有限元中四面体单元与六面体单元比较

有限元中四面体单元与六面体单元比较
有限元中四面体单元与六面体单元比较

湖北汽车工业学院

HUBEI UNIVERSITY OF AUTOMOTIVE TECHNOLOGY

毕 业 设 计 英 文 翻 译

译文题目

有限元中四面体单元与六面体单元比较

班号 T743-4 学号 28

姓名 陈柯 译文字数 专业

车辆工程 指导教师

郝琪 汽车工程系

正文

如今,有限元法已不仅仅被少数专业人士单纯的应用于机械行业,它已经成为一种面向虚拟产品开发的标准数值分析手段并能被没有很专业的有限元知识的初级产品设计着大量应用。

伴随着硬件平台及有限元软件的快速发展,有限元法已不局限于解决简单的问题。如今的有限元模型通常都是很复杂的,使用六面体单元并不经济可行。经验表明,大部分经济且行之有效的分析是通过二次四面体完成的。正因如此,一复杂模型自由度会急剧增加至数以百万计。通常情况下,迭代当成求解器用于线性方程组的的解算,图1展示了典型的四面体和六面体网状模型

借助于现代化的有限元工具,得到分析结果并不困难,,然而,正确的结果只是进行相关分析的基石,精确的数值分析结果非常依赖单元质量本身。如今并不存在一个通用的准则去决定如何选取单元类型,但还是有一些基于经验的原则贡我们参考,这有助于我们避免分析错误并检查结果的有效性

这篇文章中我们比较了一些基于有限元四面体划分与六面体划分的分析及实验结果。我们也同样对给基于四面体和六面体的复杂有限元模型的线性分析,非线性分析,动力分析结果做了比较

图1:典型四面体及六面体模型

1:四面体及六面体分析结果比较

让我们来看一个用弯曲理论分析的纯弯曲问题,我们将计算结果和用线性六面体单元进行有限员计算的结果比较(位移和应力)。

图2 梁弯曲问题:梁顶部端点理论分析与计算结果

图3 梁弯曲问题:梁应力分布的理论分析与数值分析结果如图2及图3所示:没有应变修正的线性六面体单元有限元模型求的得一个错误的应力分布,这种作物并不能通过改变单元数目来修正。这种现象叫做剪切自锁。

图4 弯曲单元中使用应变修正函数与不使用应变修正函数单元示意

图4(a)展示了纯弯曲载荷下正确的,期望得到的变形配置。这种变形配置只有在使用了应变修正函数后才能得到,反之就会得到如图4(b)所示错误变形配置。

现在我们来看看四面体单元中使用与不使用中间节点的情况。

图5 梁弯曲问题:线性四面体单元一般的网格划分求解得到错误结果弯曲问题分析中可以看出,线性四面体单元很僵硬

图6梁弯曲问题:线性四面体单元良好的网格划分求解得到错误结果通过增加单元数没能彻底改善单元僵硬情况。

图7梁弯曲问题:六面体单元一般的网格划分求解得到正确结果通过使用中间节点,我们即使在减少单元数目的情况下仍然得到了另人满意的结果。

图8 梁弯曲问题结果比较

图8展示的是用带应变修正函数的六面体单元和而次四面体单元,线性四面体单元解决梁弯曲问题总结。很明显,基于线性四面体单元的解决方案是最不能让人接受的。另外三种解决方案都是可行的。

为了说明正确的单元选择下映射出的结构刚度的不同,我门做了一个悬臂梁的摸态分析,前两阶频率被计算出来,我们以二次六面体单元模型的计算分析为基础将其与二次四面体,和线性四面体单元计算分析结果比较结果如图9 可以看出,只有采用了二次四面体单元的模型能求解除正确结果。采用了四面体单元的模型即使网格网格划分做的很好依然求不出正确的结果。

图9 模态分析中的单元质量及刚度评估

下面我们讨论不同状态下集中载荷实例。我们将二次四面体我网格求解结果与二次六面体网格求解结果作比较,并将之与实验计算结果作比较,图10为张应力比较。图11为弯曲引力比较图12位扭矩作用下应力比较。

图10 张应力分析:集中应力数值分析结果

图11 弯应力分析:集中应力数值分析结果

图12 扭应力分析:集中应力数值分析结果

图13 集中应力测试:求解结果比较

三种集中应力测试结果反映在图13中,可以看出,二次四面体和二次六面体都能很好的求出真确结果

由于ANASYS开发的接触算法是基于点集的,有二次修形函数参与的结构单元也可以用于接触问题的计算。图14(a)为用二次六面体计算的接触应力分布,图14 (b)为用二次六面体计算的接触应力分布。

