),又设点M 与F 1、F 2的距离的差的绝对值等于常数2a (2a <2c ). (3)列式 由定义可知,双曲线上点的集合是P={M|||MF 1|-|MF 2||=2a }. 即: (4)化简方程 由学生板演,教师巡视。化简,整理得: 移项,两边平方得 两边再平方后整理得 由双曲线定义知 这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在x 轴上,焦 ()(), 22 22 2a y c x y c x =+-- ++()()a y c x y c x 22 22 2±=+-- ++()2 22y c x a a cx +-±=-()() 2 2222222 a c a y a x a c -=--) 0,0(1)0(,0,2222 2222222>>=->=->-∴>>b a b y a x b b a c a c a c a c 代入上式整理得设即

双曲线专题练习(含解析)

双曲线专题练习 5.(2020·陕西省西安市育才中学模拟)已知双曲线C:x2 a2-y2 16=1(a>0)的一条渐近线方程为4x+3y =0,F1,F2分别是双曲线C的左、右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|=()

A .1 B .13 C .17 D .1或13 6.(2020·辽宁省东北中山中学模拟)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线 的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.x 24-y 2 12=1 B.x 212-y 2 4=1 C.x 23 -y 2 =1 D .x 2- y 2 3 =1 7.(2020·河北省秦皇岛市第三中学模拟)如图,双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点分别 为F 1,F 2,直线l 过点F 1且与双曲线C 的一条渐近线垂直,与两条渐近线分别交于M ,N 两点,若|NF 1|=2|MF 1|,则双曲线C 的渐近线方程为( ) A .y =± 33x B .y =±3x C .y =±22 x D .y =±2x 8.(2020·辽宁省海城市高级中学模拟)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =5 4,且其右焦点为F 2(5, 0),则双曲线C 的方程为( ) A.x 24-y 2 3=1 B.x 29-y 2 16=1 C.x 216-y 2 9 =1 D.x 23-y 2 4 =1

9.(2020·吉林省四平市实验中学模拟)已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0),右焦点F 到渐近线的 距离为2,点F 到原点的距离为3,则双曲线C 的离心率e 为( ) A. 53 B.355 C.63 D.62 10.(2020·黑龙江省双鸭山市第一中学模拟)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos △F 1PF 2=( ) A.14 B.35 C.34 D.4 5 11.(2020·江西省赣州市第一中学模拟)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =3 5x ,则a = . 12.(2020·福建省福州高级中学模拟)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的 右焦点F (c,0)到一条渐近线的距离为 3 2 c ,则其离心率的值为 . 13.(2020·安徽省马鞍山市第二中学模拟)双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近线为正方形OABC 的 边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a = . 14.(2020·江苏省太湖高级中学模拟)已知椭圆D :x 250+y 2 25=1与圆M :x 2+(y -5)2=9.双曲线G 与 椭圆D 有相同的焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 15.(2020·浙江省义乌第二中学 模拟)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程; (2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→ =0. 16.(2020·黑龙江省绥化市第一中学模拟)中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点

打印双曲线基础训练题(含答案)

: 双曲线基础训练题(一) 1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( D ) A .椭圆 B .线段 C .双曲线 D .两条射线 2.方程1112 2=-++k y k x 表示双曲线,则k 的取值范围是 (D ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

8.双曲线方程为 152||2 2=-+-k y k x ,那么k 的取值范围是 ( D ) A .k >5 B .2<k <5 C .-2<k <2 D .-2<k <2或k >5 9.双曲线的渐近线方程是y=±2x ,那么双曲线方程是 ( D ) A .x 2 -4y 2 =1 B .x 2 -4y 2 =1 C .4x 2 -y 2 =-1 D .4x 2 -y 2 =1 10.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若3||1=PF ,则=||2PF (C ) A .1或5 B . 6 C . 7 D . 9 11.已知双曲线22 221,(0,0)x y a b a b -=>>的左,右焦点分别为12,F F ,点P 在双曲线 的右支上,且12||4||PF PF =,则双曲线的离心率e 的最大值为 ( B ) A . 4 3 B . 5 3 C .2 D . 73 — 12.设c 、e 分别是双曲线的半焦距和离心率,则双曲线122 22=-b y a x (a>0, b>0)的一 个顶点到它的一条渐近线的距离是 ( D ) A . c a B . c b C . e a D . e b 13.双曲线)1(122 >=-n y n x 的两焦点为F 1,F 2,P 在双曲线上,且满足|PF 1|+|PF 2|=,22+n 则△PF 1F 2的面积为 ( B )