图14 二次私卖难题与二次六面体计算结果比较

图15 带中间节点的二次四面体单元接触压力分析

2,实验结果与四面体分析结果比较

在这一部分,我们将把用四面体但愿做的有限元元数值分析结果与实验结果作比较。三个静态问题机械实例将展示

实力一

实验中柴油机排气总成在不同静力工况下的结果与用二次中端点四面体单元有限元分析结果误差不超过5%。

图16 二次中间节点四面体总成与应力分布

实例二

刚性壳结构的分析结果如下所示。可以看出,实验与理论分析结果吻合的很好

图17 刚性壳结构的有限元分析结果与实验结果的比较

实例三

在这个实例中,我们比较一结构的前十阶频率

图18 断路器的四面体单元分析结果与实验结果比较

可以看出看出,实验与理论分析结构误差在1%以内

3 四面体与六面体的非线性比较

下面我们要比较四面体与六面体在解决非线性问题中的区别,目的在于说明二次四面体与二次六面体都能得到合理的结果

实例一

这是一个关于非线性接触问题的分析,材料中的非线性行为被忽略

图19 基于二次四面体与二次六面体的系统仿真比较

图20 为求两种单元求装备应力的分布。可以看到两种单元都能得到好的结果,区别在于二次六面体能在网格划分不好的情况下依然得到正确的结果。

图20 离散二次四面体与六面体的非线性装配应力求解结果比较实例二

在这个非线性接触仿真几何模型中,材料的非线性情况被考虑,我们比较这种情况下四面体单元与六面体单元的求解结果。

图21 六面体单元有限元模型材料非线性情况下装配应力分布

图22

这张表显示的是四面体与六面体单元下下压与上拉情况下所需的力及静态线性情况下上拉与下压力的极限值。

下面这张表显示的是四面体单元与六面体下,变形过程中的误差。

图23 离散的二次四面体与六面体数值分析结果

4 四面体单元求解薄壳结构质量分析

现在我们讨论二次四面体单元在求解薄壳结构机械行为时的质量。我们通过板的一阶模态分析比较数值分析结果与解析法结果来研究板的刚度变化。

在壳单元问题中,由于一些原因,壳单元被广泛应用于有限元分析中,而不是经典的基于位移理论的固体单元。

由于集合模型使用壳单元首先的做出中面,然而,现在大多数的CAD模型都是3D模型,使用者必须通过3D模型先做出中面,对于一些很复杂的集合模型而言,做出中面几乎不可能,通常的解决之道是用二次四面体单元划分那些薄板形3D集合体。

由于有些薄壳结构刚度很大,求解时务必注意一些会出现的警告,,如果单元尺寸相较于结构厚度并不收敛,可能会出现病态矩阵导致求解失效。

本文中,我们通过使用四次四面体做模态分析比较简支型板的刚度,通过将求解的前四阶频率与解析法得到的结果比较,不同的长度/厚度比值情况都做了分析,目的是找到能将求解误差控制在2%以内的单元边长值。

根据结果,我们提取出了一个变量并在其基础上总结出了一个公式,

单元尺寸=变量因子*板结构厚度

图24

表1 变量因子表

结论

十年前,由于软硬件的限制,有限元模型只能解决100000个自由度一下的,工程师只能通过简化模型来降低自由度数。但有以下几个问题。

(1):简化过程耗时

(2):如果分析后设计改变,简化过程就得重来

(3):通常简化模型并不能准确反映应力分布情况,有些额外的模型是需要的。

(4):只有有经验的有限元分析工程师能做分析

图25 复杂几何模型示例

如果使用六面体单元或者壳单元,做出如图25所示那样好的有限元模型至少需要数周。

但在现在,3D的实体集合模型可以得到很好的划分,一个模型动辄两三百万自由度是很常见的,如今求解这样的有限元模型都没有问题,模态分析已经能求

到六阶。这些工作都可以在windows XP平台3G内存下得到很好的解决在这片文章中,我们看到二次四面体单元可以得到很好的应用,前提是单元边界和尺寸设定好,我们给出了如下几点建议

(1):不要用线性四面体单元,它们刚性太强

(2):二次四面体的那元要大量使用

(3):二次六面体对拐角问题很敏感在弯曲问题中要考虑变形修正

(4):二次六面体非常好用,但计算量太大

(5):For thin-walled structure the limit element edge/thickness ratio to use tetrahedra is about 2000.

我们的所有结论与建议可以通过图26反映出来

图26 固体单元质量示意

参考文献

[1] ANSYS Theory Reference, Release 6.1, Swanson Analysis Systems, Inc., 2001

[2] Johnson, K.L., Contact mechanics, Cambridge university press

[3] A comparison of all-Hexahedra and all Tetrahedral Finite Element Meshes for elastic &

elastoplatic analysis. Proceedings 4th International Meshing Round table Sandia National

Labs, pp 179-181, Oct. 1995

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

棱柱、棱锥和棱台的结构特征

教案 教学过 (课前检测、预习新知、课 学、激励环节设计、随堂练习、课堂检测或课后巩固)【课前检测】 【预习新知】 【课堂导学】 [情境导学]观察下面四个几何体,这些几何体都是多面体.那么多面体有怎样的结构特征?本节我们就来研究这个问题. 探究点一多面体及多面体的有关概念

1.多面体 (1)多面体是由若干个平面多边形所围成的几何体. (2)把一个多面体的任意一个面延展为平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体. 探究点二棱柱的结构特征 2.棱柱 (1)棱柱的主要特征性质: ①有两个互相平行的面; ②其余各面都是四边形,并且夹在这两个平行平面间的每相邻两个面的交线都互相平行. (2)棱柱的这两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面,两侧面的公共边叫做棱柱的侧棱,两底面之间的距离叫做棱柱的高. (3)棱柱按底面是三角形、四边形、五边形……分别叫做三棱柱、四棱柱、五棱柱…… (4)侧棱与底面不垂直的棱柱叫做斜棱柱,侧棱与底面垂直的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱. (5)底面是平行四边形的棱柱叫做平行六面体,侧棱与底面垂直的平行六面体叫做直平行六面体,底面是矩形的直平行六面体是长方体,棱长都相等的长方体是正方体. 例1下列命题中正确的是() A.棱柱的面中,至少有两个面互相平行 B.棱柱中两个互相平行的平面一定是棱柱的底面 C.在平行六面体中,任意两个相对的面均互相平行,但平行六面体的任意两个相对的面不一定可当作它的底面 D.棱柱的侧面是平行四边形,但它的底面一定不是平行四边形

7.正三棱柱ABC—A′B′C′的底面边长是4cm,过BC的一个平面交侧棱AA′于D,若AD的长是2cm,试求截面BCD的面积. 解如图,取BC的中点E, 探究点三棱锥的结构特征 思考1我们把下面的多面体取名为棱锥,据此你能给棱锥下一个定义吗?棱锥的底面、侧面、侧棱、顶点分别是什么含义?你能作图加以说明吗? (1)棱锥的主要结构特征: ①有一个面是多边形; ②其余各面都是有一个公共顶点的三角形. (2)棱锥中有公共顶点的各三角形,叫做棱锥的侧面; 各侧面的公共顶点叫做棱锥的顶点; 相邻两侧面的公共边叫做棱锥的侧棱; 多边形叫做棱锥的底面; 顶点到底面的距离叫做棱锥的高. (3)棱锥按底面是三角形、四边形、五边形……分别叫做三棱锥、四棱锥、五棱锥……三个棱锥从左到右可分别表示为S-ABC,S-ABCD,P-ABCDE.用一个平行于棱锥底面的平面去截棱锥,截面与底面的形状是相似多边形. (4)如果棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,则这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高. 如图:

有限元热力学常见概念汇总

Film Coefficient(对流换热系数) 流体与固体表面之间的换热能力,比如说,物体表面与附近空气温差1℃,单位时间单位面积上通过对流与附近空气交换的热量。单位为W/(m^2·℃)。表面对流换热系数的数值与换热过程中流体的物理性质、换热表面的形状、部位、表面与流体之间的温差以及流体的流速等都有密切关系。物体表面附近的流体的流速愈大,其表面对流换热系数也愈大。如人处在风速较大的环境中,由于皮肤表面的对流换热系数较大,其散热(或吸热)量也较大。对流换热系数可用经验公式计算,通常用巴兹公式计算 1、详细内容 对流传热系数也称对流换热系数。对流换热系数的基本计算公式由牛顿于1701年提出,又称牛顿冷却定律。牛顿指出,流体与固体壁面之间对流传热的热流与它们的温度差成正比,即: q = h*(tw-t∞) Q = h*A*(tw-t∞)=q*A 式中: q为单位面积的固体表面与流体之间在单位时间内交换的热量,称作热流密度,单位W/m^2; tw、t∞分别为固体表面和流体的温度,单位K; A为壁面面积,单位m^2; Q为面积A上的传热热量,单位W; h称为表面对流传热系数,单位W/(m^2.K)。 2、理论发展 对流换热系数h的物理意义是:当流体与固体表面之间的温度差为1K时,1m*1m壁面面积在每秒所能传递的热量。h的大小反映对流换热的强弱。 如上所述,h与影响换热过程的诸因素有关,并且可以在很大的范围内变化,所以牛顿公式只能看作是传热系数的一个定义式。它既没有揭示影响对流换热的诸因素与h之间的内在联系,也没有给工程计算带来任何实质性的简化,只不过把问题的复杂性转移到传热系数的确定上去了。因此,在工程传热计算中,主要的任务是计算h。计算传热系数的方法主要有实验求解法、数学分析解法和数值分析解法。 影响对流传热强弱的主要因素有: 1. 对流运动成因和流动状态; 2. 流体的物理性质(随种类、温度和压力而变化); 3. 传热表面的形状、尺寸和相对位置; 4. 流体有无相变(如气态与液态之间的转化)。 3、实例应用 在不同的情况下,传热强度会发生成倍直至成千倍的变化,所以对流换热是一个受许多因素影响且其强度变化幅度又很大的复杂过程。 4、对流换热系数的大致量级: 空气自然对流 5 ~ 25 气体强制对流 20 ~ 100 水的自然对流 200 ~1000 水的强制对流 1000 ~ 15000

若四面体ABCD的三组对棱分别相等

若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则 充值|设为首页|免费注册|登录 在线问答在线组卷在线训练移动APP课程直播菁优商城 菁优网 (2012?安徽)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则 ②④⑤ (写出所有正确结论编号) ①四面体ABCD每组对棱相互垂直 ②四面体ABCD每个面的面积相等 ③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180° ④连接四面体ABCD每组对棱中点的线段互垂直平分 ⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长. 考点:棱锥的结构特征. 专题:压轴题;阅读型.