双曲线专题经典练习及答案详解

双曲线专题 一、学习目标: 1.理解双曲线的定义; 2.熟悉双曲线的简单几何性质; 3.能根据双曲线的定义和几何性质解决简单实际题目. 二、知识点梳理 定 义 1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于 2 1F F )的点的轨迹 2、到定点F 与到定直线l 的距离之比等于常数()1>e e e (>1)的点的轨迹 标准方程 -2 2a x 22 b y =1()0,0>>b a -22a y 22 b x =1()0,0>>b a 图 形 性质 范围 a x ≥或a x -≤,R y ∈ R x ∈,a y ≥或a y -≤ 对称性 对称轴: 坐标轴 ;对称中心: 原点 渐近线 x a b y ± = x b a y ± = 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B 焦点 ()0,1c F -,()0,2c F ()c F -,01,()c F ,02 轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2 离心率 1>= a c e ,其中22b a c += 准线 准线方程是c a x 2 ±= 准线方程是c a y 2 ±= 三、课堂练习

1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2=1有相同的焦点,则a 的值是( ) A.1 2 B .1或-2 C .1或1 2 D .1 2.已知F 是双曲线x 24-y 2 12=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 3.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( ) A .2 B .4 C .6 D .8 4.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( ) A.x 29-y 2 =1 B .x 2-y 29=1 C.x 23-y 2 7=1 D.x 27-y 2 3=1 5.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________. 6.已知双曲线x 26-y 2 3=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( ) A.365 B.566 C.65 D.56

双曲线及其标准方程(教学设计)

双曲线及其标准方程 教学目标:1、熟练地掌握双曲线的定义、标准方程; 2、了解双曲线标准方程的推导方法。 教学重点:双曲线方程的推导; 教学难点:求双曲线的标准方程 教学过程: 复习引入 提问:椭圆的定义是什么? 思考:如果将椭圆定义中的“和”改为“差”,又可以得到什么样的轨迹? 讲授新知 一、双曲线的定义: 平面内,与两定点21,F F 的距离之差 等于 的点的轨迹叫双曲线。 符号语言为: 其中:① 两定点21,F F ——双曲线的焦点; ② c F F 221=——双曲线的焦距。 注意:c a 220<< 讨论:(1)若a a MF MF 2221-=-或,则点M 的轨迹是什么? (2)若c a 22=,则点M 的轨迹是什么? (3)若c a 22>,则点M 的轨迹是什么? (4)若02=a ,则点M 的轨迹是什么? 二、双曲线的标准方程 提问:1、求曲线的方程有哪些步骤? 2、需要注意哪些问题? 3、建系时,焦点在x 轴上和焦点在y 上,双曲线的标准方程有什么不同? 4、如何判断双曲线的焦点在哪个轴上? 例1、如果方程11 22 2=+-+m y m x 表示焦点在x 轴上的双曲线,求m 的取值范围。

变式1:如果方程 11 22 2=+-+m y m x 表示焦点在y 轴上的双曲线,求m 的取值范围。 变式2:如果方程 11 22 2=+-+m y m x 表示双曲线,求m 的取值范围 练习:求适合下列条件的双曲线的标准方程: (1)3,4==b a ,焦点在x 轴上; (2)焦点为()()6,,5,0,5021的距离差的绝对值为到双曲线上一点, F F P -; 思考:如何求经过两点()() 3,72,627--, 的双曲线方程. 小结:1、本节课我们主要学习了哪些内容? 2、有哪些需要注意的内容? 作业:P54:A 组2、5