分析:①将四面体ABCD的三组对棱分别看作平行六面体的对角线,由于三组对棱分别相等,所以平行六面体为长方体.结合长方体的性质判断 ②四面体ABCD的每个面是全等的三角形,面积是相等的. ③由②,从四面体ABCD每个顶点出发的三条棱两两夹角能够等量代换为同一个三角形内的三个内角,它们之和为180°. ④连接四面体ABCD每组对棱中点构成菱形,线段互垂直平分 ⑤由①,设所在的长方体长宽高分别为a,b,c,则每个顶点出发的三条棱长分别为 22 + + 易知能构成三角形. 解答:解:①将四面体ABCD的三组对棱分别看作平行六面体的对角线,由于三组对棱分别相等,所以平行六面体为长方体.由于长方体的各面不一定为正方形,所以同一面上的面对角线不一定垂直,从而每组对棱不一定相互垂直.①错误 ②四面体ABCD的每个面是全等的三角形,面积是相等的.②正确 ③由②,四面体ABCD的每个面是全等的三角形,从四面体ABCD每个顶

有限元分析中的单位问题

有限元分析中的单位问题 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。比如,在结构分析中分别用如下单位:长度– m;时间– s;质量– kg;力- N;压力、应力、弹性模量等– Pa,此时单位是统一的。但是如果将压力单位改为MPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为MPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。

基本物理量及其量纲: ·质量m; ·长度L; ·时间t; ·温度T。 导出物理量及其量纲: ·速度:v = L/t; ·加速度:a = L/t2; ·面积:A = L2; ·体积:V = L3; ·密度:ρ= m/L3; ·力:f = m·a = m·L/t2; ·力矩、能量、热量、焓等:e = f·L = m·L2/t2;·压力、应力、弹性模量等:p = f/A = m/(t2·L) ;·热流量、功率:ψ= e/t = m·L2/t3; ·导热率:k =ψ/ (L·T) = m·L/(t3·T); ·比热:c = e/(m·T) = L2/(t2·T); ·热交换系数:Cv = e/(L2·T·t) = m/(t3·T) ·粘性系数:Kv = p·t = m/(t·L) ; ·熵:S = e/T = m·l2/(t2·T); ·质量熵、比熵:s = S/m = l2/(t2·T);

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

30.四面体

四面体与平行六面体 一、一般四面体的性质 性质1.任意四面体六个二面角的平分面交于一点,这点到四面体四个面的距离相等,称该点为四面体内切球球心(简称四面体的内心)。内切球与四面体四个面内切。 若四面体ABCD 的体积为V ,顶点A 所对的侧面面积为A S ,类似的有,,B C D S S S ,则内切球半径 3A B C D V r S S S S = +++. 性质2.任意四面体六条棱的垂直平分面交于一点,这点到四面体顶点的距离相等,该点称为四面体外接球球心(简称四面体外心)。外接球通过四面体四顶点。 性质3.任意四面体的四条中线(每一顶点与其对面重心的连线)交于一点,而且该点是中线的四等分点。 性质4.四面体体积公式一:1111 3333A A B B C C D D V S h S h S h S h ==== 性质5.四面体体积公式之二:1 ||||sin ,6 V AB CD d AB CD =???<> (其中d 为AB 、CD 距离) 性质6.四面体体积公式二: 2sin 2sin 2sin 2sin 2sin 2sin 333333C D AB A D BC A B CD B C DA B D AC A C BD S S S S S S S S S S S S V AB BC CD DA AC BD θθθθθθ= ===== 二、特殊四面体的性质 (1) 正四面体:各边均相等; (2) (3) 等腰四面体:三组对边分别相等。 三、平行面体 像平行四边形是平面图几何的基础一样, 平行六面体是立体几何的基本图形。 性质1.平行六面体的四条体对角线交于一点,且在这一点互相平分,称该点为平行六面体的中心; 性质2.平行六面体的所有体对角线的平方和等于所有棱的平方和。 推论1:平行六面体的所有侧面对角线的平方和等于其所有体对角线平方和的两倍。 推论2:平行六面体的每一侧棱的平方和等于等于与这一侧共面的两侧面四条对角线的平方减去与这一侧棱不共面而共端点的两条侧面对角线平方和所得差的 14 。 性质 3.平行六面体的每一体对角线长的平方等于共一端点的三条棱长的平方和减去这三条棱中每两条棱长及其所夹余弦之积的两倍。 性质 4. 平行六面体的每一体对角线通过与该对角线共端点的三条棱的另一端点构成的三角形截面的重心,且被三角形截面分成三等分。 性质5. 平行六面体的每个由三条侧面对角线构成的三角形截面面积的平方4倍,等于这截面所截三个侧面面积的平方和减去这三个这三个侧面中每两个侧面面积及其所夹二面角余弦之积的二倍。 性质 6.设平行六面体的全面积为S ,体积为V ,四条体对角线长为1111,,,AC A C BD B D l l l l ,则 1 1 1 1222 2 2AC A C BD B D S l l l l ≤+++。1 111 32222 21()24AC A C BD B D V l l l l ≤+++,3 2(6)V ≤。 性质7.通过平行六面体中心的任何平面,将平行六面体分成体积相等的两部分。 推论1.以平行六面体任一顶点及这顶点出发的三条棱的端点构成的四面体体积是平行六面体体积的 16 。 推论 2.以平行六面体任一顶点及这顶点出发的三条侧面对角线端点构成的四面体体积是平行六面体体积的 13 。 性质8.平行六面体的体积等于底面面积与高的乘积,或任一侧面面积与相对面距离之积。 四、四面体与平行六面体的关系 四面体与平行六面体之间存在一种特殊的关系,即四面体可以补成一个平行六面体,且各棱恰好为平行六面体各面上的一条对角线。它们之间有如下性质:

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

高二数学最新教案-如何把四面体补成平行六面体 精品

如何把四面体补成平行六面体 任何一个四面体都可以补成一个平行六面体,使四面体的棱恰为平行六面体各面上 的一条对角线,并且下列重要性质: 1.任何四面体都可以补成一个平行六面体,使四面体的各棱为平行六面体各面上 的一条对角线,且V 四面体=3 1V 平行六面体. 2.若有一对相对棱长相等,则补成的平行六面体中一对相对的面为矩形;若三对相 对棱长分别相等,且有一个面为锐角三角形,则四面体可以补成一个长方体. 3.棱长为a 的正四面体可以补成一个棱长为a 2 2的正方体. 请读者自己完成这些性质的证明. 本文说明这些性质的应用. 例1如图1,四面体S —ABC 中,三组对棱分别相等,且依次为25、13、22,求四面体的体积. 图1 分析:由于底面△ABC 的三条边长都不相等,三条侧棱长SA 、SB 、SC 也都不相等, 所以如果按常规方法:V =hS 31去求体积,△ABC 面积的计算或者顶点S 到底面ABC 的 距离h 都很复杂,但根据性质(2),可以将它补成长方体,不妨令SB =AC =25, SC =AB =13,SA =BC =22,则四个面是全等的三角形,在△SBC 中,SB 最大,所以 ∠SCB 最大,而 cos SCB =2641 2213220 813=??-+>0, 所以△SCB 为锐角三角形,可以补成一个长方体,不妨令长方体的长、宽、高分别 为x 、y 、z , 则有 x 2+y 2=13,y 2+z 2=20, z 2+x 2=8, 解得 x =.2 30,225,22==z y 所以 V 长方体= ,4305 V 四面体=31V 长方体=.12 305 例2.图2是一体积为72的正四面体,连结两个面的重心E 、F ,则线段EF 的长 _______. 分析:由性质(3)可知,正四面体可以补成一个正方体,正方体的体积为 3V 正四面体=3·72=216,

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

ANASYS有限元计算与材力公式计算结果比较

ANASYS有限元计算与材力公式计算结果比较 摘要:基于有限元单元法理论,使用ANASYS软件计算悬臂和两端固定两种梁在简单荷载作用下的位移与应力,并与使用材料力学公式计算的结果作比较,分析误差产生的原因,以加深对有限单元法的理解。 关键词:ANASYS;有限元;材料力学 ANASYS FEM calculation and build formula results Abstract:Based on the theory of finite element method yuan, calculated using software ANASYS cantilever beam and two fixed ends in a simple load of displacement and stress, and the use of the mechanical formula for the results of comparative analysis of the reasons for the error, to deepen the understanding of the finite element method. Key words: ANASYS; finite element method; material mechanics 1.前言 有限单元法是当今工程分析中获得最广泛应用的数值计算方法,其分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适且较简单的近似解,然后推导求解这个域总的满足条件,从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发。软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。前处理模块提供了一个强大的实体建模及网格划分工具,可以方便地构造有限元模型,分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析等,软件提供了100种以上

(试卷)奥赛经典-奥林匹克数学中的几何问题---第二十一章平行六面体的性质及应用

第二十一章平行六面体的性质及应用 【基础知识】 平行六面体是平行四边形的一个三维类比模型,平行四边形的一系列有趣性质可推证到平行六面体中去.平行四边形与三角形有着极为密切的关系,因而平行六面体与四面体也有着极为密切的关系,这些构成了平行六面体一系列既有趣又有重要应用的性质. 性质1平行六面体的四条对角线相交于一点,且在这一点互相平分,并称该点为中心. 推论称侧面对角线的交点为侧面中心,则相对侧面中心的连线也交于平行六面体的中心,且在这一点互相平分.(见例5) 性质2平行六面体所有对角线的平方和等于所有棱的平方和. 推论1平行六面体所有侧面对角线的平方和等于其所有(体)对角线平方和的两倍. 推论2平行六面体每一侧棱的平方等于与这侧棱共面的两侧面四条面对角线的平方和减去与这侧棱不共面而共端点的两条侧面对角线平方和所得差的四分之一. 推论3平行六面体的每一对角线长的平方等于过这条对角线一端点的三条侧面对角线的平方和减去过另一端点的三条棱的平方和. 性质3平行六面体的每一对角线长的平方等于共一端点的三条棱长的平方和减去这三条棱中每两条棱长及其所夹角余弦之积的两倍. 性质4平行六面体的每一对角线通过与该对角线共端点的三条棱的另一端点构成的三角形截面的重心,且被这三角形截面分成三等分. 性质5平行六面体的每个由三条侧面对角线构成的三角形截面面积平方的4倍,等于这截面所截三个侧面面积的平方和减去这三个侧面中每两个侧面面积及其所夹二面角余弦之积的两倍. 推论平行六面体的八个由三条侧面对角线构成的三角形截面面积的平方和等于六个侧面面积的平方和. 性质6设平行六面体的全面积为S ,四条对角线长为1AC l 、1A C l 、1BD l 、1BD l 、1B D l ,则 111122222AC A C BD B D S l l l l +++≤. 性质7通过平行六面体中心的任何平面,将平行六面体分成体积相等的两部分. 推论1以平行六面体任一顶点及这顶点出发的三条棱的端点构成的四面体体积是平行六面体体积的六分之一. 推论2以平行六面体任一顶点及这顶点出发的三条侧面对角线端点构成的四面体体积是平行六面体体积的三分之一. 性质8平行六面体的体积等于底面积与高的乘积,或任一侧面面积与相对面距离之积. 推论设共一顶点的三条棱长为a 、b 、c ,每两条棱的夹角为α、β、γ,则体积V 为 V abc == 若记()1 2 θαβγ= ++,则2V =. 性质9() 11113/2 2222 124 AC A C BD B D V l l l l +++≤; 3/2 6S V ?? ? ?? ≤. 推论l 表面积一定的平行六面体中,以正方体之体积为最大. 推论2在各个侧面面积为定值的平行六面体中,以长方体之体积为最大. 性质11由平行六面体的各顶点,至不截此体的一平面所引诸垂线段之和,等于由其对角线之交点至同平面所引垂线段之和的8倍.

ANSYS有限元分析中的单位问题

ANSYS有限元分析中的单位问题 2008年06月08日星期日 01:07 ansys中没有单位的概念,只要统一就行了。所以,很多人在使用时,不知道该统一用什么单位,用错单位造成分析结果严重失真! 今综合相关资料,整理如下: 一、在ansys经典中,的确没有单位区别,关键要看你的模型以什么样的单位去建,当然,对应的材料属性(杨氏模量,密度等)也要以你所建模型的单位去对应,着重需要注意的是在把模型由cad软件导入ansys中时,注意单位的对应就可以,当然一般在cad模型中的单位是mm制,那么导入ansys后也应该采用mm 制,也就是mpa类型! 二、打开ansys,运行/units,si,就把单位设置成国际制单位了!!即长度:m ;力:n ;时间:s ;温度:k ;压强/压力:Pa ;面积:m2 ;质量:kg ,确保了分析结果不失真,且易于读懂结果数据。 三、ANSYS中不存在单位制,所有的单位是自己统一的。一般先确定几个物理量的单位(做过振动台试验的朋友一定会知道),然后导出其它的物理量的单位。静力问题的基本物理量是: 长度,力,质量 比如你长度用m,力用KN,而质量用g 那么应力的单位就是KN/m*m,而不是N/m*m。 动力问题有些复杂,基本物理量是: 长度,力,质量,时间 比如长度用mm,力用N,质量用Kg,而时间用s 以上单位就错了,因为由牛顿定律: F=ma 所以均按标准单位时: N=kg*m/(s*s) 所以若长度为mm,质量为Kg,时间用s则有 N*e-3=kg*mm/(s*s) 所以,正确的基本单位组合应该是: mN(毫牛,即N*e-3), mm, Kg, s 所以,如果你要让ANSYS的单位为国际单位制,你在输入物理量之前,先 将所有的物理量转换为国际单位制,如: 原先你的图纸上均为毫米,比如一个矩形截面尺寸是400mm*500mm, 那么,你在建模之前先转化为0.4m*0.5m 然后输入的长度为0.4和0.5,ANSYS只知道你输入的是0.4和0.5,它不知道你的单位是什么。 附上一句:ANSYS中有一个只能从命令行输入的命令:/UNITS, 它的作用仅 仅是标记作用,让用户有个地方做标记,它没有任何单位转换的功能。