双曲线基础练习题特别

双曲线基础练习 、选择题: 1 .已知a 3, c 5,并且焦点在X轴一上,则双曲线的标准程是() 2 2 2 2 2 2 2 2 (A) x y 1 ( B) x y 1 (C) x y 1 (D)x y 1 9 16 9 16 9 16 16 9 2 .已知b 4,c 5,并且焦点在y轴 上, 则双曲线的标准方程是() 2 2 2 2 2 2 2 2 (A) X y 1 (B) X y 1 (C) x y 1 (D)x y 1 16 9 16 9 9 16 9 16 2 2 3.. 双曲线 —J 1上P点到左焦点的距离是6,则P到右焦点的距离是()16 9 (A)12 (B)14 (C)16 (D)18 2 2 4.. 双曲线—y 1的焦点坐标是() 16 9 (A)(5, 0)和(-5 , 0)(B)(0, 5)和(0,-5 ) (C) (0, 5)和(5, 0) (D) (0, -5 )和(-5 , 0) 5、方程J(x 5)2y2V(x 5)2 2 y 6化简得:() 2 2 2 2 2 2 2 2 (A)—y 1 (B)x y 1 (C)—y 1 (D) x y 1 9 16 16 9 9 16 16 9 6.已知实轴长是6,焦距疋10的双曲线的标准方程是( 是() (A) . x 2y2 1和 2 x 匸1 2 2 (B) x y1和x2匸1 9 16 9 16 9 16 16 9 2 2 2 2 2 2 2 2 (C)—y 1和x y 1 (D) x y 1 和x y 1 16 9 16 9 25 16 16 25 7.过点A (1,0)和 B B;2,1)的双曲线标准方程() (A) x22y2 1 (B) 2 2 x y 1 (C) x2y2 1 (D x2 2y2 1 2 2 8. P为双曲线—y 1上一点,A、B为双曲线的左、右焦点,且AP PB,贝V PAB的 16 9

双曲线及其标准方程教案

2.3.1双曲线及其标准方程第一课时 《双曲线及其标准方程》 一.教学目标 ?知识与技能目标 了解双曲线的定义,几何图形,标准方程 ?过程与方法目标 类比椭圆的定义,标准方程,得到双曲线的定义,标准方程,并注意两者的比较 ?情感与态度目标 体会运动变化的观点,数形结合的思想方法 二.教材分析: 1、教学分析:学生已经掌握曲线与方程的基础,通过实例给出双曲线的定义,进而去推导双曲线的标准方程,由于前面学习了椭圆的相关知识,这一块对于学生来说是比较熟悉的内容,可让他们自行推导,课本的例1很好的结合了双曲线的定义来考察学生对概念理解的程度,例2将双曲线应用在实际生活当中,后面的探究内容可以充分发挥出学生的主导地位,分析和发现轨迹方程的求法。 2.教学重点:双曲线的定义,标准方程 3.教学难点:双曲线标准方程的推导 三、教学过程: (一)导入新课 1.回顾椭圆的定义,标准方程

2.提出问题: 平面内到两定点的距离的差为常数的点的轨迹是什么? 3.实验探究上述问题 学生动手实验 P .52拉链演示 4.多媒体演示 (二)推进新课 1.双曲线的定义: 平面内与两个定点1F ,2F 的距离的差的绝对值为常数(小于21F F )的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。 即以曲线上的点M 满足:a MF MF 221=-(a 为定值,a F F 221>) 思考:(1)若a F F 221=,点M 的轨迹是什么? (2)若a F F 221<,点M 的轨迹是什么? 2.双曲线标准方程的推导 以焦点在x 轴的双曲线为例,类比椭圆标准方程的推导过程,按求曲线方程的一般步骤求解。 得到双曲线的标准方程为12222=-b y a x 说明: (1)12222=-b y a x 或12222=-b x a y 均称为双曲线的标准方程; (2)c b a ,,三者的关系:222b a c +=,注意与椭圆中c b a ,,三者关

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

《双曲线高考真题》专题

《双曲线高考真题》专题 2018年( )月( )日 班级 姓名 从善如登,从恶如崩。——《国语》 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 3.(2018全国卷Ⅲ)已知双曲线22 221(00)x y C a b a b -=>>:,则点(4,0) 到C 的渐近线的距离为 A B .2 C . 2 D .4.(2017新课标Ⅰ)已知F 是双曲线C :2 2 13 y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ?的面积为 A . 13 B .12 C .23 D .32 5.(2017新课标Ⅱ)若1a >,则双曲线22 21x y a -=的离心率的取值范围是 A .)+∞ B . C . D .(1,2) 6.(2017天津)已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐

近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 A . 221412x y -= B .221124x y -= C .2213x y -= D .22 13y x -= 7.(2016天津)已知双曲线)0,0(122 22>>=-b a b y a x 的焦距为52,且双曲线的一条 渐近线与直线02=+y x 垂直,则双曲线的方程为 A .1422=-y x B .1422 =- y x C . 15 320322=-y x D .12035322=-y x 8.(2015湖南)若双曲线22 221x y a b -=的一条渐近线经过点(3,4)-,则此双曲线的离心 率为 A B .54 C .43 D .53 9.(2015四川)过双曲线2 2 13 y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB = A . 3 B . C .6 D .10.(2014新课标1)已知F 是双曲线C :2 2 3(0)x my m m -=>的一个焦点,则点F 到 C 的一条渐近线的距离为 A B .3 C D .3m 11.(2013新课标1)已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为2 ,

双曲线专题复习讲义及练习

双曲线专题复习讲义 ★知识梳理★ 1. 双曲线的定义 (1)第一定义:当1212||||||2||PF PF a F F -=<时, P 的轨迹为双曲线; 当1212||||||2||PF PF a F F -=>时, P 的轨迹不存在; 当21212||F F a PF PF ==-时, P 的轨迹为以21F F 、为端点的两条射线 (2)双曲线的第二义 平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (1>e )的点的轨迹为双曲线 与双曲线12222=-b y a x 共渐近线的双曲线系方程为:)0(22 22≠=-λλb y a x 与双曲线122 22=-b y a x 共轭的双曲线为22221y x b a -= 等轴双曲线222a y x ±=-的渐近线方程为x y ±= ,离心率为2=e .; ★重难点突破★ 1.注意定义中“陷阱” 问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支 12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116 92 2>=- x y x 2.注意焦点的位置

问题2:双曲线的渐近线为x y 2 3 ± =,则离心率为 点拨:当焦点在x 轴上时, 23=a b ,213=e ;当焦点在y 轴上时,2 3 =b a ,313=e ★热点考点题型探析★ 考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义 [例1 ] 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同 时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上) 【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的. [解析]如图,以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020) 设P (x,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PC|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360 由双曲线定义知P 点在以A 、B 为焦点的双曲线 122 22=-b y a x 上, 依题意得a=680, c=1020, 用y=-x 代入上式,得5680±=x ,∵|PB|>|PA|, 答:巨响发生在接报中心的西偏北450距中心m 10680处. 【名师指引】解应用题的关键是将实际问题转换为“数学模型” 【新题导练】 1.设P 为双曲线112 2 2 =-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( ) A .36 B .12 C .312 D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ① 又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF 为21F PF ∴直角三角形,

(完整版)高二双曲线练习题及答案(整理)总结

x y o x y o x y o x y o 高二数学双曲线同步练习 一、选择题(本大题共10小题,每小题5分,共50分) 1.到两定点()0,31-F 、()0,32F 的距离之差的绝对值等于6的点M 的轨迹 ( ) A .椭圆 B .线段 C .双曲线 D .两条射线 2.方程1112 2=-++k y k x 表示双曲线,则k 的取值范围是 ( ) A .11<<-k B .0>k C .0≥k D .1>k 或1-

最新整理初三数学九年级数学竞赛双曲线专题教案.docx

最新整理初三数学教案九年级数学竞赛双曲线专题 教案 2.双曲线图象上的点是关于原点O成中心对称,在》0时函数的图象关于直线轴对称;在《0时函数的图象关于直线轴对称. 3.自变量的取值是不等于零的全体实数,双曲线向坐标轴无限延伸但不能接近坐标轴. 例题求解 例1已知反比例函数的图象与直线和过同一点,则当时,这个反比例函数的函数值随的增大而(填增大或减小). 思路点拨确定的值,只需求出双曲线上一点的坐标即可. 注:(1)解与反比函数相关问题时,充分考虑它的对称性(关于原点O中心称,关于轴对称),这样既能从整上思考问题,又能提高思维的周密性. (2)一个常用命题: 如图,设点A是反比例函数()的图象上一点,过A作AB⊥轴于B,过A作AC⊥轴于C,则 ①S△AOB=; ②S矩形OBAC=. 例2如图,正比例函数()与反比例函数的图象相交于A、C两点,过A作AB ⊥轴于B,连结BC,若S△ABC的面积为S,则() A.S=1B.S=2C.S=D.S= 思路点拨运用双曲线的对称性,导出S△AOB与S△OBC的关系. 例3如图,已知一次函数和反比例函数()的图象在第一象限内有两个不同的公共点A、B.