例谈构造平行六面体解立体几何题

例谈构造平行六面体解立体几何题 立体几何题的题设中若有“垂直”(包括线线垂直、线面垂直及面面垂直)可以试着构造长方体来求解,若没有“垂直”也可尝试构造平行六面体来求解.本文以普通高中课程标准实验教科书《数学·选修2-1·A 版》(人民教育出版社,2007年第2版)(下简称教科书)中的题目及几道高考题来谈谈这种解题方法. 题1 (教科书第106页例2)如图1,甲站在水库底面上的点A 处,乙站在水坝斜面上的点B 处.从,A B 到直线l (库底与水坝的交线)的距离AC 和BD 分别为a 和b ,CD 的长为c ,AB 的长为d .求库底与水坝所成二面角的余弦值. 图1 图2 解 可在如图2所示的平行六面体中求解:因为,//CD AC AC A D '⊥,所以CD A D '⊥.又CD BD ⊥,所以CD ⊥面A DB ',得AA A B ''⊥,所以222A B d c '=-. 在A BD '?中,由余弦定理可求得2222 cos 2a b c d A DB ab ++-'∠=,此即所求二面角的余弦值. 题 2 (教科书第107页练习第2题)如图3,60?的二面角棱上有,A B 两点,直线,AC BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知4,6,8AB AC BD ===,求CD 的长. 图3 图4 解 可在如图4所示的平行六面体中求解:在ACE ?中,6,6,60AC AE BD CAE ===∠=?,由余弦定理可求得252CE =.

可证BA ⊥面ACE ,所以有DE CE ⊥,在CDE ?中可求得217CD =. 题3 (教科书第113页第12题)一条线段夹在一个直二面角的两个半平面内,它与两个半平面所成的角都是30?,求这条线段与这个二面角的棱所成角的大小. 解 可在如图5所示的长方体中求解:30ADB DAE ∠=∠=?,可不妨设2AD =,得1,3,2DE CB AB AE BD BE CD =======,所以在Rt ACD ?中可求得45ADC ∠=?,即夹在直二面角A BE D --的线段AD 与棱BE 所成角的大小是45?. 图5 题 4 已知两平行平面,αβ的距离为23,点,A B α∈,点,C D β∈,且3,2AB CD ==,异面直线,AB CD 成60?角,求四面体ABCD 的体积. 解 可在如图6所示的平行六面体中求解: 图6 在图6所示的平行六面体中,60A CD '∠=?或120?, 133,23sin 322 A CD A C A B S A CD '?''===??∠=,所以13323332 A BCD A BCD V V '--===. 题 5 (2012·安徽·文·15) 若四面体ABCD 的三组对棱分别相等,即,,A B CD A C B D AD BC ===,则下列命题正确的是 (写出所有正确命题的编号)。 ①四面体ABCD 每组对棱相互垂直 ②四面体ABCD 每个面的面积相等 ③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180° ④连接四面体ABCD 每组对棱中点的线段相互垂直平分 ⑤从四面体ABCD 每个顶点出发的三条棱可作为一个三角形的三边长

有限元分析单位问题

有限元分析中的单位问题 葛颂(浙江大学化机所) 2004年11月版 摘要: 本文在前人基础上对使用有限元软件分析工程问题时的材料性能单位问题作了一些探讨,通过实例说明了如何统一各物理量的单位,以保证分析结果的正确。 关键词:有限元、单位 大多数有限元计算程序都不规定所使用的物理量的单位,不同问题可以使用不同的单位,只要在一个问题中各物理量的单位统一就可以。但是,由于在实际工程问题中可能用到多种不同单位的物理量,如果只是按照习惯采用常用的单位,表面上看单位是统一的,实际上单位却不统一,从而导致错误的计算结果。 比如,在结构分析中分别用如下单位:长度– m;时间– s;质量– kg;力- N;压力、应力、弹性模量等– Pa,此时单位是统一的。但是如果将压力单位改为MPa,保持其余单位不变,单位就是不统一的;或者同时将长度单位改为mm,压力单位改为MPa,保持其余单位不变,单位也是不统一的。由此可见,对于实际工程问题,我们不能按照手工计算时的习惯来选择各物理量的单位,而是必须遵循一定的原则。 物理量的单位与所采用的单位制有关。所有物理量可分为基本物理量和导出物理量,在结构和热计算中的基本物理量有:质量、长度、时间和温度。导出物理量的种类很多,如面积、体积、速度、加速度、弹性模量、压力、应力、导热率、比热、热交换系数、能量、热量、功等等,都与基本物理量之间有确定的关系。基本物理量的单位确定了所用的单位制,然后可根据相应的公式得到各导出物理量的单位。具体做法是:首先确定各物理量的量纲,再根据基本物理量单位制的不同得到各物理量的具体单位。 基本物理量及其量纲: ?质量m; ?长度L; ?时间t; ?温度T。 导出物理量及其量纲: ◆速度:v = L / t; ◆加速度:a = L / t 2; ◆面积:A = L 2; ◆体积:V = L 3; ◆密度:ρ= m / L 3; ◆力:f = m · a = m · L / t 2; ◆力矩、能量、热量、焓等:e = f · L = m · L 2 / t 2; ◆压力、应力、弹性模量等:p = f / A = m / (t 2 · L) ; ◆热流量、功率:ψ= e / t = m · L 2 / t 3; ◆导热率:k =ψ/ (L · T) = m · L/ (t 3 · T); ◆比热:c = e / (m · T) = L 2 / (t 2 · T); ◆热交换系数:Cv = e / (L 2 · T · t) = m / (t 3 · T) ◆粘性系数:Kv = p · t = m / (t · L) ; ◆熵:S = e / T = m · l 2 / (t 2 · T); ◆质量熵、比熵:s = S / m = l 2 / (t 2 · T); 在选定基本物理量的单位后,可导出其余物理量的单位,可以选用的单位制很多,下面举两个常用的例子。 1 基本物理量采用如下单位制:

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 我对此提出了几点疑问: 1)为什么边界条件u1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2)为什么刚度矩阵[K]会奇异? 3)为什么平衡方程本身是矛盾的,而加上边界条件u1=0之后就能解出一 个唯一的近似解? 4)为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出

了四个,显然

这四个方程不可能线性无关,所以刚度矩阵奇异。 对于第三个问题,首先我们应该明确方程区别于等式,虽然左右两边都是用“=”连接,但是方程只在特殊条件下取得定解。由于平衡方程是在没有约束的条件下推导出来的,显然它不可能满足等式要求。宏观上看,系统在没有外部约束,而又施加有外力,显然系统会产生加速度而绝不会平衡。所以平衡方程本身是矛盾的。而加上边界条件之后,不但满足了平衡的前提,还改变了矩阵的结构和性质,所以有解。但是,由于我们提前假设了位移线性变化,相当于人为对单元施加了额外约束,让位移按照我们假设的规律变化,所以得到的解是过刚的近似解。但对于方程本身而言是精确解。 对于第四个问题,其力学的作用机理类似于作用力与反作用力,由于刚度矩阵不表征方向,所以其大小是相等的。 1.2 有限元法的思想 有限元法是求解连续介质力学问题的数值方法,更一般意义是一种分析结构问题和连续场数学物理问题的数值方法。 有限元法的基本思想是离散化和分片插值。 即把连续的几何机构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题。 求解得到节点值后就可以通过设定的插值函数确定单元上以至个集合体上的场函数。对每个单元,选取适当的插值函数,使得该函数在子域内部、在子域分界面上以及子域与外界面上都满足一定的条件。单元组合体在已知外载荷作用下处于平衡状态时,列出一系列以节点、位移为未知量的线性方程组,利用计算机解出节点位移后,再用弹性力学的有关公式,计算出各单元的应力、应变,当各单元小到一定程度,那么它就代表连续体各处的真实情况。

第六章 有限元程序设计中的若干问题

第六章有限元程序设计中的若干问题 基本步骤: ⅰ.结构离散化,输入或生成 结点信息-结点坐标 单元信息-单元结点编号 ⅱ.计算单元刚度矩阵,形成体刚度矩阵 包括计算[]B ⅲ.形成结点载荷向量 ⅳ.引入约束条件 ⅴ.解线性方程组 ⅵ.求出结点位移 ⅶ.计算单元的应力并输出 §6-1 约束条件的处理 1.对称性与反对称性 (1)对称结构承受对称载荷作用时 (2)对称结构承受反对称载荷作用

2. 约束位移的引入 主元置1法 主元赋大值 §6-2 总刚度矩阵的存贮法1.半带宽存贮法

2.一维压缩存贮法 考虑到总体刚度矩阵中各行的带宽并不相等,有时由于结构的几何形状的原因,使总体刚度矩阵某些行的带宽特别大。这种情况下如采用半带宽存贮法,就可能把许多零元素也包含了进去,这对节省计算机的存贮量是很不利的。 一维压缩存贮法是将总体刚度矩阵的夏三角形中每一行从第一个非零元素开始按行将元素排成一序列,存放于一维数组) SK中。但 (L 是为了确定SK中的元素在[K]中的行列号,还需要将[K]中各行对角线的元素在伊维数组中的序号存放于另一辅助数组KD(N2)中(N2是总刚度矩阵的阶数)。现举例说明这一存贮法:

设有一系数阵 ???????? ??????????----1.30.00.00.06.00.00.00.04.87.10.00.00.00.00 .01.50.00.07.10.01.50.00.00.00.00.00.02.100.03.10.03.52.03.12.05.4 在一维数组SK (13)中依次存放的是 []1.3007.16.04.81.52.1003.13.52.05.4-- 而辅助数组KD (6)中存放的是 []1398631 KD (6)其实就是[K]中对角元素在一维数组SK (13)中的地址。 将一结构离散化后,对结点进行编号,就能依据单元号确定出总刚度矩阵[K]各行的带宽,由它依次累加就可得出其对角线元素一维存贮中的序号。 显然,形成了数组Kd ,就确定了[K]中被存贮的元素分布情况以及SK 和[K]中元素的对应关系,例如可求出[K]中第I 行带宽为 )1()(--=I KD I KD L i 也可确定出[K]中第I 行左边第一个非零元素在[K]中的列号 1)1()(+-+-=I KD I KD I M i 此外,也能立即确定出单元刚度矩阵e K ][中的某子矩阵 []?? ????=?)4()3()2()1(22I SK I SK I SK I SK K e ij 组集到一维数组存贮总刚度矩阵SK 中的地址 )(2)12(1J I I KD I -?--?=,112+=I I

相关文档
最新文档