(1)求实数的取值范围; (2)若△AOB面积S=24,求的值. ( 荆门市中考题) 思路点拨(1)两图象有两个不同的公共点,即联立方程组有两组不同实数解; (2)S△AOB=S△COBS-S△COA,建立的方程. 例4如图,直线分别交、轴于点A、C,P是该直线上在第一象限内的一点,PB⊥轴于B,S△ABP=9. (1)求点P的坐标; (2)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作PT⊥轴于F,当△BRT与△AOC相似时,求点R的坐标. 思路点拨(1)从已知的面积等式出发,列方程求P点坐标;(2)以三角形相似为条件,结合线段长与坐标的关系求R坐标,但要注意分类讨论.例5如图,正方形OABC的面积为9,点O为坐标原点,点A在轴上,点C 在轴上,点B在函数(,)的图象上,点P(,)是函数(,)的图象上的任意一点,过点P分别作轴、轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC 不重合部分的面积为S. (1)求B点坐标和的值; (2)当时,求点P的坐标; (3)写出S关于m的函数关系式. 思路点拨把矩形面积用坐标表示,A、B坐标可求,S矩形OAGF可用含的代数式表示,解题的关键是双曲线关于对称,符合题设条件的P点不惟一,故思考须周密. 注:求两个函数图象的交点坐标,一般通过解这两个函数解析式组成的方程

双曲线专题复习(精心整理).

《圆锥曲线》---------双曲线 主要知识点 1、 双曲线的定义: (1) 定义:_____________________________________________________________ (2) 数学符号:________________________ (3) 应注意问题: 2 注意:如何根据双曲线的标准方程判断出它的焦点在哪个轴上?进一步,如何求出焦点坐标? 3 注意:(1)如何比较标准地在直角坐标系中画出双曲线的图像? (2)双曲线的离心率的取值范围是什么?离心率有什么作用? (3)当时b a ,双曲线有什么特点? 4.双曲线的方程的求法 (1)双曲线的方程与双曲线渐近线的关系

①已知双曲线段的标准方程是22221x y a b -=(0,0)a b >>(或22 221(0,0)x y a b b a -=>>), 则渐近线方程为________________________________________________________________; ②已知渐近线方程为0bx ay ±=,则双曲线的方程可表示为__________________________。 (2)待定系数法求双曲线的方程 ①与双曲线22 221x y a b -=有共同渐近线的双曲线的方程可表示为_______________________; ②若双曲线的渐近线方程是b y x a =± ,则双曲线的方程可表示为_____________________; ③与双曲线22 221x y a b -=共焦点的双曲线方程可表示为_______________________________; ④过两个已知点的双曲线的标准方程可表示为______________________________________; ⑤与椭圆22 221x y a b +=(0)a b >>有共同焦点的双曲线的方程可表示为 ______________________________________________________________________________。 5.双曲线离心率的有关问题 (1)c e a = ,1e >,它决定双曲线的开口大小,e 越大,开口越大。 (2)等轴双曲线的两渐近线互相垂直,离心率2e = 。 (3)双曲线离心率及其范围的求法。 ①双曲线离心率的求解,一般可采用定义法、直接法等方法求解。 ②双曲线离心率范围的求解,一般可以从以下几个方面考虑:a .与已知范围联系,通过求 值域或解不等式来完成;b . 通过判别式?;c .利用点在曲线内部形成的不等式关系;d .利用解析式的结构特点。 6、直线与双曲线的位置关系的判定及相关计算 (1)直线与双曲线的位置关系有:____________、____________、____________ 注意:如何来判断位置关系? (2)若斜率为k 的直线被双曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则相交弦长 =AB _____________________ 二、典型例题: 考点一:双曲线的定义 例1 已知动圆M 与圆C 1:(x +4)2 +y 2 =2外切,与圆C 2:(x -4)2 +y 2 =2内切,求动圆圆心M 的 轨迹方程. 变式训练:由双曲线4 92 2y x -=1上的一点P 与左、右两焦点F 1、F 2构

职高数学双曲线练习题-(拓展模块)

&下列双曲线既有相同离心率,又有相同渐近线的是( ) 《双曲线的方程》练习 一、选择题: 1、已知动点P 到F i (-5,0)的距离与它到F 2(5,0)的距离的差等于 2 x 2 y =1 A . 9 16 2 2 C . x y = 1(x _ -3) 9 16 16 2 2 D . 1r1r 1(x -3) 2、设 j ,则方程x 2cosv y 2 sinv -1表示的曲线是( ) 12丿 3、双曲线x 2 -y 2 = 1上一点,它与两焦点连线互相垂直,则该点的坐标是( (屈 伍、 A . ---- , ------ 12 2 2 4、两条直线X 二 —把双曲线焦点间的距离三等分,则双曲线的离心率是( ) C 5、方程 Ax 2 By 2 C =0( A 0,B :: 0, C ::: 0)表示() B .焦点在x 轴上的双曲线 4 5 4 5 A . B .-- C . -— D.- 5 4 5 4 7、渐近线为 --y -0的双曲线方程- .宀曰 / 定是( ) a b c .焦点在y 轴上的双曲线 D .椭圆 2 2 6、双曲线- —=1的两条渐近线夹的锐角的正切值是( ) 16 25 2 2 x 2 a 2 y_ b 2 -1 2 y_ b 2 --1 C . 2 2 x_ y (ak)2 (bk)2 = 1(k =0) 2 x D .兀 a k 6,则点P 的轨迹方程是( A ?椭圆 B .圆 C .抛物线 D .双曲线 2.3 B. ■■ 3 C . 2.3 2 A .两条直线 C . D .

双曲线的定义及其标准方程教案

圆锥曲线教案双曲线的定义及其标准方程教案 教学目标 1.通过教学,使学生熟记双曲线的定义及其标准方程,理解双曲线的定义,双曲线的标准方程的探索推导过程. 2.在与椭圆的类比中获得双曲线的知识,培养学生会合情猜想,进一步提高分析、归纳、推理的能力. 3.培养学生浓厚的学习兴趣,独立思考、勇于探索精神及实事求是的科学态度. 教学重点与难点 双曲线的定义和标准方程及其探索推导过程是本课的重点.定义中的“差的绝对值”,a与c的关系的理解是难点. 教学过程 师:椭圆的定义是什么椭圆的标准方程是什么 (学生口述椭圆的两个定义,标准方程,教师利用投影仪把椭圆的定义、标准方程和图象放出来.) 师:椭圆的两个定义虽然都是由轨迹的问题引出来的,但所采用的方法是不同的.定义二是在认识上已经把椭圆和方程统一起来,在掌握了坐标法基础上利用坐标方法建立轨迹方程.这是通过方程去认识轨迹曲线.定义中设定的常数 2a,|F1F2|=2c,它们之间的变化对椭圆有什么影响 生:当a=c时,相应的轨迹是线段F1F2.当a<c时,轨迹不存在.这是因为a、c的关系违背了三角形中边与边之间的关系. 师:如果把椭圆定义中的“平面内与两个定点F1、F2的距离的和”改写为“平面内与两个定点F1、F2的距离的差”,那么点的轨迹会怎样它的方程又是怎样的呢 (师生共同做一个简单的实验,请同学们把准备好的实验用具拿出来,一起做实验.教师把教具挂在黑板上,同时板书:平面内与两个定点F1、F2的距离之差为常数的点的轨迹是什么曲线边画、边操作、边说明.) 师:做法是:适当选取两定点F1、F2,将拉锁拉开一段,其中一边的端点固定在F1处,在另一边上截取一段AF2(<F1F2),作为动点M到两定点F1和F2距离之

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

相关文档
最新文档